Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints
In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to z...
Saved in:
| Published in: | Journal of optimization theory and applications Vol. 154; no. 1; pp. 217 - 234 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.07.2012
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0022-3239, 1573-2878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to zero. The latter assumption can be dropped when the function is assumed to be pseudoconvex. We also obtain convergence results for quasimonotone variational inequalities, which are more general than monotone ones. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-012-0002-0 |