Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models

[Display omitted] •Classification of organic and recyclable wastes with deep learning models.•We extracted and combined the features from the layer of 1000-features of CNN models.•Feature selection method was applied to the combined feature set to reduce features.•The dataset was rebuilt with the Au...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Measurement : journal of the International Measurement Confederation Ročník 153; s. 107459
Hlavní autori: Toğaçar, Mesut, Ergen, Burhan, Cömert, Zafer
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Elsevier Ltd 01.03.2020
Elsevier Science Ltd
Predmet:
ISSN:0263-2241, 1873-412X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Classification of organic and recyclable wastes with deep learning models.•We extracted and combined the features from the layer of 1000-features of CNN models.•Feature selection method was applied to the combined feature set to reduce features.•The dataset was rebuilt with the AutoEncoder model and the above steps were repeated.•The two feature sets obtained by feature selection were combined and classified. Unless adequate measures are taken for waste litter, the ecological balance may deteriorate over time. The wastes disposed of the trash can be divided into two classes that are organic and recycling types. In recent years, artificial intelligence is frequently mentioned in all areas of technology. In this study, the dataset used for the classification of waste is reconstructed with the AutoEncoder network. The feature sets are then extracted using two datasets by Convolutional Neural Network (CNN) architectures and these feature sets are combined. The Ridge Regression (RR) method performed on the combined feature set reduced the number of features and also revealed the efficient features. Support Vector Machines (SVMs) were used as classifiers in all experiments. The most successful classification accuracy in the experiments was 99.95%. In this study, it is seen that the proposed approach is successful in the classification of waste types.
AbstractList [Display omitted] •Classification of organic and recyclable wastes with deep learning models.•We extracted and combined the features from the layer of 1000-features of CNN models.•Feature selection method was applied to the combined feature set to reduce features.•The dataset was rebuilt with the AutoEncoder model and the above steps were repeated.•The two feature sets obtained by feature selection were combined and classified. Unless adequate measures are taken for waste litter, the ecological balance may deteriorate over time. The wastes disposed of the trash can be divided into two classes that are organic and recycling types. In recent years, artificial intelligence is frequently mentioned in all areas of technology. In this study, the dataset used for the classification of waste is reconstructed with the AutoEncoder network. The feature sets are then extracted using two datasets by Convolutional Neural Network (CNN) architectures and these feature sets are combined. The Ridge Regression (RR) method performed on the combined feature set reduced the number of features and also revealed the efficient features. Support Vector Machines (SVMs) were used as classifiers in all experiments. The most successful classification accuracy in the experiments was 99.95%. In this study, it is seen that the proposed approach is successful in the classification of waste types.
Unless adequate measures are taken for waste litter, the ecological balance may deteriorate over time. The wastes disposed of the trash can be divided into two classes that are organic and recycling types. In recent years, artificial intelligence is frequently mentioned in all areas of technology. In this study, the dataset used for the classification of waste is reconstructed with the AutoEncoder network. The feature sets are then extracted using two datasets by Convolutional Neural Network (CNN) architectures and these feature sets are combined. The Ridge Regression (RR) method performed on the combined feature set reduced the number of features and also revealed the efficient features. Support Vector Machines (SVMs) were used as classifiers in all experiments. The most successful classification accuracy in the experiments was 99.95%. In this study, it is seen that the proposed approach is successful in the classification of waste types.
ArticleNumber 107459
Author Cömert, Zafer
Toğaçar, Mesut
Ergen, Burhan
Author_xml – sequence: 1
  givenname: Mesut
  surname: Toğaçar
  fullname: Toğaçar, Mesut
  email: mtogacar@firat.edu.tr
  organization: Department of Computer Technology, Firat University Elazig, Turkey
– sequence: 2
  givenname: Burhan
  surname: Ergen
  fullname: Ergen, Burhan
  email: bergen@firat.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering, Firat University Elazig, Turkey
– sequence: 3
  givenname: Zafer
  surname: Cömert
  fullname: Cömert, Zafer
  email: zcomert@samsun.edu.tr
  organization: Department of Software Engineering, Faculty of Engineering, Samsun University Samsun, Turkey
BookMark eNqNkE1rGzEQhkVxIU6a_6CS87rSar90CsakacDQi6G9Ce3srC13V0olbUIu-e2RvTmUnoIOA8P7PhqeS7KwziIhXzlbccarb8fViDpMHke0cZUzLtO-Lkr5iSx5U4us4PnvBVmyvBJZnhf8glyGcGSMVUJWS_L6S4eIFAYdgukN6GicpVMwdk_XU3R3FlyHnlqMz87_oc8mHqixEfdeR-xojzqm32nAAeHcHTEeXJcyFJx9csN02uohESZ_HjNoTNghfCGfez0EvH6fV2T3_W63-ZFtf94_bNbbDEQhY9a0ZVMVvG2hR2zrlmtgsulFDrznpeCCQdswyUsNumJSy5J3IEEg62pZgbgiNzP20bu_E4aojm7y6aqgcpFEsDq9lJJzCrwLwWOvHr0ZtX9RnKmTbXVU_9hWJ9tqtp26t_91wcSzzOi1GT5E2MyEpAWfDHoVwKAF7IxPalXnzAcob5ZPqp8
CitedBy_id crossref_primary_10_1016_j_resconrec_2022_106362
crossref_primary_10_1016_j_jcsr_2024_108814
crossref_primary_10_1016_j_engappai_2025_111082
crossref_primary_10_1016_j_wasman_2024_04_040
crossref_primary_10_1007_s13198_021_01306_5
crossref_primary_10_1016_j_procs_2021_12_281
crossref_primary_10_1007_s00500_021_05579_7
crossref_primary_10_3390_sym14050960
crossref_primary_10_1016_j_envres_2021_112610
crossref_primary_10_1016_j_resconrec_2021_105636
crossref_primary_10_1007_s11356_022_20428_2
crossref_primary_10_1007_s00521_020_05388_3
crossref_primary_10_1177_01423312221147335
crossref_primary_10_1109_ACCESS_2022_3205618
crossref_primary_10_1155_2021_2578422
crossref_primary_10_1088_1361_6501_ac7034
crossref_primary_10_1016_j_wasman_2021_12_001
crossref_primary_10_1080_10406026_2025_2550398
crossref_primary_10_1002_ima_22644
crossref_primary_10_1109_ACCESS_2023_3312537
crossref_primary_10_1016_j_biortech_2020_124114
crossref_primary_10_1108_K_07_2023_1210
crossref_primary_10_1016_j_autcon_2024_105629
crossref_primary_10_1016_j_resconrec_2022_106813
crossref_primary_10_3390_su13042393
crossref_primary_10_1007_s00521_021_05758_5
crossref_primary_10_1007_s10489_020_01888_w
crossref_primary_10_1016_j_chemosphere_2022_136044
crossref_primary_10_1177_09544062241240395
crossref_primary_10_1007_s10311_023_01604_3
crossref_primary_10_1016_j_jenvman_2024_123658
crossref_primary_10_1016_j_cscee_2020_100026
crossref_primary_10_1016_j_wasman_2025_01_009
crossref_primary_10_1088_1755_1315_1381_1_012037
crossref_primary_10_1007_s11042_023_17810_8
crossref_primary_10_1111_exsy_12865
crossref_primary_10_1016_j_eiar_2021_106598
crossref_primary_10_1177_01423312231160819
crossref_primary_10_17780_ksujes_1642586
crossref_primary_10_1007_s00371_025_04031_3
crossref_primary_10_1109_ACCESS_2025_3564706
crossref_primary_10_3390_ma13245755
crossref_primary_10_3390_jmse10091330
crossref_primary_10_1007_s10098_020_01922_y
crossref_primary_10_1111_coin_70000
crossref_primary_10_1016_j_matpr_2022_03_129
crossref_primary_10_1016_j_wasman_2020_09_032
crossref_primary_10_32604_cmc_2022_024431
crossref_primary_10_1016_j_wasman_2022_02_009
crossref_primary_10_1016_j_wasman_2022_05_015
crossref_primary_10_1080_21622515_2023_2205027
crossref_primary_10_1007_s10462_025_11196_9
crossref_primary_10_1007_s00521_024_10457_y
crossref_primary_10_1007_s10661_025_13666_7
crossref_primary_10_1007_s11042_021_11537_0
crossref_primary_10_1016_j_wasman_2021_08_028
crossref_primary_10_3390_buildings12020175
crossref_primary_10_3390_pr12081632
crossref_primary_10_1016_j_eswa_2020_113274
crossref_primary_10_1142_S0218126624501780
crossref_primary_10_1007_s11356_022_23272_6
crossref_primary_10_1177_0734242X211033716
crossref_primary_10_1016_j_fuel_2023_127712
crossref_primary_10_1016_j_apacoust_2020_107429
crossref_primary_10_1016_j_jclepro_2022_130943
crossref_primary_10_1016_j_compbiomed_2021_105134
crossref_primary_10_1016_j_wasman_2021_03_017
crossref_primary_10_3390_app12020818
crossref_primary_10_1016_j_wasman_2022_05_021
crossref_primary_10_3390_infrastructures7040047
crossref_primary_10_1016_j_jclepro_2023_136587
Cites_doi 10.1155/2018/5060857
10.1016/j.mehy.2019.109503
10.3389/fnins.2017.00538
10.1126/sciadv.1700782
10.1016/j.energy.2017.07.162
10.1051/matecconf/201823203007
10.1007/978-3-642-15825-4_10
10.1098/rsos.160764
10.1016/j.physa.2019.122725
10.3906/elk-1809-181
10.5755/j01.eie.25.5.24358
10.1109/ACCESS.2018.2814605
10.1016/j.rinp.2018.08.023
10.1051/matecconf/201823201056
10.1016/j.jvcir.2016.11.003
10.1504/IJEWM.2010.033987
10.1098/rstb.2009.0053
10.1016/j.compbiomed.2018.06.003
10.1016/j.neunet.2018.07.011
10.1016/j.future.2019.01.029
10.1016/j.physa.2019.123592
10.1016/j.neuroimage.2019.05.039
10.3390/electronics8030292
10.3389/fninf.2019.00053
10.1145/2971648.2971731
10.1371/journal.pone.0194049
10.1109/TMI.2016.2528162
10.1016/j.ejpe.2018.07.003
10.1016/j.measurement.2019.01.041
10.1016/j.conbuildmat.2017.09.005
10.3390/a12060122
10.1016/j.compag.2019.104874
10.1007/s13244-018-0639-9
10.3923/jas.2015.392.404
10.1007/978-3-030-30493-5_59
10.1109/ICCV.2017.614
10.1016/j.neucom.2017.02.075
10.1038/nrg2867
10.1016/j.inffus.2017.12.007
10.1002/tee.22808
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Mar 1, 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2019.107459
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2019_107459
S0263224119313260
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c349t-8b58641bbcfeeb7b1ac098f32c1f153130cb80915aca609a951dc9c3e0d796c3
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509460000055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Mon Nov 10 02:54:43 EST 2025
Sat Nov 29 07:21:13 EST 2025
Tue Nov 18 22:37:54 EST 2025
Fri Feb 23 02:49:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Recycling waste
AutoEncoder network
Feature selection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-8b58641bbcfeeb7b1ac098f32c1f153130cb80915aca609a951dc9c3e0d796c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2363907070
PQPubID 2047460
ParticipantIDs proquest_journals_2363907070
crossref_primary_10_1016_j_measurement_2019_107459
crossref_citationtrail_10_1016_j_measurement_2019_107459
elsevier_sciencedirect_doi_10_1016_j_measurement_2019_107459
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Torres-García, Rodea-Aragón, Longoria-Gandara, Sánchez-García, Enrique González-Jiménez (b0050) 2015; 19
García-Gonzalo, Fernández-Muñiz, Garcia Nieto, Bernardo Sánchez, Menéndez (b0240) 2016; 531
S. Sekar, Waste Classification data|Kaggle, (2019).
Zhang, Conggui, Nakamasa, Koichi (b0290) 2018
Sertkaya, Ergen, Togacar (b0195) 2019
Abdel-Shafy, Mansour (b0040) 2018; 27
Huda, Mubarok, Adiwijaya (b0355) 2019
Toğaçar, Özkurt, Ergen, Cömert (b0185) 2020
Zhu, Chen, Wang, Guo, Lei, Jin (b0095) 2019; 2
N. Passalis, A. Tefas, Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks, Proc. IEEE Int. Conf. Comput. Vis. 2017-Octob (2017) 5766–5774. doi:10.1109/iccv.2017.614.
Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin, Hasan, Van Essen, Awwal, Asari (b0200) 2019; 8
Different types of Autoencoders, (n.d.).
Toğaçar, Ergen (b0400) 2019; 31
Bircanoğlu, Atay, Beser, Genc, Kizrak (b0030) 2018
Toğaçar, Ergen, Cömert (b0145) 2019
Costa, Bernardes, Pereira, Zampa, Pereira, Matos, Soares, Soares, Silva (b0090) 2019
F. Chollet, Building Autoencoders in Keras, Keras Blog. (2016).
Chu, Huang, Xie, Tan, Kamal, Xiong (b0075) 2018; 2018
C. Le Guern, Plastic Pollution, St. Aguila Found. (2019).
Han, Wen, Shi, Lu, Zhang, Fu, Liu (b0285) 2019; 198
(accessed August 3, 2019).
Suzuki, Morie, Tamukoh (b0305) 2018; 13
Agbaeze, Onwuka, Agbo (b0390) 2014; 5
J. Koushik, Understanding convolutional neural networks, (2016). doi:10.1016/j.jvcir.2016.11.003.
Bansal, Libiger, Torkamani, Schork (b0245) 2010; 11
Z. Xiao, E. Dellandrea, W. Dou, L. Chen, Z. Xiao, E. Dellandrea, W. Dou, L. Chen, A. Esfs, ESFS: a new embedded feature selection method based on SFS, (2019).
Toğaçar, Ergen, Cömert (b0115) 2020
Liu, Pan, Yang, Zhou, Bai, Niu (b0350) 2019; 14
CC.Y. Lee, P.W. Gallagher, Z. Tu, Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree, Proc. 19th Int. Conf. Artif. Intell. Stat. AISTATS 2016. 51 (2016) 464–472.
Gokmen, Onen, Haensch (b0335) 2017; 11
Zhang, Wang, Tan (b0295) 2018
Liang, Zheng, Li, Hu (b0235) 2019; 14
Thompson, Moore, vom Saal, Swan (b0035) 2009; 364
Cıbuk, Budak, Guo, Ince, Sengur (b0395) 2019; 137
(accessed December 1, 2019).
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (b0220) 2016; 35
İrsoy, Alpaydın (b0270) 2017; 258
Huang, Cai, Pacheco, Narrandes, Wang, Xu (b0230) 2017; 15
Togacar, Ergen, Sertkaya (b0110) 2019; 25
M. Buda, A. Maki, M. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, 2017. doi:10.1016/j.neunet.2018.07.011.
.
Altuntaş, Cömert, Kocamaz (b0060) 2019; 163
M. Yang, G. Thung, Classification of Trash for Recyclability Status, (2016) 1–6. doi:10.1145/2971648.2971731.
Kumar, Smith, Fowler, Velis, Kumar, Arya, Rena, Kumar, Cheeseman (b0025) 2017; 4
Toğaçar, Ergen, Cömert (b0180) 2019
Li, He (b0210) 2018; 6
Satvilkar, Cosgrave (b0085) 2018
M. Toğaçar, B. Ergen, M.E. Sertkaya, Zatürre Hastalığının Derin Öğrenme Modeli ile Tespiti Detection of Pneumonia with Deep Learning Model, 31 (2019) 223–230.
Fang, Jia, Chen, Xu, Yuan, Wu (b0275) 2018; 11
Başaran, Cömert, Şengür, Budak, Çelik, Toğaçar (b0330) 2019
Wang, Zhou, Zhong (b0325) 2018; 232
K. O’Shea, R. Nash, An introduction to convolutional neural networks, (2015). doi:10.1007/978-3-642-28661-2-5.
Cömert, Kocamaz, Subha (b0190) 2018
H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, Y. Kageyama, ImageNet/ResNet-50 Training in 224 Seconds, (2018).
Chauhan, Vig, De Filippo DeGrazia, Corbetta, Ahmad, Zorzi (b0255) 2019; 13
Mohajerani, Vajna, Cheung, Kurmus, Arulrajah, Horpibulsuk (b0015) 2017; 156
Bock, Weiß (b0360) 2019
Geyer, Jambeck, Law (b0005) 2017; 3
Toğaçar, Ergen, Cömert (b0130) 2019
Duzan, Shariff (b0250) 2015; 15
Toğaçar, Ergen (b0365) 2018
H. Park, J.H. Lee, Y. Oh, S. Ha, S. Lee, Training deep neural network in limited precision, (2018) 1–11.
Wang, Zhang (b0385) 2018; 232
(accessed August 2, 2019).
Ozkan, Ergin, Işık, Işıklı (b0100) 2014; 35
I. Loshchilov, F. Hutter, SGDR: stochastic gradient descent with warm restarts, (2017) 1–16.
Yamashita, Nishio, Do, Togashi (b0065) 2018; 9
Alaslani, Elrefaei (b0105) 2018; 10
D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, 2010: pp. 92–101. doi:10.1007/978-3-642-15825-4_10.
Charte, Charte, García, del Jesus, Herrera (b0310) 2018; 44
Cömert (b0150) 2019
GitHub – benjaminirving/mlseminars-autoencoders: Jupyter notebook of my autoencoder presentation, (n.d.).
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b0205) 2015
Cömert, Şengür, Akbulut, Budak, Kocamaz, Bajaj (b0370) 2020; 537
Solak, Altınışık (b0055) 2018
Cömert, Kocamaz (b0070) 2019
Türkoğlu, Hanbay (b0140) 2019; 27
Jouhara, Czajczyńska, Ghazal, Krzyżyńska, Anguilano, Reynolds, Spencer (b0045) 2017; 139
C.C. de Amorim, D. Macêdo, Z. Cleber, Spatial-Temporal Graph Convolutional Networks for Sign Language Recognition, 28th Int. Conf. Artif. Neural Networks. (2019).
Yang (b0260) 2018
Chen, Huang (b0280) 2019; 12
Ullah, Muhammad, Haq, Baik (b0300) 2019; 96
Bandara, Patrick, Hettiaratchi (b0020) 2010; 6
GitHub – alexhuth/ridge: Efficient python code for running ridge regression with cross validation, (n.d.).
Bandara (10.1016/j.measurement.2019.107459_b0020) 2010; 6
Cıbuk (10.1016/j.measurement.2019.107459_b0395) 2019; 137
Satvilkar (10.1016/j.measurement.2019.107459_b0085) 2018
10.1016/j.measurement.2019.107459_b0155
Li (10.1016/j.measurement.2019.107459_b0210) 2018; 6
Cömert (10.1016/j.measurement.2019.107459_b0190) 2018
Kumar (10.1016/j.measurement.2019.107459_b0025) 2017; 4
Agbaeze (10.1016/j.measurement.2019.107459_b0390) 2014; 5
Toğaçar (10.1016/j.measurement.2019.107459_b0365) 2018
Cömert (10.1016/j.measurement.2019.107459_b0150) 2019
García-Gonzalo (10.1016/j.measurement.2019.107459_b0240) 2016; 531
Han (10.1016/j.measurement.2019.107459_b0285) 2019; 198
Shin (10.1016/j.measurement.2019.107459_b0220) 2016; 35
Huang (10.1016/j.measurement.2019.107459_b0230) 2017; 15
Zhu (10.1016/j.measurement.2019.107459_b0095) 2019; 2
10.1016/j.measurement.2019.107459_b0080
Wang (10.1016/j.measurement.2019.107459_b0325) 2018; 232
10.1016/j.measurement.2019.107459_b0160
Sertkaya (10.1016/j.measurement.2019.107459_b0195) 2019
10.1016/j.measurement.2019.107459_b0320
10.1016/j.measurement.2019.107459_b0165
10.1016/j.measurement.2019.107459_b0120
Alaslani (10.1016/j.measurement.2019.107459_b0105) 2018; 10
10.1016/j.measurement.2019.107459_b0125
Liang (10.1016/j.measurement.2019.107459_b0235) 2019; 14
Toğaçar (10.1016/j.measurement.2019.107459_b0180) 2019
10.1016/j.measurement.2019.107459_b0315
İrsoy (10.1016/j.measurement.2019.107459_b0270) 2017; 258
Charte (10.1016/j.measurement.2019.107459_b0310) 2018; 44
Altuntaş (10.1016/j.measurement.2019.107459_b0060) 2019; 163
Ozkan (10.1016/j.measurement.2019.107459_b0100) 2014; 35
Mohajerani (10.1016/j.measurement.2019.107459_b0015) 2017; 156
Solak (10.1016/j.measurement.2019.107459_b0055) 2018
Fang (10.1016/j.measurement.2019.107459_b0275) 2018; 11
Zhang (10.1016/j.measurement.2019.107459_b0290) 2018
Başaran (10.1016/j.measurement.2019.107459_b0330) 2019
Chu (10.1016/j.measurement.2019.107459_b0075) 2018; 2018
10.1016/j.measurement.2019.107459_b0170
Gokmen (10.1016/j.measurement.2019.107459_b0335) 2017; 11
Alom (10.1016/j.measurement.2019.107459_b0200) 2019; 8
Suzuki (10.1016/j.measurement.2019.107459_b0305) 2018; 13
Liu (10.1016/j.measurement.2019.107459_b0350) 2019; 14
10.1016/j.measurement.2019.107459_b0375
Costa (10.1016/j.measurement.2019.107459_b0090) 2019
10.1016/j.measurement.2019.107459_b0010
10.1016/j.measurement.2019.107459_b0175
10.1016/j.measurement.2019.107459_b0215
10.1016/j.measurement.2019.107459_b0135
Bircanoğlu (10.1016/j.measurement.2019.107459_b0030) 2018
Bock (10.1016/j.measurement.2019.107459_b0360) 2019
Cömert (10.1016/j.measurement.2019.107459_b0070) 2019
Toğaçar (10.1016/j.measurement.2019.107459_b0400) 2019; 31
Toğaçar (10.1016/j.measurement.2019.107459_b0115) 2020
Toğaçar (10.1016/j.measurement.2019.107459_b0185) 2020
Torres-García (10.1016/j.measurement.2019.107459_b0050) 2015; 19
Abdel-Shafy (10.1016/j.measurement.2019.107459_b0040) 2018; 27
Türkoğlu (10.1016/j.measurement.2019.107459_b0140) 2019; 27
Togacar (10.1016/j.measurement.2019.107459_b0110) 2019; 25
Szegedy (10.1016/j.measurement.2019.107459_b0205) 2015
Toğaçar (10.1016/j.measurement.2019.107459_b0130) 2019
Bansal (10.1016/j.measurement.2019.107459_b0245) 2010; 11
10.1016/j.measurement.2019.107459_b0380
10.1016/j.measurement.2019.107459_b0265
Cömert (10.1016/j.measurement.2019.107459_b0370) 2020; 537
Chen (10.1016/j.measurement.2019.107459_b0280) 2019; 12
10.1016/j.measurement.2019.107459_b0340
Ullah (10.1016/j.measurement.2019.107459_b0300) 2019; 96
Toğaçar (10.1016/j.measurement.2019.107459_b0145) 2019
10.1016/j.measurement.2019.107459_b0225
10.1016/j.measurement.2019.107459_b0345
Geyer (10.1016/j.measurement.2019.107459_b0005) 2017; 3
Wang (10.1016/j.measurement.2019.107459_b0385) 2018; 232
Thompson (10.1016/j.measurement.2019.107459_b0035) 2009; 364
Yamashita (10.1016/j.measurement.2019.107459_b0065) 2018; 9
Chauhan (10.1016/j.measurement.2019.107459_b0255) 2019; 13
Zhang (10.1016/j.measurement.2019.107459_b0295) 2018
Yang (10.1016/j.measurement.2019.107459_b0260) 2018
Duzan (10.1016/j.measurement.2019.107459_b0250) 2015; 15
Huda (10.1016/j.measurement.2019.107459_b0355) 2019
Jouhara (10.1016/j.measurement.2019.107459_b0045) 2017; 139
References_xml – volume: 3
  year: 2017
  ident: b0005
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Sci. Adv.
– start-page: 1
  year: 2018
  ident: b0055
  article-title: Görüntü İşleme Teknikleri ve Kümeleme Yöntemleri Kullanılarak Fındık Meyvesinin Tespit ve Sınıflandırılması
  publication-title: SAÜ Fen Bilim. Enstitüsü Derg.
– reference: M. Toğaçar, B. Ergen, M.E. Sertkaya, Zatürre Hastalığının Derin Öğrenme Modeli ile Tespiti Detection of Pneumonia with Deep Learning Model, 31 (2019) 223–230.
– volume: 25
  start-page: 63
  year: 2019
  end-page: 68
  ident: b0110
  article-title: Subclass separation of white blood cell images using convolutional neural network models
  publication-title: Elektron. Ir Elektrotechnika.
– volume: 14
  start-page: 289
  year: 2019
  end-page: 296
  ident: b0235
  article-title: Quasi-linear SVM classifier with segmented local offsets for imbalanced data classification
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– volume: 13
  start-page: e0194049
  year: 2018
  ident: b0305
  article-title: A shared synapse architecture for efficient FPGA implementation of autoencoders
  publication-title: PLoS One
– volume: 11
  start-page: 96
  year: 2018
  end-page: 104
  ident: b0275
  article-title: Laser stripe image denoising using convolutional autoencoder
  publication-title: Results Phys.
– volume: 6
  year: 2010
  ident: b0020
  article-title: Environmental impacts with waste disposal practices in a suburban municipality in Sri Lanka
  publication-title: Int. J. Environ. Waste Manag.
– volume: 13
  start-page: 53
  year: 2019
  ident: b0255
  article-title: A comparison of shallow and deep learning methods for predicting cognitive performance of stroke patients from MRI lesion images
  publication-title: Front. Neuroinform.
– reference: H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, Y. Kageyama, ImageNet/ResNet-50 Training in 224 Seconds, (2018).
– reference: J. Koushik, Understanding convolutional neural networks, (2016). doi:10.1016/j.jvcir.2016.11.003.
– year: 2018
  ident: b0190
  article-title: Prognostic model based on image-based time-frequency features and genetic algorithm for fetal hypoxia assessment
  publication-title: Comput. Biol. Med.
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: b0065
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– volume: 15
  start-page: 392
  year: 2015
  end-page: 404
  ident: b0250
  article-title: Ridge regression for solving the multicollinearity problem: review of methods and models
  publication-title: J. Appl. Sci.
– volume: 6
  start-page: 18967
  year: 2018
  end-page: 18974
  ident: b0210
  article-title: An improved ResNet based on the adjustable shortcut connections
  publication-title: IEEE Access.
– volume: 12
  start-page: 122
  year: 2019
  ident: b0280
  article-title: A hybrid autoencoder network for unsupervised image clustering
  publication-title: Algorithms
– reference: N. Passalis, A. Tefas, Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks, Proc. IEEE Int. Conf. Comput. Vis. 2017-Octob (2017) 5766–5774. doi:10.1109/iccv.2017.614.
– volume: 11
  start-page: 538
  year: 2017
  ident: b0335
  article-title: Training deep convolutional neural networks with resistive cross-point devices
  publication-title: Front. Neurosci.
– volume: 35
  year: 2014
  ident: b0100
  article-title: A new classification scheme of plastic wastes based upon recycling labels
  publication-title: Waste Manag.
– reference: D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, 2010: pp. 92–101. doi:10.1007/978-3-642-15825-4_10.
– reference: F. Chollet, Building Autoencoders in Keras, Keras Blog. (2016).
– volume: 137
  start-page: 7
  year: 2019
  end-page: 13
  ident: b0395
  article-title: Efficient deep features selections and classification for flower species recognition
  publication-title: Measurement
– volume: 4
  year: 2017
  ident: b0025
  article-title: Challenges and opportunities associated with waste management in India
  publication-title: R. Soc. Open Sci.
– year: 2018
  ident: b0030
  article-title: RecycleNet: Intelligent Waste Sorting Using Deep
  publication-title: Neural Networks
– reference: Z. Xiao, E. Dellandrea, W. Dou, L. Chen, Z. Xiao, E. Dellandrea, W. Dou, L. Chen, A. Esfs, ESFS: a new embedded feature selection method based on SFS, (2019).
– volume: 531
  year: 2016
  ident: b0240
  article-title: Hard-rock stability analysis for span design in entry-type excavations with learning classifier
  publication-title: Materials (Basel)
– volume: 19
  start-page: 487
  year: 2015
  end-page: 500
  ident: b0050
  article-title: Intelligent waste separator
  publication-title: Comput. Sist.
– volume: 2018
  year: 2018
  ident: b0075
  article-title: Multilayer hybrid deep-learning method for waste classification and recycling
  publication-title: Comput. Intell. Neurosci.
– volume: 258
  start-page: 63
  year: 2017
  end-page: 73
  ident: b0270
  article-title: Unsupervised feature extraction with autoencoder trees
  publication-title: Neurocomputing
– start-page: 1
  year: 2019
  end-page: 4
  ident: b0330
  article-title: Chronic tympanic membrane diagnosis based on deep convolutional neural network
  publication-title: 2019 4th Int. Conf. Comput. Sci. Eng.
– start-page: 1
  year: 2018
  end-page: 5
  ident: b0365
  article-title: Deep learning approach for classification of breast cancer
  publication-title: 2018 Int. Conf. Artif. Intell. Data Process.
– volume: 139
  start-page: 485
  year: 2017
  end-page: 506
  ident: b0045
  article-title: Municipal waste management systems for domestic use
  publication-title: Energy.
– reference: K. O’Shea, R. Nash, An introduction to convolutional neural networks, (2015). doi:10.1007/978-3-642-28661-2-5.
– volume: 364
  start-page: 2153
  year: 2009
  end-page: 2166
  ident: b0035
  article-title: Plastics, the environment and human health: current consensus and future trends
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
– reference: CC.Y. Lee, P.W. Gallagher, Z. Tu, Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree, Proc. 19th Int. Conf. Artif. Intell. Stat. AISTATS 2016. 51 (2016) 464–472.
– reference: M. Buda, A. Maki, M. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, 2017. doi:10.1016/j.neunet.2018.07.011.
– start-page: 2105
  year: 2018
  end-page: 2109
  ident: b0260
  article-title: A CNN-based broad learning system
  publication-title: 2018 IEEE 4th Int. Conf. Comput. Commun.
– volume: 15
  start-page: 41
  year: 2017
  end-page: 51
  ident: b0230
  article-title: Applications of support vector machine (SVM) learning in cancer genomics
  publication-title: Cancer Genomics Proteomics.
– year: 2020
  ident: b0115
  article-title: Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders
  publication-title: Med. Hypotheses
– reference: H. Park, J.H. Lee, Y. Oh, S. Ha, S. Lee, Training deep neural network in limited precision, (2018) 1–11.
– year: 2019
  ident: b0130
  article-title: Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks
  publication-title: Biocybern. Biomed. Eng.
– volume: 198
  start-page: 125
  year: 2019
  end-page: 136
  ident: b0285
  article-title: Variational autoencoder: an unsupervised model for encoding and decoding fMRI activity in visual cortex
  publication-title: Neuroimage
– start-page: 1
  year: 2019
  end-page: 5
  ident: b0355
  article-title: Classification on topics of quranic verses (english translation) using backpropagation neural network with stochastic gradient descent and Adam optimizer
  publication-title: 2019 7th Int Conf. Inf. Commun. Technol.
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: b0220
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 156
  start-page: 443
  year: 2017
  end-page: 467
  ident: b0015
  article-title: Practical recycling applications of crushed waste glass in construction materials: a review
  publication-title: Constr. Build. Mater.
– volume: 163
  year: 2019
  ident: b0060
  article-title: Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach
  publication-title: Comput. Electron. Agric.
– year: 2018
  ident: b0085
  article-title: Image Based Trash Classification using Machine Learning Algorithms for Recyclability Status
– volume: 27
  start-page: 1275
  year: 2018
  end-page: 1290
  ident: b0040
  article-title: Solid waste issue: sources, composition, disposal, recycling, and valorization
  publication-title: Egypt. J. Pet.
– reference: I. Loshchilov, F. Hutter, SGDR: stochastic gradient descent with warm restarts, (2017) 1–16.
– year: 2020
  ident: b0185
  article-title: BreastNet: a novel convolutional neural network model through histopathological images for the diagnosis of breast cancer
  publication-title: Phys. A: Stat. Mech. Appl.
– reference: C. Le Guern, Plastic Pollution, St. Aguila Found. (2019).
– reference: S. Sekar, Waste Classification data|Kaggle, (2019).
– volume: 96
  start-page: 386
  year: 2019
  end-page: 397
  ident: b0300
  article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments
  publication-title: Futur. Gener. Comput. Syst.
– volume: 27
  start-page: 1636
  year: 2019
  end-page: 1651
  ident: b0140
  article-title: Plant disease and pest detection using deep learning-based features
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– year: 2019
  ident: b0145
  article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
– start-page: 239
  year: 2019
  end-page: 248
  ident: b0070
  article-title: Fetal hypoxia detection based on deep convolutional neural network with transfer learning approach
  publication-title: Softw. Eng. Algorithms Intell. Syst.
– volume: 10
  start-page: 65
  year: 2018
  end-page: 78
  ident: b0105
  article-title: Convolutional Neural Network Based Feature Extraction for IRIS Recognition
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– reference: C.C. de Amorim, D. Macêdo, Z. Cleber, Spatial-Temporal Graph Convolutional Networks for Sign Language Recognition, 28th Int. Conf. Artif. Neural Networks. (2019).
– volume: 31
  start-page: 109
  year: 2019
  end-page: 121
  ident: b0400
  article-title: Biyomedikal Görüntülerde Derin Öğrenme ile Mevcut Yöntemlerin Kıyaslanması
  publication-title: Fırat Üniversitesi Mühendislik Bilim. Derg.
– start-page: 5599
  year: 2018
  end-page: 5603
  ident: b0290
  article-title: Multi-task autoencoder for noise-robust speech recognition
  publication-title: Int. Conf. Acoust. Speech Signal Process.
– volume: 11
  start-page: 773
  year: 2010
  end-page: 785
  ident: b0245
  article-title: Statistical analysis strategies for association studies involving rare variants
  publication-title: Nat. Rev. Genet.
– year: 2019
  ident: b0150
  article-title: Fusing fine-tuned deep features for recognizing different tympanic membranes
  publication-title: Biocybern. Biomed. Eng.
– start-page: 198
  year: 2019
  end-page: 205
  ident: b0090
  publication-title: Artif. Intell. Autom. Sort. Trash Recycl.
– volume: 44
  start-page: 78
  year: 2018
  end-page: 96
  ident: b0310
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines
  publication-title: Inf. Fusion.
– volume: 537
  year: 2020
  ident: b0370
  article-title: Efficient approach for digitization of the cardiotocography signals
  publication-title: Phys. A: Stat. Mech. Its Appl.
– reference: (accessed August 3, 2019).
– volume: 232
  year: 2018
  ident: b0325
  article-title: An optimization strategy based on hybrid algorithm of Adam and SGD
  publication-title: MATEC Web Conf.
– year: 2018
  ident: b0295
  article-title: Robust class-specific autoencoder for data cleaning and classification in the presence of label noise
  publication-title: Neural Process. Lett.
– start-page: 1
  year: 2019
  end-page: 5
  ident: b0195
  article-title: Diagnosis of eye retinal diseases based on convolutional neural networks using optical coherence images
  publication-title: 2019 23rd Int. Conf. Electron.
– volume: 8
  start-page: 1
  year: 2019
  end-page: 67
  ident: b0200
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
– start-page: 1
  year: 2019
  end-page: 8
  ident: b0360
  article-title: A proof of local convergence for the Adam optimizer
  publication-title: 2019 Int. Jt. Conf. Neural Networks
– reference: Different types of Autoencoders, (n.d.).
– reference: (accessed August 2, 2019).
– volume: 14
  year: 2019
  ident: b0350
  article-title: An adaptive moment estimation method for online AUC maximization
  publication-title: PLoS One
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0205
  article-title: Going deeper with convolutions
  publication-title: IEEE
– year: 2019
  ident: b0180
  article-title: A Deep Feature Learning Model for Pneumonia Detection Applying a Combination of mRMR Feature Selection and Machine Learning Models
– reference: .
– reference: (accessed December 1, 2019).
– volume: 232
  start-page: 01056
  year: 2018
  ident: b0385
  article-title: Autonomous garbage detection for intelligent urban management
  publication-title: MATEC Web Conf.
– volume: 2
  start-page: 77
  year: 2019
  end-page: 81
  ident: b0095
  article-title: Plastic solid waste identification system based on near infrared spectroscopy in combination with support vector machine
  publication-title: Adv. Ind. Eng. Polym. Res.
– volume: 5
  start-page: 130
  year: 2014
  end-page: 139
  ident: b0390
  article-title: Impact of sustainable solid waste management on economic development – lessons from Enugu State Nigeria
  publication-title: Comput. Eng. Intell. Syst.
– reference: M. Yang, G. Thung, Classification of Trash for Recyclability Status, (2016) 1–6. doi:10.1145/2971648.2971731.
– reference: GitHub – benjaminirving/mlseminars-autoencoders: Jupyter notebook of my autoencoder presentation, (n.d.).
– reference: GitHub – alexhuth/ridge: Efficient python code for running ridge regression with cross validation, (n.d.).
– ident: 10.1016/j.measurement.2019.107459_b0320
– volume: 19
  start-page: 487
  year: 2015
  ident: 10.1016/j.measurement.2019.107459_b0050
  article-title: Intelligent waste separator
  publication-title: Comput. Sist.
– volume: 2018
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0075
  article-title: Multilayer hybrid deep-learning method for waste classification and recycling
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/5060857
– year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0145
  article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
– year: 2020
  ident: 10.1016/j.measurement.2019.107459_b0115
  article-title: Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109503
– ident: 10.1016/j.measurement.2019.107459_b0215
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0360
  article-title: A proof of local convergence for the Adam optimizer
– volume: 14
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0350
  article-title: An adaptive moment estimation method for online AUC maximization
  publication-title: PLoS One
– start-page: 239
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0070
  article-title: Fetal hypoxia detection based on deep convolutional neural network with transfer learning approach
– year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0150
  article-title: Fusing fine-tuned deep features for recognizing different tympanic membranes
  publication-title: Biocybern. Biomed. Eng.
– volume: 5
  start-page: 130
  year: 2014
  ident: 10.1016/j.measurement.2019.107459_b0390
  article-title: Impact of sustainable solid waste management on economic development – lessons from Enugu State Nigeria
  publication-title: Comput. Eng. Intell. Syst.
– volume: 11
  start-page: 538
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0335
  article-title: Training deep convolutional neural networks with resistive cross-point devices
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00538
– volume: 3
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0005
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 139
  start-page: 485
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0045
  article-title: Municipal waste management systems for domestic use
  publication-title: Energy.
  doi: 10.1016/j.energy.2017.07.162
– volume: 232
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0325
  article-title: An optimization strategy based on hybrid algorithm of Adam and SGD
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201823203007
– ident: 10.1016/j.measurement.2019.107459_b0160
  doi: 10.1007/978-3-642-15825-4_10
– volume: 4
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0025
  article-title: Challenges and opportunities associated with waste management in India
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.160764
– volume: 2
  start-page: 77
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0095
  article-title: Plastic solid waste identification system based on near infrared spectroscopy in combination with support vector machine
  publication-title: Adv. Ind. Eng. Polym. Res.
– ident: 10.1016/j.measurement.2019.107459_b0375
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0195
  article-title: Diagnosis of eye retinal diseases based on convolutional neural networks using optical coherence images
– volume: 537
  year: 2020
  ident: 10.1016/j.measurement.2019.107459_b0370
  article-title: Efficient approach for digitization of the cardiotocography signals
  publication-title: Phys. A: Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.122725
– volume: 27
  start-page: 1636
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0140
  article-title: Plant disease and pest detection using deep learning-based features
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1809-181
– ident: 10.1016/j.measurement.2019.107459_b0120
– volume: 25
  start-page: 63
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0110
  article-title: Subclass separation of white blood cell images using convolutional neural network models
  publication-title: Elektron. Ir Elektrotechnika.
  doi: 10.5755/j01.eie.25.5.24358
– start-page: 1
  year: 2015
  ident: 10.1016/j.measurement.2019.107459_b0205
  article-title: Going deeper with convolutions
  publication-title: IEEE
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0355
  article-title: Classification on topics of quranic verses (english translation) using backpropagation neural network with stochastic gradient descent and Adam optimizer
– volume: 6
  start-page: 18967
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0210
  article-title: An improved ResNet based on the adjustable shortcut connections
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2814605
– volume: 11
  start-page: 96
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0275
  article-title: Laser stripe image denoising using convolutional autoencoder
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.08.023
– ident: 10.1016/j.measurement.2019.107459_b0265
– ident: 10.1016/j.measurement.2019.107459_b0315
– volume: 232
  start-page: 01056
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0385
  article-title: Autonomous garbage detection for intelligent urban management
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201823201056
– ident: 10.1016/j.measurement.2019.107459_b0155
  doi: 10.1016/j.jvcir.2016.11.003
– year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0030
  article-title: RecycleNet: Intelligent Waste Sorting Using Deep
  publication-title: Neural Networks
– volume: 15
  start-page: 41
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0230
  article-title: Applications of support vector machine (SVM) learning in cancer genomics
  publication-title: Cancer Genomics Proteomics.
– ident: 10.1016/j.measurement.2019.107459_b0345
– volume: 6
  year: 2010
  ident: 10.1016/j.measurement.2019.107459_b0020
  article-title: Environmental impacts with waste disposal practices in a suburban municipality in Sri Lanka
  publication-title: Int. J. Environ. Waste Manag.
  doi: 10.1504/IJEWM.2010.033987
– volume: 364
  start-page: 2153
  year: 2009
  ident: 10.1016/j.measurement.2019.107459_b0035
  article-title: Plastics, the environment and human health: current consensus and future trends
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2009.0053
– year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0190
  article-title: Prognostic model based on image-based time-frequency features and genetic algorithm for fetal hypoxia assessment
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.003
– ident: 10.1016/j.measurement.2019.107459_b0125
  doi: 10.1016/j.neunet.2018.07.011
– volume: 96
  start-page: 386
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0300
  article-title: Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.01.029
– ident: 10.1016/j.measurement.2019.107459_b0175
– year: 2020
  ident: 10.1016/j.measurement.2019.107459_b0185
  article-title: BreastNet: a novel convolutional neural network model through histopathological images for the diagnosis of breast cancer
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123592
– start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0365
  article-title: Deep learning approach for classification of breast cancer
– year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0295
  article-title: Robust class-specific autoencoder for data cleaning and classification in the presence of label noise
  publication-title: Neural Process. Lett.
– ident: 10.1016/j.measurement.2019.107459_b0165
– volume: 198
  start-page: 125
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0285
  article-title: Variational autoencoder: an unsupervised model for encoding and decoding fMRI activity in visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.039
– volume: 8
  start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0200
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– ident: 10.1016/j.measurement.2019.107459_b0380
– volume: 13
  start-page: 53
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0255
  article-title: A comparison of shallow and deep learning methods for predicting cognitive performance of stroke patients from MRI lesion images
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2019.00053
– ident: 10.1016/j.measurement.2019.107459_b0010
– year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0180
– ident: 10.1016/j.measurement.2019.107459_b0080
  doi: 10.1145/2971648.2971731
– volume: 13
  start-page: e0194049
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0305
  article-title: A shared synapse architecture for efficient FPGA implementation of autoencoders
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0194049
– volume: 531
  year: 2016
  ident: 10.1016/j.measurement.2019.107459_b0240
  article-title: Hard-rock stability analysis for span design in entry-type excavations with learning classifier
  publication-title: Materials (Basel)
– start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0055
  article-title: Görüntü İşleme Teknikleri ve Kümeleme Yöntemleri Kullanılarak Fındık Meyvesinin Tespit ve Sınıflandırılması
  publication-title: SAÜ Fen Bilim. Enstitüsü Derg.
– volume: 35
  start-page: 1285
  year: 2016
  ident: 10.1016/j.measurement.2019.107459_b0220
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 27
  start-page: 1275
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0040
  article-title: Solid waste issue: sources, composition, disposal, recycling, and valorization
  publication-title: Egypt. J. Pet.
  doi: 10.1016/j.ejpe.2018.07.003
– volume: 137
  start-page: 7
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0395
  article-title: Efficient deep features selections and classification for flower species recognition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.041
– volume: 156
  start-page: 443
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0015
  article-title: Practical recycling applications of crushed waste glass in construction materials: a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.005
– volume: 12
  start-page: 122
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0280
  article-title: A hybrid autoencoder network for unsupervised image clustering
  publication-title: Algorithms
  doi: 10.3390/a12060122
– volume: 163
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0060
  article-title: Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104874
– volume: 35
  year: 2014
  ident: 10.1016/j.measurement.2019.107459_b0100
  article-title: A new classification scheme of plastic wastes based upon recycling labels
  publication-title: Waste Manag.
– start-page: 198
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0090
  publication-title: Artif. Intell. Autom. Sort. Trash Recycl.
– start-page: 2105
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0260
  article-title: A CNN-based broad learning system
– volume: 9
  start-page: 611
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0065
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– ident: 10.1016/j.measurement.2019.107459_b0340
– volume: 15
  start-page: 392
  year: 2015
  ident: 10.1016/j.measurement.2019.107459_b0250
  article-title: Ridge regression for solving the multicollinearity problem: review of methods and models
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2015.392.404
– ident: 10.1016/j.measurement.2019.107459_b0135
  doi: 10.1007/978-3-030-30493-5_59
– volume: 31
  start-page: 109
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0400
  article-title: Biyomedikal Görüntülerde Derin Öğrenme ile Mevcut Yöntemlerin Kıyaslanması
  publication-title: Fırat Üniversitesi Mühendislik Bilim. Derg.
– year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0130
  article-title: Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks
  publication-title: Biocybern. Biomed. Eng.
– ident: 10.1016/j.measurement.2019.107459_b0170
  doi: 10.1109/ICCV.2017.614
– volume: 258
  start-page: 63
  year: 2017
  ident: 10.1016/j.measurement.2019.107459_b0270
  article-title: Unsupervised feature extraction with autoencoder trees
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.075
– start-page: 5599
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0290
  article-title: Multi-task autoencoder for noise-robust speech recognition
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0330
  article-title: Chronic tympanic membrane diagnosis based on deep convolutional neural network
– volume: 10
  start-page: 65
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0105
  article-title: Convolutional Neural Network Based Feature Extraction for IRIS Recognition
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 11
  start-page: 773
  year: 2010
  ident: 10.1016/j.measurement.2019.107459_b0245
  article-title: Statistical analysis strategies for association studies involving rare variants
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2867
– volume: 44
  start-page: 78
  year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0310
  article-title: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2017.12.007
– year: 2018
  ident: 10.1016/j.measurement.2019.107459_b0085
– ident: 10.1016/j.measurement.2019.107459_b0225
– volume: 14
  start-page: 289
  year: 2019
  ident: 10.1016/j.measurement.2019.107459_b0235
  article-title: Quasi-linear SVM classifier with segmented local offsets for imbalanced data classification
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22808
SSID ssj0006396
Score 2.512705
Snippet [Display omitted] •Classification of organic and recyclable wastes with deep learning models.•We extracted and combined the features from the layer of...
Unless adequate measures are taken for waste litter, the ecological balance may deteriorate over time. The wastes disposed of the trash can be divided into two...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107459
SubjectTerms Artificial intelligence
Artificial neural networks
AutoEncoder network
Classification
Datasets
Deep learning
Ecological monitoring
Feature extraction
Feature selection
Neural networks
Recycling
Recycling waste
Support vector machines
Waste containers
Waste disposal
Title Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models
URI https://dx.doi.org/10.1016/j.measurement.2019.107459
https://www.proquest.com/docview/2363907070
Volume 153
WOSCitedRecordID wos000509460000055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9NAFB1qV0UfRFfF1VVG8C1kSTLTTAZ8qUsXFXYRLFh8CZPJDLrspkvTlH3yt_nTvPORjyoLFfGlLSEzSXtOkjO3596L0Bt4xEkxoSIshBYhBQUfCkVMmINonmmmaUFtswl2dpYtFvzTaPSzzYXZXLCqyq6v-dV_hRq2AdgmdfYv4O4mhQ3wGUCHV4AdXncC_osA4AJpVLGxATmAGxsSmDbr5awyWeyroHL-bxeI7YpGlIFWttRnUNsGOWasazIdWMN6tfHnDsiaUpj2zU1ke-rUQ7F72scfbeRhUKWi92y2wcjhzjYN0ZQEHboE5ksjfPmJsP_tM2cMP1V10xl3ZiaR1BK2WX3rWX9sBrxLL3120lehvSPZBztgZdu5vVwErs3C6S1PtS0eS0IjRdwzzd3IM0ZCGttW7f2d3tUl_uOp4QIY50eX_Tc1pj9-ZNyqvmD5dlHuz-aY5pCgf2E9n0a30F7CJjwbo73ph9niY6cGQAGmLs7nzvEuet17DG844E0a6Te1YCXQ_CF64NcueOo49wiNVLWP7g8qWu6jO9ZRLOvH6IflId7mIbY8xAMeYk8fbHiIex5iz0Pc8RA7HsI-eIuH2PGwm8jx8Aman8zmx-9D3-wjlITydZgVkyylcVFIrVTBiljICG4WJJGxBtxAaskiA3E7EVKkERewMigll0RFJeOpJE_RuFpW6hnCkSxZpGJNYApKUs0TFWlBJU1LLZKMHaCs_XVz6Qvhm34sF3nreDzPB8DkBpjcAXOAkm7olasGs8ugty2EuZe1Tq7mwL9dhh-2sOf-Oq3zhACvTKWu6Pm_zf4C3euvs0M0Xq8a9RLdlpv193r1ypP5F19D4Xw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+classification+using+AutoEncoder+network+with+integrated+feature+selection+method+in+convolutional+neural+network+models&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=To%C4%9Fa%C3%A7ar%2C+Mesut&rft.au=Ergen%2C+Burhan&rft.au=C%C3%B6mert%2C+Zafer&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=153&rft_id=info:doi/10.1016%2Fj.measurement.2019.107459&rft.externalDocID=S0263224119313260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon