Concept Drift Detection via Equal Intensity k-Means Space Partitioning

The data stream poses additional challenges to statistical classification tasks because distributions of the training and target samples may differ as time passes. Such a distribution change in streaming data is called concept drift. Numerous histogram-based distribution change detection methods hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 51; H. 6; S. 3198 - 3211
Hauptverfasser: Liu, Anjin, Lu, Jie, Zhang, Guangquan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The data stream poses additional challenges to statistical classification tasks because distributions of the training and target samples may differ as time passes. Such a distribution change in streaming data is called concept drift. Numerous histogram-based distribution change detection methods have been proposed to detect drift. Most histograms are developed on the grid-based or tree-based space partitioning algorithms which makes the space partitions arbitrary, unexplainable, and may cause drift blind spots. There is a need to improve the drift detection accuracy for the histogram-based methods with the unsupervised setting. To address this problem, we propose a cluster-based histogram, called equal intensity <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means space partitioning (EI-kMeans). In addition, a heuristic method to improve the sensitivity of drift detection is introduced. The fundamental idea of improving the sensitivity is to minimize the risk of creating partitions in distribution offset regions. Pearson's chi-square test is used as the statistical hypothesis test so that the test statistics remain independent of the sample distribution. The number of bins and their shapes, which strongly influence the ability to detect drift, are determined dynamically from the sample based on an asymptotic constraint in the chi-square test. Accordingly, three algorithms are developed to implement concept drift detection, including a greedy centroids initialization algorithm, a cluster amplify-shrink algorithm, and a drift detection algorithm. For drift adaptation, we recommend retraining the learner if a drift is detected. The results of experiments on the synthetic and real-world datasets demonstrate the advantages of EI-kMeans and show its efficacy in detecting concept drift.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.2983962