Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach

Objective: This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data? Met...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 67; číslo 2; s. 399 - 410
Hlavní autoři: He, He, Wu, Dongrui
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective: This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data? Methods: We propose a novel approach to align EEG trials from different subjects in the Euclidean space to make them more similar, and hence improve the learning performance for a new subject. Our approach has three desirable properties: first, it aligns the EEG trials directly in the Euclidean space, and any signal processing, feature extraction, and machine learning algorithms can then be applied to the aligned trials; second, its computational cost is very low; and third, it is unsupervised and does not need any label information from the new subject. Results: Both offline and simulated online experiments on motor imagery classification and event-related potential classification verified that our proposed approach outperformed a state-of-the-art Riemannian space data alignment approach, and several approaches without data alignment. Conclusion: The proposed Euclidean space EEG data alignment approach can greatly facilitate transfer learning in BCIs. Significance: Our proposed approach is effective, efficient, and easy to implement. It could be an essential pre-processing step for EEG-based BCIs.
AbstractList This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data?OBJECTIVEThis paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data?We propose a novel approach to align EEG trials from different subjects in the Euclidean space to make them more similar, and hence improve the learning performance for a new subject. Our approach has three desirable properties: first, it aligns the EEG trials directly in the Euclidean space, and any signal processing, feature extraction, and machine learning algorithms can then be applied to the aligned trials; second, its computational cost is very low; and third, it is unsupervised and does not need any label information from the new subject.METHODSWe propose a novel approach to align EEG trials from different subjects in the Euclidean space to make them more similar, and hence improve the learning performance for a new subject. Our approach has three desirable properties: first, it aligns the EEG trials directly in the Euclidean space, and any signal processing, feature extraction, and machine learning algorithms can then be applied to the aligned trials; second, its computational cost is very low; and third, it is unsupervised and does not need any label information from the new subject.Both offline and simulated online experiments on motor imagery classification and event-related potential classification verified that our proposed approach outperformed a state-of-the-art Riemannian space data alignment approach, and several approaches without data alignment.RESULTSBoth offline and simulated online experiments on motor imagery classification and event-related potential classification verified that our proposed approach outperformed a state-of-the-art Riemannian space data alignment approach, and several approaches without data alignment.The proposed Euclidean space EEG data alignment approach can greatly facilitate transfer learning in BCIs.CONCLUSIONThe proposed Euclidean space EEG data alignment approach can greatly facilitate transfer learning in BCIs.Our proposed approach is effective, efficient, and easy to implement. It could be an essential pre-processing step for EEG-based BCIs.SIGNIFICANCEOur proposed approach is effective, efficient, and easy to implement. It could be an essential pre-processing step for EEG-based BCIs.
This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data? We propose a novel approach to align EEG trials from different subjects in the Euclidean space to make them more similar, and hence improve the learning performance for a new subject. Our approach has three desirable properties: first, it aligns the EEG trials directly in the Euclidean space, and any signal processing, feature extraction, and machine learning algorithms can then be applied to the aligned trials; second, its computational cost is very low; and third, it is unsupervised and does not need any label information from the new subject. Both offline and simulated online experiments on motor imagery classification and event-related potential classification verified that our proposed approach outperformed a state-of-the-art Riemannian space data alignment approach, and several approaches without data alignment. The proposed Euclidean space EEG data alignment approach can greatly facilitate transfer learning in BCIs. Our proposed approach is effective, efficient, and easy to implement. It could be an essential pre-processing step for EEG-based BCIs.
Objective : This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain–computer interfaces (BCIs): how to cope with individual differences so that better learning performance can be obtained for a new subject, with minimum or even no subject-specific data? Methods : We propose a novel approach to align EEG trials from different subjects in the Euclidean space to make them more similar, and hence improve the learning performance for a new subject. Our approach has three desirable properties: first, it aligns the EEG trials directly in the Euclidean space, and any signal processing, feature extraction, and machine learning algorithms can then be applied to the aligned trials; second, its computational cost is very low; and third, it is unsupervised and does not need any label information from the new subject. Results : Both offline and simulated online experiments on motor imagery classification and event-related potential classification verified that our proposed approach outperformed a state-of-the-art Riemannian space data alignment approach, and several approaches without data alignment. Conclusion : The proposed Euclidean space EEG data alignment approach can greatly facilitate transfer learning in BCIs. Significance : Our proposed approach is effective, efficient, and easy to implement. It could be an essential pre-processing step for EEG-based BCIs.
Author Wu, Dongrui
He, He
Author_xml – sequence: 1
  givenname: He
  orcidid: 0000-0002-9118-2449
  surname: He
  fullname: He, He
  email: hehe91@hust.edu.cn
  organization: Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, and also with the School of Artificial Intelligence and AutomationHuazhong University of Science and Technology
– sequence: 2
  givenname: Dongrui
  orcidid: 0000-0002-7153-9703
  surname: Wu
  fullname: Wu, Dongrui
  email: drwu@hust.edu.cn
  organization: Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, and also with the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31034407$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URKeFB0BIyBIbNhl8jW1202GASoNYMGzYWI5zXFIlTmonC94ej2bKogs2tnz8_ef2X6GLOEZA6DUla0qJ-XC4-bZbM0LNmhnKDRXP0IpKqSsmOb1AK0Korgwz4hJd5XxfnkKL-gW65JRwIYhaoV-H5GIOkPAeXIpdvMNhTPgmuS5W23GYlrn83cZyBuchf8QbvFt837XgIv4xlRj-5GaHN313FweIM95MUxqd__0SPQ-uz_DqfF-jn593h-3Xav_9y-12s688F2auTNsAC6GGhgdpRMNa4pySXshGEm10LSjxBkA3smU81FpRpbTTtZREaKb4NXp_ylvKPiyQZzt02UPfuwjjki1jVJW5CTcFffcEvR-XFEt3lnEhJRVU8UK9PVNLM0Brp9QNLv2xj1srgDoBPo05JwjWd7ObuzHOZW-9pcQe_bFHf-zRH3v2pyjpE-Vj8v9p3pw0HQD847UitFaG_wVRWJhZ
CODEN IEBEAX
CitedBy_id crossref_primary_10_3390_app15052742
crossref_primary_10_1109_TNSRE_2024_3391936
crossref_primary_10_1016_j_patcog_2023_110015
crossref_primary_10_1109_TNSRE_2023_3259730
crossref_primary_10_1109_TNNLS_2023_3243339
crossref_primary_10_1109_TNSRE_2023_3321640
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_26599_BSA_2022_9050001
crossref_primary_10_3390_mi13060927
crossref_primary_10_1109_TNSRE_2023_3327740
crossref_primary_10_1109_TNSRE_2025_3595379
crossref_primary_10_1109_TBME_2020_2969839
crossref_primary_10_1016_j_neucom_2024_129239
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1109_TBME_2021_3115799
crossref_primary_10_1109_TCDS_2022_3193731
crossref_primary_10_3389_fnins_2023_1274320
crossref_primary_10_1088_1741_2552_ad0859
crossref_primary_10_1109_TNSRE_2024_3457504
crossref_primary_10_1109_TNSRE_2022_3220884
crossref_primary_10_1111_coin_12451
crossref_primary_10_3389_fnins_2025_1635588
crossref_primary_10_1016_j_neunet_2022_06_008
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_1007_s11042_024_18648_4
crossref_primary_10_1109_COMST_2024_3396847
crossref_primary_10_1109_TNSRE_2023_3321414
crossref_primary_10_1109_TNSRE_2024_3359191
crossref_primary_10_1080_24725579_2025_2492555
crossref_primary_10_1109_TNSRE_2024_3356916
crossref_primary_10_3389_fnhum_2022_1049985
crossref_primary_10_1109_JSEN_2023_3265688
crossref_primary_10_1016_j_bspc_2023_105867
crossref_primary_10_1016_j_neucom_2023_01_087
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_1088_1741_2552_ac4852
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_3390_biomimetics10040225
crossref_primary_10_1109_TNSRE_2020_3023761
crossref_primary_10_2478_pjmpe_2024_0016
crossref_primary_10_1093_pnasnexus_pgae076
crossref_primary_10_1016_j_inffus_2025_103501
crossref_primary_10_1093_nsr_nwaf086
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_1016_j_bspc_2024_106311
crossref_primary_10_1088_1741_2552_ad4f18
crossref_primary_10_1109_MCI_2022_3199622
crossref_primary_10_1109_TBME_2023_3303289
crossref_primary_10_1088_1741_2552_acd95d
crossref_primary_10_1016_j_neucom_2024_129010
crossref_primary_10_1109_TNSRE_2022_3225878
crossref_primary_10_1109_TNSRE_2023_3241301
crossref_primary_10_1016_j_bspc_2023_105293
crossref_primary_10_1088_1741_2552_ad593b
crossref_primary_10_1016_j_compbiomed_2025_110675
crossref_primary_10_1109_JBHI_2024_3402324
crossref_primary_10_1109_TBME_2024_3474049
crossref_primary_10_1109_TCE_2025_3573773
crossref_primary_10_3390_app13106283
crossref_primary_10_1007_s11571_021_09676_z
crossref_primary_10_1109_JBHI_2025_3525577
crossref_primary_10_1109_TAI_2021_3098253
crossref_primary_10_1109_TCDS_2021_3090217
crossref_primary_10_3389_fnbot_2022_958052
crossref_primary_10_1016_j_sna_2025_116572
crossref_primary_10_1016_j_bspc_2025_107706
crossref_primary_10_1016_j_bspc_2025_107948
crossref_primary_10_1109_JBHI_2024_3463737
crossref_primary_10_1016_j_compeleceng_2024_109680
crossref_primary_10_3390_electronics14142853
crossref_primary_10_1007_s11432_022_3548_2
crossref_primary_10_1088_1742_6596_3079_1_012067
crossref_primary_10_1109_TNSRE_2023_3323902
crossref_primary_10_1007_s11571_023_09940_4
crossref_primary_10_1038_s41598_022_14026_y
crossref_primary_10_1109_TCSS_2022_3184818
crossref_primary_10_1016_j_neuroimage_2025_121243
crossref_primary_10_1109_TBME_2024_3432934
crossref_primary_10_1109_TNSRE_2024_3382226
crossref_primary_10_1088_1741_2552_ad1f7a
crossref_primary_10_1186_s12859_024_06024_w
crossref_primary_10_1109_TNSRE_2019_2945794
crossref_primary_10_3389_fnhum_2022_951591
crossref_primary_10_3389_fnins_2021_779231
crossref_primary_10_1109_TVT_2023_3290660
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_1016_j_jneumeth_2022_109642
crossref_primary_10_1088_1741_2552_ad3eb5
crossref_primary_10_1109_TNNLS_2023_3269512
crossref_primary_10_1109_ACCESS_2024_3351204
crossref_primary_10_1088_1741_2552_ad0a01
crossref_primary_10_1088_1741_2552_ac1ed2
crossref_primary_10_1109_TII_2024_3450010
crossref_primary_10_1109_JBHI_2022_3218453
crossref_primary_10_1016_j_bspc_2023_105556
crossref_primary_10_3389_fnhum_2023_1175399
crossref_primary_10_1109_TNSRE_2021_3059166
crossref_primary_10_1007_s11571_025_10337_8
crossref_primary_10_1109_TIM_2024_3476618
crossref_primary_10_3389_fnins_2024_1360709
crossref_primary_10_1016_j_compbiomed_2022_106267
crossref_primary_10_3389_fnhum_2022_1068165
crossref_primary_10_1088_2057_1976_ad90e8
crossref_primary_10_1109_TNSRE_2023_3265304
crossref_primary_10_1016_j_eswa_2025_129248
crossref_primary_10_1049_ell2_12275
crossref_primary_10_1109_JAS_2022_106004
crossref_primary_10_1109_TNSRE_2021_3099908
crossref_primary_10_1109_TNSRE_2024_3358491
crossref_primary_10_3390_s22062241
crossref_primary_10_1088_1741_2552_ac9a01
crossref_primary_10_1007_s11517_023_02967_z
crossref_primary_10_1088_1741_2552_ad3986
crossref_primary_10_1016_j_cmpb_2021_106150
crossref_primary_10_1016_j_jneumeth_2024_110332
crossref_primary_10_1016_j_knosys_2025_114205
crossref_primary_10_1016_j_eswa_2023_121612
crossref_primary_10_3390_s24248127
crossref_primary_10_1016_j_neuroimage_2023_120209
crossref_primary_10_1007_s11571_023_09936_0
crossref_primary_10_3390_s24217080
crossref_primary_10_1016_j_bspc_2025_107756
crossref_primary_10_1109_MSP_2021_3134629
crossref_primary_10_1109_TCDS_2022_3209801
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1007_s11571_022_09821_2
crossref_primary_10_1016_j_neunet_2023_06_005
crossref_primary_10_1109_ACCESS_2022_3147461
crossref_primary_10_1109_TNSRE_2024_3451010
crossref_primary_10_3390_app112311252
crossref_primary_10_1109_TNNLS_2022_3202569
crossref_primary_10_1088_1741_2552_ad152f
crossref_primary_10_1371_journal_pone_0263641
crossref_primary_10_1109_TBME_2021_3105912
crossref_primary_10_1109_TNSRE_2022_3174821
crossref_primary_10_1109_TCDS_2024_3370261
crossref_primary_10_1109_TNSRE_2020_2985996
crossref_primary_10_1177_14759217221110441
crossref_primary_10_3389_fnhum_2024_1447662
crossref_primary_10_3390_app15010392
crossref_primary_10_1109_TNSRE_2024_3355434
crossref_primary_10_1016_j_engappai_2025_110340
crossref_primary_10_1016_j_neunet_2025_107741
crossref_primary_10_1109_TIM_2024_3420350
crossref_primary_10_3390_brainsci15010075
crossref_primary_10_1109_TNSRE_2024_3445115
crossref_primary_10_3389_fnhum_2023_1143027
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1109_TNSRE_2020_2980299
crossref_primary_10_1109_TCDS_2023_3338460
crossref_primary_10_1109_TFUZZ_2019_2930022
crossref_primary_10_3389_fnins_2022_865201
crossref_primary_10_3390_brainsci15080877
crossref_primary_10_1016_j_bspc_2022_104435
crossref_primary_10_1109_ACCESS_2020_3048683
crossref_primary_10_1109_TCDS_2023_3314155
crossref_primary_10_1080_10447318_2025_2464097
crossref_primary_10_1109_TASE_2025_3604283
crossref_primary_10_1016_j_neucom_2025_130206
crossref_primary_10_1088_1741_2552_adb998
crossref_primary_10_3389_fpsyt_2021_837149
crossref_primary_10_1177_00202940221105092
crossref_primary_10_1016_j_aei_2022_101729
crossref_primary_10_1016_j_neucom_2023_126659
crossref_primary_10_3389_fnhum_2024_1421922
crossref_primary_10_3390_smartcities6030065
crossref_primary_10_1109_JBHI_2020_3025865
crossref_primary_10_3390_brainsci13020240
crossref_primary_10_1016_j_bspc_2022_104454
crossref_primary_10_1007_s11760_025_04532_7
crossref_primary_10_1109_TIM_2023_3341121
crossref_primary_10_1109_TNSRE_2022_3191869
crossref_primary_10_3390_app15148036
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1016_j_eswa_2025_127312
crossref_primary_10_1016_j_eswa_2024_124673
crossref_primary_10_3390_electronics13061033
crossref_primary_10_1016_j_bspc_2024_106044
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_1016_j_procs_2023_12_037
crossref_primary_10_1109_TNSRE_2022_3211881
crossref_primary_10_1016_j_bspc_2024_106046
crossref_primary_10_1016_j_bspc_2024_107015
crossref_primary_10_1007_s11517_024_03036_9
crossref_primary_10_1016_j_jneumeth_2022_109593
crossref_primary_10_1016_j_neunet_2025_107516
crossref_primary_10_3389_fnins_2022_863359
crossref_primary_10_1007_s10489_024_05662_0
crossref_primary_10_3389_fncom_2021_737324
crossref_primary_10_3389_fnins_2024_1402154
crossref_primary_10_1186_s12938_020_00765_4
crossref_primary_10_3390_s21062173
crossref_primary_10_1155_2022_3893866
crossref_primary_10_1063_5_0054912
crossref_primary_10_1109_JIOT_2024_3431233
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_1016_j_magmed_2025_100038
crossref_primary_10_3233_JIFS_237890
crossref_primary_10_1016_j_eswa_2024_125089
crossref_primary_10_1109_TCDS_2021_3137530
crossref_primary_10_3390_molecules28031069
crossref_primary_10_1109_TNSRE_2023_3241846
crossref_primary_10_1109_JBHI_2020_3002329
crossref_primary_10_1016_j_neucom_2024_127805
crossref_primary_10_1109_JPROC_2023_3277471
crossref_primary_10_1088_1741_2552_ad2710
crossref_primary_10_3389_fnins_2024_1271831
crossref_primary_10_1016_j_jneumeth_2022_109489
crossref_primary_10_1109_TETCI_2024_3359097
crossref_primary_10_1016_j_eswa_2024_123492
crossref_primary_10_1109_TNSRE_2023_3285309
crossref_primary_10_1109_ACCESS_2020_3016700
crossref_primary_10_1016_j_eswa_2025_128783
crossref_primary_10_1109_JBHI_2024_3491096
crossref_primary_10_1088_1741_2552_ad430d
crossref_primary_10_1016_j_neucom_2020_09_017
crossref_primary_10_1016_j_bspc_2023_105155
crossref_primary_10_1088_1741_2552_ac93b4
crossref_primary_10_1088_1741_2552_addd49
crossref_primary_10_1016_j_neucom_2024_127944
crossref_primary_10_1016_j_compbiomed_2022_106420
crossref_primary_10_1186_s40708_025_00267_w
crossref_primary_10_1109_TNSRE_2023_3236372
crossref_primary_10_31083_j_jin2312218
crossref_primary_10_3389_fnhum_2020_00103
crossref_primary_10_1016_j_bbe_2024_11_003
crossref_primary_10_1093_nsr_nwaa233
crossref_primary_10_1109_TNSRE_2022_3207494
crossref_primary_10_1007_s10489_025_06612_0
crossref_primary_10_1109_TBME_2022_3168570
crossref_primary_10_1088_1741_2552_ad5fbd
crossref_primary_10_1109_TNSRE_2022_3204540
crossref_primary_10_1109_TBME_2020_3045720
crossref_primary_10_3389_fnhum_2021_706270
crossref_primary_10_1016_j_neunet_2023_08_008
crossref_primary_10_1109_JBHI_2024_3395910
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_1080_09544828_2024_2326396
crossref_primary_10_1016_j_knosys_2025_113074
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_3389_fnhum_2023_1243750
crossref_primary_10_1016_j_eswa_2024_125452
crossref_primary_10_1109_TNNLS_2020_3010780
crossref_primary_10_1016_j_bspc_2022_104540
crossref_primary_10_1109_TNSRE_2023_3252610
crossref_primary_10_3390_make7030092
crossref_primary_10_1016_j_jneumeth_2025_110483
crossref_primary_10_3389_fnins_2020_629572
crossref_primary_10_1016_j_bspc_2024_106081
crossref_primary_10_1109_TCDS_2021_3082648
Cites_doi 10.1161/01.CIR.101.23.e215
10.3390/s120201211
10.1109/THMS.2016.2608931
10.1145/1961189.1961199
10.1109/ICASSP.2010.5495183
10.1109/SMC.2016.7844284
10.1109/MCI.2015.2501545
10.1109/TFUZZ.2017.2688423
10.1109/JPROC.2012.2184830
10.1016/S1388-2457(98)00038-8
10.1371/journal.pone.0178498
10.1109/TKDE.2009.191
10.1007/978-3-319-70096-0_83
10.1109/MSP.2008.4408441
10.1007/978-3-540-27816-0_8
10.1109/MC.2012.107
10.1007/BF01129656
10.1109/TNSRE.2016.2627016
10.1109/TBME.2017.2742541
10.1016/j.neuroimage.2007.01.051
10.1109/TNSRE.2016.2544108
10.1016/S0378-3758(00)00115-4
10.1109/LSP.2009.2022557
10.1109/TBME.2011.2172210
10.1109/TBME.2013.2253608
10.1109/SMC.2017.8122610
10.1109/MC.2008.432
10.1109/TNSRE.2017.2699784
10.1109/TFUZZ.2016.2633379
10.1016/S1388-2457(02)00057-3
10.1088/1741-2560/11/3/035005
10.1109/TBME.2009.2012869
10.2307/2283970
10.1109/86.895946
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2019.2913914
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 410
ExternalDocumentID 31034407
10_1109_TBME_2019_2913914
8701679
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-9dbe2ff6eb3f594b2d0aa75c45b508986410c9ee8b5d23f6871778a8655048273
IEDL.DBID RIE
ISICitedReferencesCount 310
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510903800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 11:35:25 EDT 2025
Mon Jun 30 10:17:36 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Sat Nov 29 05:34:23 EST 2025
Tue Nov 18 22:38:10 EST 2025
Wed Aug 27 02:29:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-9dbe2ff6eb3f594b2d0aa75c45b508986410c9ee8b5d23f6871778a8655048273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9118-2449
0000-0002-7153-9703
PMID 31034407
PQID 2345514173
PQPubID 85474
PageCount 12
ParticipantIDs ieee_primary_8701679
proquest_miscellaneous_2217484039
crossref_citationtrail_10_1109_TBME_2019_2913914
proquest_journals_2345514173
pubmed_primary_31034407
crossref_primary_10_1109_TBME_2019_2913914
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref36
ref14
van der maaten (ref33) 2008; 9
ref11
ref1
ref39
ref17
ref38
ref16
ref19
utgoff (ref32) 1986; 2
ref18
gretton (ref10) 0
congedo (ref7) 2013
bishop (ref3) 2006
holm (ref12) 1979; 6
barachant (ref2) 2014
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref9
ref4
ref6
ref5
ref40
sun (ref31) 0
sugiyama (ref30) 0
References_xml – ident: ref9
  doi: 10.1161/01.CIR.101.23.e215
– year: 2013
  ident: ref7
  article-title: A new generation of brain-computer interface based on Riemannian geometry
  publication-title: arXiv 1310 8115
– ident: ref23
  doi: 10.3390/s120201211
– ident: ref37
  doi: 10.1109/THMS.2016.2608931
– ident: ref6
  doi: 10.1145/1961189.1961199
– ident: ref20
  doi: 10.1109/ICASSP.2010.5495183
– ident: ref16
  doi: 10.1109/SMC.2016.7844284
– ident: ref13
  doi: 10.1109/MCI.2015.2501545
– ident: ref38
  doi: 10.1109/TFUZZ.2017.2688423
– ident: ref18
  doi: 10.1109/JPROC.2012.2184830
– ident: ref22
  doi: 10.1016/S1388-2457(98)00038-8
– ident: ref21
  doi: 10.1371/journal.pone.0178498
– ident: ref24
  doi: 10.1109/TKDE.2009.191
– ident: ref11
  doi: 10.1007/978-3-319-70096-0_83
– ident: ref4
  doi: 10.1109/MSP.2008.4408441
– ident: ref8
  doi: 10.1007/978-3-540-27816-0_8
– start-page: 1433
  year: 0
  ident: ref30
  article-title: Direct importance estimation with model selection and its application to covariate shift adaptation
  publication-title: Proc 32nd Annu Conf Adv Neural Inf Process Syst
– ident: ref34
  doi: 10.1109/MC.2012.107
– ident: ref17
  doi: 10.1007/BF01129656
– ident: ref42
  doi: 10.1109/TNSRE.2016.2627016
– volume: 6
  start-page: 65
  year: 1979
  ident: ref12
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand J Statist
– volume: 2
  start-page: 107
  year: 1986
  ident: ref32
  article-title: Shift of bias for inductive concept learning
  publication-title: Machine Learning An Artificial Intelligence Approach
– ident: ref43
  doi: 10.1109/TBME.2017.2742541
– start-page: 2058
  year: 0
  ident: ref31
  article-title: Return of frustratingly easy domain adaptation
  publication-title: Proc 30th AAAI Conf Artif Intell
– ident: ref5
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref40
  doi: 10.1109/TNSRE.2016.2544108
– ident: ref29
  doi: 10.1016/S0378-3758(00)00115-4
– ident: ref14
  doi: 10.1109/LSP.2009.2022557
– ident: ref1
  doi: 10.1109/TBME.2011.2172210
– ident: ref28
  doi: 10.1109/TBME.2013.2253608
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref33
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1109/SMC.2017.8122610
– ident: ref25
  doi: 10.1109/MC.2008.432
– year: 2006
  ident: ref3
  publication-title: Pattern Recognition and Machine Learning
– ident: ref41
  doi: 10.1109/TNSRE.2017.2699784
– ident: ref39
  doi: 10.1109/TFUZZ.2016.2633379
– year: 2014
  ident: ref2
  article-title: A plug & play P300 BCI using information geometry
  publication-title: arXiv 1409 0107
– ident: ref35
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref15
  doi: 10.1088/1741-2560/11/3/035005
– start-page: 513
  year: 0
  ident: ref10
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1109/TBME.2009.2012869
– ident: ref19
  doi: 10.2307/2283970
– ident: ref26
  doi: 10.1109/86.895946
SSID ssj0014846
Score 2.6958494
Snippet Objective: This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with...
This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain-computer interfaces (BCIs): how to cope with individual...
Objective : This paper targets a major challenge in developing practical electroencephalogram (EEG)-based brain–computer interfaces (BCIs): how to cope with...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 399
SubjectTerms Algorithms
Alignment
Brain
Brain-computer interface
Brain-Computer Interfaces
Classification
Computational neuroscience
Computer Simulation
Covariance matrices
data alignment
Data processing
Databases, Factual
EEG
Electroencephalography
Electroencephalography - classification
Euclidean geometry
Euclidean space
Event-related potentials
Evoked Potentials - physiology
Feature extraction
Humans
Image classification
Imagination - physiology
Interfaces
Learning algorithms
Machine Learning
Machine learning algorithms
Mental task performance
Microsoft Windows
Riemannian geometry
Signal processing
Signal Processing, Computer-Assisted
Task analysis
Transfer learning
Title Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach
URI https://ieeexplore.ieee.org/document/8701679
https://www.ncbi.nlm.nih.gov/pubmed/31034407
https://www.proquest.com/docview/2345514173
https://www.proquest.com/docview/2217484039
Volume 67
WOSCitedRecordID wos000510903800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5UZNGD79XxRQt7ko3T6cek29uoI14UQReGvYROpyMDQ2YZZ_z9dnV6godV8BZI50GqKlVf1-MD-KUNK6iwLik5VQl6rERLyROjHNPSWiVKE8gmsocHNRzqxyX43fbCOOdC8Zm7wMOQyy8ndo5bZV2vW5g1WIblLMuaXq02YyBU05RDU2_ATIuYwUyp7j5f3Q-wiEtfMByCmSIXD9JrCYEksh_cUeBX-TzUDC7ndvN7L7sFGzG0JP1GF7ZhydU7sP5h4OAO_LiPqfRd-Bu8VOWmJI5YfSE-fiVXSBmRLLgeSNgwrLBs65L0yWBux6PSmZo8eajtyI2ZGdIfj15CSQHpx_nke_DndvB8fZdEooXEcqFniS4Lx6qq54F1JbUoWEmNyaQVsvDxGw5wT6nVzqlCloxXPQ-yskwZ7GmlOEaU_4SVelK7AyD-J2F4IVJLK-6hW6G0qWTp7V6aHjU93QG6-N65jVPIkQxjnAc0QnWO0spRWnmUVgfO20v-NSM4vlq8i6JoF0YpdOB4IdQ8GulrzrjAeDHNeAfO2tPevDBnYmo3mfs1CNk8COb-FvuNMrT3XujQ4f-feQRrDMF5KPE-hpXZdO5OYNW-zUav01Ovw0N1GnT4HWH957Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4BrYAeWiBA00JZJE4Iw3ofsbe3UIKoSqJKDRLiYq3XaxQpclBI-P3srDcWh4LEzZLXD3lmPPPtPD6AI6VZToWxUcFpGqHHipSUPNKpZUoak4pCe7KJZDBIb2_V3yU4aXphrLW--Mye4qHP5RcTM8etsjOnW5g1WIYPUggW191aTc5ApHVbDo2dCTMlQg4zpupseN7vYRmXOmU4BjNGNh4k2BICaWRfOCTPsPJ6sOmdzuWX973uBnwOwSXp1tqwCUu22oJPL0YObsFqPyTTW3Dn_VRppyQMWb0nLoIl50gaES3YHojfMiyxcOsn6ZLe3IxHhdUV-efAtiUXeqZJdzy690UFpBsmlG_DzWVv-OsqClQLkeFCzSJV5JaVZcdB61IqkbOCap1II2TuIjgc4R5To6xNc1kwXnYczEqSVGNXK8VBonwHVqpJZb8Ccb8JzXMRG1pyB97yVOlSFs7ype5Q3VFtoIvvnZkwhxzpMMaZxyNUZSitDKWVBWm14bi55KEewvHW4haKolkYpNCGvYVQs2CmjxnjAiPGOOFtOGxOOwPDrImu7GTu1iBoczCYu1vs1srQ3HuhQ9_-_8wDWLsa9q-z69-DP99hnSFU9wXfe7Aym87tPnw0T7PR4_SH1-RnIsHqFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transfer+Learning+for+Brain%E2%80%93Computer+Interfaces%3A+A+Euclidean+Space+Data+Alignment+Approach&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=He%2C+He&rft.au=Wu%2C+Dongrui&rft.date=2020-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=2&rft.spage=399&rft.epage=410&rft_id=info:doi/10.1109%2FTBME.2019.2913914&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2019_2913914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon