Power laws for monkeys typing randomly: the case of unequal probabilities

An early result in the history of power laws, due to Miller, concerned the following experiment. A monkey types randomly on a keyboard with N letters (N>1) and a space bar, where a space separates words. A space is hit with probability p; all other letters are hit with equal probability (1-p)/N....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 50; no. 7; pp. 1403 - 1414
Main Authors: Conrad, B., Mitzenmacher, M.
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An early result in the history of power laws, due to Miller, concerned the following experiment. A monkey types randomly on a keyboard with N letters (N>1) and a space bar, where a space separates words. A space is hit with probability p; all other letters are hit with equal probability (1-p)/N. Miller proved that in this experiment, the rank-frequency distribution of words follows a power law. The case where letters are hit with unequal probability has been the subject of recent confusion, with some suggesting that in this case the rank-frequency distribution follows a lognormal distribution. We prove that the rank-frequency distribution follows a power law for assignments of probabilities that have rational log-ratios for any pair of keys, and we present an argument of Montgomery that settles the remaining cases, also yielding a power law. The key to both arguments is the use of complex analysis. The method of proof produces simple explicit formulas for the coefficient in the power law in cases with rational log-ratios for the assigned probabilities of keys. Our formula in these cases suggests an exact asymptotic formula in the cases with an irrational log-ratio, and this formula is exactly what was proved by Montgomery.
AbstractList An early result in the history of power laws, due to Miller, concerned the following experiment. A monkey types randomly on a keyboard with N letters (N>1) and a space bar, where a space separates words. A space is hit with probability p; all other letters are hit with equal probability (1-p)/N. Miller proved that in this experiment, the rank-frequency distribution of words follows a power law. The case where letters are hit with unequal probability has been the subject of recent confusion, with some suggesting that in this case the rank-frequency distribution follows a lognormal distribution. We prove that the rank-frequency distribution follows a power law for assignments of probabilities that have rational log-ratios for any pair of keys, and we present an argument of Montgomery that settles the remaining cases, also yielding a power law. The key to both arguments is the use of complex analysis. The method of proof produces simple explicit formulas for the coefficient in the power law in cases with rational log-ratios for the assigned probabilities of keys. Our formula in these cases suggests an exact asymptotic formula in the cases with an irrational log-ratio, and this formula is exactly what was proved by Montgomery. [PUBLICATION ABSTRACT]
An early result in the history of power laws, due to Miller, concerned the following experiment. A monkey types randomly on a keyboard with N letters (N>1) and a space bar, where a space separates words. A space is hit with probability p; all other letters are hit with equal probability (1-p)/N. Miller proved that in this experiment, the rank-frequency distribution of words follows a power law. The case where letters are hit with unequal probability has been the subject of recent confusion, with some suggesting that in this case the rank-frequency distribution follows a lognormal distribution. We prove that the rank-frequency distribution follows a power law for assignments of probabilities that have rational log-ratios for any pair of keys, and we present an argument of Montgomery that settles the remaining cases, also yielding a power law. The key to both arguments is the use of complex analysis. The method of proof produces simple explicit formulas for the coefficient in the power law in cases with rational log-ratios for the assigned probabilities of keys. Our formula in these cases suggests an exact asymptotic formula in the cases with an irrational log-ratio, and this formula is exactly what was proved by Montgomery.
Author Conrad, B.
Mitzenmacher, M.
Author_xml – sequence: 1
  givenname: B.
  surname: Conrad
  fullname: Conrad, B.
  organization: Dept. of Math., Univ. of Michigan, Ann Arbor, MI, USA
– sequence: 2
  givenname: M.
  surname: Mitzenmacher
  fullname: Mitzenmacher, M.
BookMark eNp9kT1LLDEUQIMouH7UFjbB4lnNmkySSWL3ED8WBC3WOmRmbjQ6m6zJDLL_3sgKgoVVuHDOvYRzgHZDDIDQCSVzSom-WC6W85oQPleMSFHvoBkVQla6EXwXzQihqtKcq310kPNrGbmg9QwtHuMHJDzYj4xdTHgVwxtsMh43ax-ecbKhj6thc4nHF8CdzYCjw1OA98kOeJ1ia1s_-NFDPkJ7zg4Zjr_fQ_R0c728uqvuH24XV__vq45xPVbKSd1K7ah2lrTStrqn3LWs0cw1XS05NKTvOyk71ztOCiddr2vQirQ1NIodovPt3nL9fYI8mpXPHQyDDRCnbJRuqOKSi0L--5OslZCskbqAZ7_A1zilUH5hqBZKc8ZZgcQW6lLMOYEznR_t6GMYk_WDocR8dTClg_nqYLYdinfxy1snv7Jp84dxujU8APzQjJSUlH0Chd6Utg
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_cognition_2020_104466
crossref_primary_10_3390_e18030089
crossref_primary_10_1088_1742_5468_2011_12_L12002
crossref_primary_10_1007_s10618_009_0140_7
crossref_primary_10_1371_journal_pone_0181987
crossref_primary_10_3390_e23091100
crossref_primary_10_1088_1742_6596_936_1_012028
crossref_primary_10_3758_s13423_014_0585_6
crossref_primary_10_1088_1742_5468_2011_07_P07013
crossref_primary_10_1371_journal_pone_0256133
crossref_primary_10_1002_asi_24057
crossref_primary_10_1109_TIT_2004_830747
crossref_primary_10_1016_j_physa_2013_05_052
crossref_primary_10_1209_0295_5075_adfa3e
crossref_primary_10_1371_journal_pone_0129031
Cites_doi 10.1103/PhysRevE.57.1347
10.1103/PhysRevE.60.1412
10.2307/2333389
10.1103/PhysRevE.54.220
10.1007/3-540-45465-9_11
10.1002/9781118032770
10.2307/1419346
10.1080/15427951.2004.10129088
10.1016/S0378-4371(02)01507-8
ContentType Journal Article
Copyright Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2004
Copyright_xml – notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2004
DBID RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2004.830752
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Psychology
Computer Science
EISSN 1557-9654
EndPage 1414
ExternalDocumentID 764677301
10_1109_TIT_2004_830752
1306541
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c349t-8f79b79f19fa0b7ab9d14fb3693f6c274e60ddc77cfdf40f197fd92e980b2e683
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000222323900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Sep 28 07:26:17 EDT 2025
Sun Nov 09 10:52:23 EST 2025
Fri Jul 25 06:13:10 EDT 2025
Tue Nov 18 21:43:02 EST 2025
Sat Nov 29 08:07:34 EST 2025
Tue Aug 26 16:39:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-8f79b79f19fa0b7ab9d14fb3693f6c274e60ddc77cfdf40f197fd92e980b2e683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 195894343
PQPubID 23500
PageCount 12
ParticipantIDs ieee_primary_1306541
proquest_miscellaneous_896184745
proquest_miscellaneous_28573679
crossref_citationtrail_10_1109_TIT_2004_830752
crossref_primary_10_1109_TIT_2004_830752
proquest_journals_195894343
PublicationCentury 2000
PublicationDate 2004-07-01
PublicationDateYYYYMMDD 2004-07-01
PublicationDate_xml – month: 07
  year: 2004
  text: 2004-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2004
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
Pitt (ref13) 1958
ref11
Widder (ref14) 1941
ref10
Mahmoud (ref9) 1992
ref2
ref16
ref7
Flajolet (ref8)
ref4
ref3
Huberman (ref15) 1999
ref5
Gong (ref6)
Mandelbrot (ref1) 1953
References_xml – volume-title: The Laplace Transform
  year: 1941
  ident: ref14
– ident: ref7
  doi: 10.1103/PhysRevE.57.1347
– volume-title: Tauberian Theorems
  year: 1958
  ident: ref13
– ident: ref2
  doi: 10.1103/PhysRevE.60.1412
– ident: ref12
  doi: 10.2307/2333389
– start-page: 486
  volume-title: Communication Theory
  year: 1953
  ident: ref1
  article-title: An informational theory of the statistical structure of languages
– ident: ref5
  doi: 10.1103/PhysRevE.54.220
– ident: ref3
  doi: 10.1007/3-540-45465-9_11
– ident: ref10
  doi: 10.1002/9781118032770
– start-page: 192
  volume-title: Proc. 39th Annu. Allerton Conf. Communication, Control, and Computing
  ident: ref6
  article-title: On the tails of web filesize distributions
– ident: ref4
  doi: 10.2307/1419346
– ident: ref11
  doi: 10.1080/15427951.2004.10129088
– ident: ref8
  publication-title: Analytical Combinatorics
– volume-title: Evolution of Random Search Trees
  year: 1992
  ident: ref9
– volume-title: Evolutionary Dynamics of the World Wide Web
  year: 1999
  ident: ref15
– ident: ref16
  doi: 10.1016/S0378-4371(02)01507-8
SSID ssj0014512
Score 1.9386063
Snippet An early result in the history of power laws, due to Miller, concerned the following experiment. A monkey types randomly on a keyboard with N letters (N>1) and...
An early result in the history of power laws, due to Miller, concerned the following experiment. A monkey types randomly on a keyboard with N letters (N > 1)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1403
SubjectTerms Analysis
Asymptotic properties
Coefficients
Computer aided software engineering
Confusion
Frequency
History
Information
Information analysis
Information theory
Internet
Keyboards
Keys
Mathematics
Monkeys
Monkeys & apes
Natural languages
Number theory
Power law
Psychology
Typing
Title Power laws for monkeys typing randomly: the case of unequal probabilities
URI https://ieeexplore.ieee.org/document/1306541
https://www.proquest.com/docview/195894343
https://www.proquest.com/docview/28573679
https://www.proquest.com/docview/896184745
Volume 50
WOSCitedRecordID wos000222323900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED64RoZ0yMNpUTVNwqFDh8qRRFokuwVBjBhIDQ9ukE2Q-AAKuFJg2Qn873ukZLVB6yGbBJ0oQcfj8XR33wfwmRpKjUv9x5TZkCkhQ8l1EiqJC4PG6I35Pu77Oz6diocHOevB164Xxhjji8_M0B36XL6u1Nr9KruMPc05xjpvOE-bXq0uY8BGcYMMHqMBY8zRwvjEkbycT-Y-EBwKnNCj5IUH8pQq_6zD3rmMD1_3Wkdw0G4iyVWj9WPomXIAh1uCBtLa6wDe_oU2iGffO4jWegD73dK3OYHJzJGlkUX-XBPcxRKcm2jcNVltXDsVQX-mq1-LzTeCAxCFjo9UlqxL41oyieOkadC-Mep-Bz_GN_Pr27AlWQgVZXIVCstlwaWNpc2jgueF1DGzBU0ltanCmNWkkdaKc2W1ZRHKcatlYqSIisSkgr6HflmV5gMQFheuIVvjplI6HEKRcKUiU-DIOqc0D2C4_fCZahHIHRHGIvORSCQz1JTjxWRZo6kAvnQ3PDbgG7tFT5xi_og1OgngdKvZrDXOOnP4Og4WjwZw0V1Fq3Kpkrw01brOEjHiNOUyALJDQniqHM5GH___5FPYb4p8XGXvJ-ivlmtzBnvqafWzXp77ufsbkm_slA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB1FBanlQCEtwgToHnrgUKe2d-3d5YYQVSPSqIe06s2y90OqlNooTlrl3zO7dgxV6YGbLY_XlmdnZ8cz8x7AMTWUGpf6jymzIVNChpLrJFQSFwaN0RvzfdzXUz6biZsbeTmAk74Xxhjji8_M2B36XL6u1dr9KjuNPc05xjovUsaSqO3W6nMGLI1bbPAYTRijjg7IJ47k6Xwy96HgWOCUTpNHPsiTqjxZib17Odv_vxd7A6-7bST51ur9LQxMNYT9LUUD6Sx2CK_-whvEs4sepLUZwl6_-G0OYHLp6NLIonhoCO5jCc5ONO-GrDauoYqgR9P13WLzleAARKHrI7Ul68q4pkziWGlavG-Muw_h6uzH_Pt52NEshIoyuQqF5bLk0sbSFlHJi1LqmNmSZpLaTGHUarJIa8W5stqyCOW41TIxUkRlYjJB38FOVVfmPRAWl64lW-O2UjokQpFwpSJT4si6oLQIYLz98LnqMMgdFcYi97FIJHPUlGPGZHmrqQC-9Df8auE3nhc9cIr5I9bqJIDRVrN5Z55N7hB2HDAeDeCov4p25ZIlRWXqdZMnIuU04zIA8oyE8GQ5nKUf_v3kI9g9n19M8-lk9nMEe23Jj6vz_Qg7q-XafIKX6n512yw_-3n8GwIw79s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+laws+for+monkeys+typing+randomly%3A+the+case+of+unequal+probabilities&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Conrad%2C+B.&rft.au=Mitzenmacher%2C+M.&rft.date=2004-07-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=50&rft.issue=7&rft.spage=1403&rft.epage=1414&rft_id=info:doi/10.1109%2FTIT.2004.830752&rft.externalDocID=1306541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon