Cross-Layer combining of adaptive Modulation and coding with truncated ARQ over wireless links

We developed a cross-layer design which combines adaptive modulation and coding at the physical layer with a truncated automatic repeat request protocol at the data link layer, in order to maximize spectral efficiency under prescribed delay and error performance constraints. We derive the achieved s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 3; no. 5; pp. 1746 - 1755
Main Authors: Qingwen Liu, Shengli Zhou, Giannakis, G.B.
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We developed a cross-layer design which combines adaptive modulation and coding at the physical layer with a truncated automatic repeat request protocol at the data link layer, in order to maximize spectral efficiency under prescribed delay and error performance constraints. We derive the achieved spectral efficiency in closed-form for transmissions over Nakagami-m block fading channels. Numerical results reveal that retransmissions at the data link layer relieve stringent error control requirements at the physical layer, and thereby enable considerable spectral efficiency gain. This gain is comparable with that offered by diversity, provided that the maximum number of transmissions per packet equals the diversity order. Diminishing returns on spectral efficiency, that result when increasing the maximum number of retransmissions, suggest that a small number of retransmissions offers a desirable delay-throughput tradeoff, in practice.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2004.833474