Detecting malicious nodes via gradient descent and support vector machine in Internet of Things

IoT devices have become much popular in our daily lives, while attackers often invade network nodes to launch various attacks. In this work, we focus on the detection of insider attacks in IoT networks. Most existing algorithms calculate the reputation of all nodes based on the routing path. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering Jg. 77; S. 339 - 353
Hauptverfasser: Liu, Liang, Yang, Jingxiu, Meng, Weizhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Ltd 01.07.2019
Elsevier BV
Schlagworte:
ISSN:0045-7906, 1879-0755
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract IoT devices have become much popular in our daily lives, while attackers often invade network nodes to launch various attacks. In this work, we focus on the detection of insider attacks in IoT networks. Most existing algorithms calculate the reputation of all nodes based on the routing path. However, they rely heavily on the assumption that different nodes in the same routing path have equal reputation, which may be not invalid in practice and cause inaccurate detection results. To solve this issue, we formulate it as a multivariate multiple linear regression problem and use the K-means classification algorithm to detect malicious nodes. Further, we optimize the routing path and design an enhanced detection scheme. Our results indicate that our proposed methods could achieve a detection accuracy rate of 90% or above in a common case, and the enhanced scheme could reach an even lower false detection rate, i.e., below 5%.
AbstractList IoT devices have become much popular in our daily lives, while attackers often invade network nodes to launch various attacks. In this work, we focus on the detection of insider attacks in IoT networks. Most existing algorithms calculate the reputation of all nodes based on the routing path. However, they rely heavily on the assumption that different nodes in the same routing path have equal reputation, which may be not invalid in practice and cause inaccurate detection results. To solve this issue, we formulate it as a multivariate multiple linear regression problem and use the K-means classification algorithm to detect malicious nodes. Further, we optimize the routing path and design an enhanced detection scheme. Our results indicate that our proposed methods could achieve a detection accuracy rate of 90% or above in a common case, and the enhanced scheme could reach an even lower false detection rate, i.e., below 5%.
Author Yang, Jingxiu
Liu, Liang
Meng, Weizhi
Author_xml – sequence: 1
  givenname: Liang
  surname: Liu
  fullname: Liu, Liang
  email: liangliu@nuaa.edu.cn
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China
– sequence: 2
  givenname: Jingxiu
  surname: Yang
  fullname: Yang, Jingxiu
  email: yangjingxiu613zb@163.com
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China
– sequence: 3
  givenname: Weizhi
  surname: Meng
  fullname: Meng, Weizhi
  email: weme@dtu.dk
  organization: Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
BookMark eNqNkMtKAzEUhoNUsK2-Q8T1jMlc0mQlUm-Fgpu6Dmlypqa0yZhkCr69KXUhrro6F873H_gmaOS8A4RuKSkpoex-W2q_72EHGtymrAgVJWElofUFGlM-EwWZte0IjQlp2mImCLtCkxi3JM-M8jGST5BAJ-s2eK92Vls_ROy8gYgPVuFNUMaCSzgv9LEqZ3Ac-t6HhA8Z9CFz-tM6wNbhhUsQHCTsO7zKy028Rped2kW4-a1T9PHyvJq_Fcv318X8cVnouhGpEIKuSc25IaoWomOibYSumSGMt9w0NQMFIrdaaN5QU3eVMV3VtLplBNadqKfo7pTbB_81QExy64fg8ktZVZyzbCFLmSJxutLBxxigk32wexW-JSXy6FNu5R-f8uhTEiYzmtmHf6y2SSXrXQrK7s5KmJ8SIIs4WAgy6ixXg7Ehq5TG2zNSfgDhHZyv
CitedBy_id crossref_primary_10_1016_j_micpro_2022_104504
crossref_primary_10_1007_s10207_023_00687_x
crossref_primary_10_1002_int_22397
crossref_primary_10_1007_s11227_022_04829_1
crossref_primary_10_1002_spy2_112
crossref_primary_10_1007_s41870_021_00639_5
crossref_primary_10_1109_ACCESS_2020_3003158
crossref_primary_10_1007_s11277_023_10603_0
crossref_primary_10_1109_ACCESS_2024_3369906
crossref_primary_10_1016_j_compeleceng_2023_108884
crossref_primary_10_1007_s12652_023_04582_0
crossref_primary_10_1155_2022_2891917
crossref_primary_10_1186_s13677_023_00416_8
crossref_primary_10_1002_cpe_5957
crossref_primary_10_1016_j_icte_2023_03_006
Cites_doi 10.3390/s17040703
10.1109/TNSM.2016.2627340
10.1109/TPDS.2015.2402156
10.1109/COMST.2018.2817685
10.1002/dac.3878
10.1504/IJWMC.2018.090007
10.1007/s11227-017-2150-3
10.1016/j.future.2016.05.034
10.1177/1550147716657246
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jul 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2019.06.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 353
ExternalDocumentID 10_1016_j_compeleceng_2019_06_013
S004579061930254X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c349t-991b0388d0a399f69549c36d06858d436eae9858c9c841d3f2ddf245c560ebf93
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483629600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Fri Jul 25 06:27:38 EDT 2025
Tue Nov 18 21:41:29 EST 2025
Sat Nov 29 07:27:52 EST 2025
Fri Feb 23 02:26:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords K-means
Internet of things
Gradient descent
Machine learning
Malicious node detection
Support vector machine
Trust management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-991b0388d0a399f69549c36d06858d436eae9858c9c841d3f2ddf245c560ebf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2288675501
PQPubID 2045266
PageCount 15
ParticipantIDs proquest_journals_2288675501
crossref_primary_10_1016_j_compeleceng_2019_06_013
crossref_citationtrail_10_1016_j_compeleceng_2019_06_013
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2019_06_013
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Schölkopf, Smola (bib0024) 2002
Rikli, Alnasser (bib0008) 2016; 12
Luo, Nagarajan (bib0019) 2018
Abdelhakim, Lightfoot, Ren, Li (bib0005) 2015
Liu, Abdelhakim, Krishnamurthy, Tipper (bib0013) 2018; 4
Jan, Nanda, Liu (bib0004) 2018; 80
Zhang, Zhu, Tang, Xiong (bib0012) 2018; 74
Abdelhakim, Liu, Krishnamurthy (bib0006) 2018
Wang, Hussain, Bertino (bib0022) 2016; 27
Ahmed, Tepe (bib0011) 2017
Ayadi, Ghorbel, BenSaleh, Obeid, Abid (bib0020) 2017
Rana, Cai, Azeem, Ditta, Yu, Khuhro (bib0007) 2018; 14
Romman, Al-Bahadili (bib0010) 2016; 8
Haykin (bib0023) 2009; vol. 3
Akbani, Korkmaz, Raju (bib0016) 2008
Dromard, Roudiere, Owezarski (bib0018) 2017; 14
Chen, Tian, Lin (bib0009) 2017; 17
Nahiyan, Kaiser, Ferens, McLeod (bib0017) 2017
Liu, Abdelhakim, Krishnamurthy, Tipper (bib0021) 2018
Javed, Afzal, Sharif, Kim (bib0001) 2018; 20
Corak, Okay, Guzel, Murt, Ozdemir (bib0002) 2018
Tseng, Chiang, Chao (bib0003) 2018; 14
Li, Meng, Kwok (bib0025) 2018; 10
Kaplantzis, Shilton, Mani, Sekercioglu (bib0015) 2008
Zawaideh, Salamah (bib0014) 2019; 32
Dromard (10.1016/j.compeleceng.2019.06.013_bib0018) 2017; 14
Romman (10.1016/j.compeleceng.2019.06.013_bib0010) 2016; 8
Tseng (10.1016/j.compeleceng.2019.06.013_bib0003) 2018; 14
Jan (10.1016/j.compeleceng.2019.06.013_bib0004) 2018; 80
Chen (10.1016/j.compeleceng.2019.06.013_bib0009) 2017; 17
Zawaideh (10.1016/j.compeleceng.2019.06.013_bib0014) 2019; 32
Liu (10.1016/j.compeleceng.2019.06.013_sbref0021) 2018
Liu (10.1016/j.compeleceng.2019.06.013_bib0013) 2018; 4
Luo (10.1016/j.compeleceng.2019.06.013_sbref0019) 2018
Ahmed (10.1016/j.compeleceng.2019.06.013_sbref0011) 2017
Akbani (10.1016/j.compeleceng.2019.06.013_bib0016) 2008
Javed (10.1016/j.compeleceng.2019.06.013_bib0001) 2018; 20
Ayadi (10.1016/j.compeleceng.2019.06.013_bib0020) 2017
Schölkopf (10.1016/j.compeleceng.2019.06.013_sbref0024) 2002
Rikli (10.1016/j.compeleceng.2019.06.013_bib0008) 2016; 12
Haykin (10.1016/j.compeleceng.2019.06.013_bib0023) 2009; vol. 3
Nahiyan (10.1016/j.compeleceng.2019.06.013_sbref0017) 2017
Li (10.1016/j.compeleceng.2019.06.013_bib0025) 2018; 10
Wang (10.1016/j.compeleceng.2019.06.013_bib0022) 2016; 27
Kaplantzis (10.1016/j.compeleceng.2019.06.013_sbref0015) 2008
Corak (10.1016/j.compeleceng.2019.06.013_sbref0002) 2018
Abdelhakim (10.1016/j.compeleceng.2019.06.013_bib0005) 2015
Rana (10.1016/j.compeleceng.2019.06.013_bib0007) 2018; 14
Zhang (10.1016/j.compeleceng.2019.06.013_bib0012) 2018; 74
Abdelhakim (10.1016/j.compeleceng.2019.06.013_sbref0006) 2018
References_xml – volume: 80
  start-page: 613
  year: 2018
  end-page: 626
  ident: bib0004
  article-title: A sybil attack detection scheme for a forest wildfire monitoring application
  publication-title: Fut Gener Comp Syst
– volume: 17
  start-page: 703
  year: 2017
  ident: bib0009
  article-title: Trust model of wireless sensor networks and its application in data fusion
  publication-title: Sensors
– start-page: 712
  year: 2018
  end-page: 717
  ident: bib0006
  article-title: Diversity for detecting routing attacks in multi-hop networks
  publication-title: 2018 International conference on computing, networking and communications (ICNC)
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0019
  article-title: Distributed anomaly detection using autoencoder neural networks in WSN for iot
  publication-title: 2018 IEEE International Conference on Communications (ICC)
– start-page: 1
  year: 2017
  end-page: 5
  ident: bib0011
  article-title: Recommendation trust for improved malicious node detection in ad hoc networks
  publication-title: IEEE 86th VTC-Fall
– start-page: 335
  year: 2008
  end-page: 340
  ident: bib0015
  article-title: Detecting selective forwarding attacks in wireless sensor networks using support vector machines
  publication-title: IEEE ISSNIP
– volume: 14
  start-page: 34
  year: 2017
  end-page: 47
  ident: bib0018
  article-title: Online and scalable unsupervised network anomaly detection method
  publication-title: IEEE Trans Netw Serv Manag
– volume: 12
  year: 2016
  ident: bib0008
  article-title: Lightweight trust model for the detection of concealed malicious nodes in sparse wireless ad hoc networks
  publication-title: Int J Distrib Sens Netw
– start-page: 25
  year: 2017
  end-page: 30
  ident: bib0017
  article-title: A multi-agent based cognitive approach to unsupervised feature extraction and classification for network intrusion detection
  publication-title: ACC'17
– volume: 27
  start-page: 405
  year: 2016
  end-page: 418
  ident: bib0022
  article-title: Dictionary based secure provenance compression for wireless sensor networks
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: vol. 3
  year: 2009
  ident: bib0023
  publication-title: Neural networks and learning machines
– volume: 74
  start-page: 1779
  year: 2018
  end-page: 1801
  ident: bib0012
  article-title: A novel trust management scheme based on dempster-shafer evidence theory for malicious nodes detection in wireless sensor networks
  publication-title: J Supercomput
– start-page: 1
  year: 2002
  end-page: 626
  ident: bib0024
  article-title: Learning with Kernels: support vector machines, regularization, optimization, and beyond
– volume: 10
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib0025
  article-title: Investigating the influence of special on-off attacks on challenge-based collaborative intrusion detection networks
  publication-title: Fut Internet
– start-page: 2119
  year: 2008
  end-page: 2123
  ident: bib0016
  article-title: A machine learning based reputation system for defending against malicious node behavior
  publication-title: GLOBECOM
– volume: 4
  start-page: 109
  year: 2018
  end-page: 125
  ident: bib0013
  article-title: Identifying malicious nodes in multihop IoT networks using dual link technologies and unsupervised learning
  publication-title: Open J Internet Things
– volume: 8
  start-page: 29‐40
  year: 2016
  ident: bib0010
  article-title: Performance analysis of the neighbor weight trust determination algorithm in MANETs
  publication-title: Int J Netw Secur Appl
– volume: 14
  start-page: 16
  year: 2018
  end-page: 24
  ident: bib0007
  article-title: Wireless ad hoc network: detection of malicious node by using neighbour-based authentication approach
  publication-title: Int J Wirel Mob Comput
– volume: 14
  start-page: 56
  year: 2018
  end-page: 78
  ident: bib0003
  article-title: Black hole along with other attacks in MANETs: a survey
  publication-title: J Inf Process Syst
– volume: 32
  year: 2019
  ident: bib0014
  article-title: An efficient weighted trust-based malicious node detection scheme for wireless sensor networks
  publication-title: Int J Commun Syst
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0020
  article-title: Outlier detection based on data reduction in WSNs for water pipeline
  publication-title: SoftCOM
– volume: 20
  start-page: 2062
  year: 2018
  end-page: 2100
  ident: bib0001
  article-title: Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review
  publication-title: IEEE Commun Surv Tuts
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0005
  article-title: Reliable communications over multi-hop networks under routing attacks
  publication-title: GLOBECOM
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0002
  article-title: Comparative analysis of IoT communication protocols
  publication-title: 2018 International symposium on networks, computers and communications (ISNCC)
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0021
  article-title: Identifying malicious nodes in Multi-hop IoT networks using diversity and unsupervised learning
  publication-title: IEEE International Conference on Communications
– volume: 17
  start-page: 703
  issue: 4
  year: 2017
  ident: 10.1016/j.compeleceng.2019.06.013_bib0009
  article-title: Trust model of wireless sensor networks and its application in data fusion
  publication-title: Sensors
  doi: 10.3390/s17040703
– volume: 14
  start-page: 34
  issue: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2019.06.013_bib0018
  article-title: Online and scalable unsupervised network anomaly detection method
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/TNSM.2016.2627340
– start-page: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2019.06.013_bib0020
  article-title: Outlier detection based on data reduction in WSNs for water pipeline
  publication-title: SoftCOM
– start-page: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2019.06.013_bib0005
  article-title: Reliable communications over multi-hop networks under routing attacks
  publication-title: GLOBECOM
– volume: 27
  start-page: 405
  issue: 2
  year: 2016
  ident: 10.1016/j.compeleceng.2019.06.013_bib0022
  article-title: Dictionary based secure provenance compression for wireless sensor networks
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2402156
– volume: 20
  start-page: 2062
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0001
  article-title: Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review
  publication-title: IEEE Commun Surv Tuts
  doi: 10.1109/COMST.2018.2817685
– start-page: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0011
  article-title: Recommendation trust for improved malicious node detection in ad hoc networks
– volume: 32
  issue: 3
  year: 2019
  ident: 10.1016/j.compeleceng.2019.06.013_bib0014
  article-title: An efficient weighted trust-based malicious node detection scheme for wireless sensor networks
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.3878
– volume: 14
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0007
  article-title: Wireless ad hoc network: detection of malicious node by using neighbour-based authentication approach
  publication-title: Int J Wirel Mob Comput
  doi: 10.1504/IJWMC.2018.090007
– start-page: 1
  year: 2002
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0024
– volume: vol. 3
  year: 2009
  ident: 10.1016/j.compeleceng.2019.06.013_bib0023
– volume: 74
  start-page: 1779
  issue: 4
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0012
  article-title: A novel trust management scheme based on dempster-shafer evidence theory for malicious nodes detection in wireless sensor networks
  publication-title: J Supercomput
  doi: 10.1007/s11227-017-2150-3
– volume: 80
  start-page: 613
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0004
  article-title: A sybil attack detection scheme for a forest wildfire monitoring application
  publication-title: Fut Gener Comp Syst
  doi: 10.1016/j.future.2016.05.034
– volume: 14
  start-page: 56
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0003
  article-title: Black hole along with other attacks in MANETs: a survey
  publication-title: J Inf Process Syst
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0021
  article-title: Identifying malicious nodes in Multi-hop IoT networks using diversity and unsupervised learning
– volume: 8
  start-page: 29‐40
  issue: 4
  year: 2016
  ident: 10.1016/j.compeleceng.2019.06.013_bib0010
  article-title: Performance analysis of the neighbor weight trust determination algorithm in MANETs
  publication-title: Int J Netw Secur Appl
– start-page: 25
  year: 2017
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0017
  article-title: A multi-agent based cognitive approach to unsupervised feature extraction and classification for network intrusion detection
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0002
  article-title: Comparative analysis of IoT communication protocols
– start-page: 335
  year: 2008
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0015
  article-title: Detecting selective forwarding attacks in wireless sensor networks using support vector machines
– volume: 4
  start-page: 109
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0013
  article-title: Identifying malicious nodes in multihop IoT networks using dual link technologies and unsupervised learning
  publication-title: Open J Internet Things
– start-page: 712
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0006
  article-title: Diversity for detecting routing attacks in multi-hop networks
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_bib0025
  article-title: Investigating the influence of special on-off attacks on challenge-based collaborative intrusion detection networks
  publication-title: Fut Internet
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.06.013_sbref0019
  article-title: Distributed anomaly detection using autoencoder neural networks in WSN for iot
– start-page: 2119
  year: 2008
  ident: 10.1016/j.compeleceng.2019.06.013_bib0016
  article-title: A machine learning based reputation system for defending against malicious node behavior
  publication-title: GLOBECOM
– volume: 12
  issue: 7
  year: 2016
  ident: 10.1016/j.compeleceng.2019.06.013_bib0008
  article-title: Lightweight trust model for the detection of concealed malicious nodes in sparse wireless ad hoc networks
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147716657246
SSID ssj0004618
Score 2.2794633
Snippet IoT devices have become much popular in our daily lives, while attackers often invade network nodes to launch various attacks. In this work, we focus on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 339
SubjectTerms Algorithms
Design optimization
Gradient descent
Internet of Things
K-means
Machine learning
Malicious node detection
Nodes
Route planning
Support vector machine
Support vector machines
Trust management
Title Detecting malicious nodes via gradient descent and support vector machine in Internet of Things
URI https://dx.doi.org/10.1016/j.compeleceng.2019.06.013
https://www.proquest.com/docview/2288675501
Volume 77
WOSCitedRecordID wos000483629600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dixMxEA-1J6IP4ieenhLBt7LQ3Wy2Cfhy6InewyF4Yn0Ku0lW9zi3pduW4h_g3-1Mkv3g5KAiPnRZwmabZn6dTCYzvyHkFWcJLxLNIgk76yjNUhmJMs4jbjBPMrZMaO2KTczOzsR8Lj-ORr_aXJjt5ayuxW4nl_9V1NAGwsbU2b8Qd_dSaIB7EDpcQexw3Uvwby2eC6AH4AfY2NrFuNYLY5vJtson31Yuxms9MZ7HyR0eNJslmuGTrXPhQz8MsHRsIt5haF24gC_xObRm25IQjQOQr6jjhG57lsMu4qfaeB9A3rd9Dc7qU3huV2064Vvf_MVWP79XQ7-ES4Ua-iW6hJk-Oskp4BQZMqeB_drrXDHDzp6tt1XKobaL16rM8x2FBZp5duE_dL93Q1yg6Jb4i2GsGLonHT-rT3i9Qq39CYeDowErFlkB5jfIQTLjUozJwfGHk_npIMM29mt6GP4t8rKPFLzmC6-zdK6s-c6QOb9H7oYdCD32yLlPRrZ-QO4MeCkfEtVhiHYYog5DFDBEWwzRgCEKGKIBQ9RjiAYM0aqmLYbooqQeQ4_I53cn52_eR6ESR6RZKtcRbCIKpA0y0xwM2jLDs2HNMjPF6gUmZZnNrYRbLbVIY8PKxJgySbkGe9oWpWSPybhe1PYJoaXI8zgxAp6bpnHBi1hzw6WBDzdZag6JaGdN6UBTj9VSLlUbj3ihBhOucMIVxmbG7JAkXdel52rZp9PrVjQqGJ3emFSAq326H7XiVEEJNCpJhICNOJ_GT__t7c_I7f6vdUTG69XGPic39XZdNasXAaS_AXSPuXA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+malicious+nodes+via+gradient+descent+and+support+vector+machine+in+Internet+of+Things&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Liu%2C+Liang&rft.au=Yang%2C+Jingxiu&rft.au=Meng%2C+Weizhi&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=77&rft.spage=339&rft.epage=353&rft_id=info:doi/10.1016%2Fj.compeleceng.2019.06.013&rft.externalDocID=S004579061930254X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon