Continuous-Time Generalized Fractional Programming Problems, Part II: An Interval-Type Computational Procedure
The theory presented in Part I (Wen in J. Optim. Theory Appl. 2012) of this study led to a theoretical parametric procedure for continuous-time generalized fractional programming problems. In this paper (Part II), an interval-type computational procedure by combining the parametric method and discre...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 156; číslo 3; s. 819 - 843 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.03.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The theory presented in Part I (Wen in J. Optim. Theory Appl. 2012) of this study led to a theoretical parametric procedure for continuous-time generalized fractional programming problems. In this paper (Part II), an interval-type computational procedure by combining the parametric method and discretization approach is proposed. The proposed method is promising particularly when it is acceptable to find an effective, but near-optimal value in an efficient manner. Once the error tolerance is predetermined, we can determine the size of discretization in advance such that the accuracy of the corresponding approximate solution can be controlled within the predefined error tolerance. Hence, the trade-off between the quality of the results and the simplification of the problem can be controlled by the decision maker. Finally, we provide some numerical examples to implement our proposed method. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-012-0131-5 |