Cooperative Adaptive Iterative Learning Fault-Tolerant Control Scheme for Multiple Subway Trains

In this article, a cooperative adaptive iterative learning fault-tolerant control (CAILFTC) algorithm with the radial basis function neural network (RBFNN) is proposed for multiple subway trains subject to the time-iteration-dependent actuator faults by using the multiple-point-mass dynamics model....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 52; číslo 2; s. 1098 - 1111
Hlavní autoři: Liu, Genfeng, Hou, Zhongsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, a cooperative adaptive iterative learning fault-tolerant control (CAILFTC) algorithm with the radial basis function neural network (RBFNN) is proposed for multiple subway trains subject to the time-iteration-dependent actuator faults by using the multiple-point-mass dynamics model. First, an RBFNN is utilized to cope with the unknown nonlinearity of the subway train system. Next, a composite energy function (CEF) technique is applied to obtain the convergence property of the presented CAILFTC, which can guarantee that all train speed tracking errors are asymptotic convergence along the iteration axis; meanwhile, the headway distances of neighboring subway trains are kept in a safety range. Finally, the effectiveness of theoretical studies is verified through a subway train simulation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.2986006