A novel cooperative coevolutionary dynamic multi-objective optimization algorithm using a new predictive model

Dynamic multi-objective optimization problem (DMOP) is quite challenging and it dues to that there are multiple conflicting objects changing over with time or environment. In this paper, a novel cooperative coevolutionary dynamic multi-objective optimization algorithm (PNSCCDMO) is proposed. The mai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 18; číslo 10; s. 1913 - 1929
Hlavní autoři: Liu, Ruochen, Chen, Yangyang, Ma, Wenping, Mu, Caihong, Jiao, Licheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2014
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic multi-objective optimization problem (DMOP) is quite challenging and it dues to that there are multiple conflicting objects changing over with time or environment. In this paper, a novel cooperative coevolutionary dynamic multi-objective optimization algorithm (PNSCCDMO) is proposed. The main idea of a new cooperative coevolution based on non-dominated sorting is that it allows the decomposition process of the optimization problem according to the search space of decision variables, and each species subcomponents will cooperate to evolve for better solutions. This way derives from nature and can improve convergence significantly. A modified linear regression prediction strategy is used to make rapid response to the new changes in the environment. The effectiveness of PNSCCDMO is validated against various of DMOPs compared with the other four algorithms, and the experimental result indicates PNSCCDMO has a good capability to track the Pareto front as it is changed with time in dynamic environments.
AbstractList Dynamic multi-objective optimization problem (DMOP) is quite challenging and it dues to that there are multiple conflicting objects changing over with time or environment. In this paper, a novel cooperative coevolutionary dynamic multi-objective optimization algorithm (PNSCCDMO) is proposed. The main idea of a new cooperative coevolution based on non-dominated sorting is that it allows the decomposition process of the optimization problem according to the search space of decision variables, and each species subcomponents will cooperate to evolve for better solutions. This way derives from nature and can improve convergence significantly. A modified linear regression prediction strategy is used to make rapid response to the new changes in the environment. The effectiveness of PNSCCDMO is validated against various of DMOPs compared with the other four algorithms, and the experimental result indicates PNSCCDMO has a good capability to track the Pareto front as it is changed with time in dynamic environments.
Author Chen, Yangyang
Liu, Ruochen
Ma, Wenping
Jiao, Licheng
Mu, Caihong
Author_xml – sequence: 1
  givenname: Ruochen
  surname: Liu
  fullname: Liu, Ruochen
  email: aliang3399@gmail.com
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University
– sequence: 2
  givenname: Yangyang
  surname: Chen
  fullname: Chen, Yangyang
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University
– sequence: 3
  givenname: Wenping
  surname: Ma
  fullname: Ma, Wenping
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University
– sequence: 4
  givenname: Caihong
  surname: Mu
  fullname: Mu, Caihong
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University
– sequence: 5
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University
BookMark eNp9kE1r3DAQQEVIIZs0PyA3Qc9KRh-7so8htE1goZf2LGR5vNFiS44kb0l_fb3rQiDQnDSH9yTNuyTnIQYk5IbDLQfQdxlgDcCAS8a5XjN9RlZcScm00vX5aRZMb5S8IJc57wHETMkVCfc0xAP21MU4YrLFH3Ce8RD7qfgYbHql7Wuwg3d0mPriWWz26E5YHIsf_B975KjtdzH58jzQKfuwo5YG_E3HhK1f6CG22H8mnzrbZ7z-d16RX9--_nx4ZNsf358e7rfMSVUXVtVOoFCgO8s5dFJWdYfNRje6VdbxGqqNUtJJp21jG2WV0IggcN2IykLD5RX5stw7pvgyYS5mH6cU5ieNqHkFa61AzpReKJdizgk743w5rVOS9b3hYI5xzRLXzHHNMa7Rs8nfmWPywxzrQ0csTp7ZsMP09qf_S38BBiKQVQ
CitedBy_id crossref_primary_10_1016_j_asoc_2018_08_015
crossref_primary_10_1016_j_swevo_2023_101284
crossref_primary_10_1145_3524495
crossref_primary_10_1016_j_future_2019_07_069
crossref_primary_10_1016_j_ins_2023_119627
crossref_primary_10_1109_TEVC_2016_2574621
crossref_primary_10_1016_j_swevo_2018_05_001
crossref_primary_10_1109_TCYB_2015_2510698
crossref_primary_10_1016_j_asoc_2024_111600
crossref_primary_10_1016_j_swevo_2021_100867
crossref_primary_10_1109_TEVC_2019_2922834
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_1016_j_asoc_2023_110359
crossref_primary_10_1016_j_ins_2020_07_009
crossref_primary_10_1007_s00500_016_2353_1
crossref_primary_10_1016_j_ins_2024_120565
crossref_primary_10_1016_j_future_2019_08_012
crossref_primary_10_1016_j_asoc_2018_12_031
crossref_primary_10_1016_j_knosys_2022_108447
crossref_primary_10_1016_j_swevo_2022_101075
crossref_primary_10_1155_2020_9053809
crossref_primary_10_1177_1748302619873589
crossref_primary_10_1109_TEVC_2018_2880458
crossref_primary_10_1016_j_ins_2023_03_094
crossref_primary_10_1002_cpe_6362
crossref_primary_10_1007_s13042_017_0695_3
crossref_primary_10_1109_TCBB_2017_2652453
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1016_j_knosys_2017_11_037
crossref_primary_10_1016_j_asoc_2019_105783
crossref_primary_10_1016_j_asoc_2023_111114
crossref_primary_10_1016_j_ins_2019_01_066
crossref_primary_10_1016_j_isatra_2023_03_038
crossref_primary_10_1016_j_knosys_2017_11_016
crossref_primary_10_1016_j_eswa_2025_129642
crossref_primary_10_1016_j_swevo_2024_101468
crossref_primary_10_1016_j_eswa_2025_129325
crossref_primary_10_1016_j_eswa_2025_129304
crossref_primary_10_1007_s00521_023_08633_7
crossref_primary_10_1016_j_ejor_2017_03_048
crossref_primary_10_1016_j_swevo_2025_101981
crossref_primary_10_1109_TEVC_2018_2868770
Cites_doi 10.1109/CEC.2004.1331046
10.1109/TEVC.2007.892759
10.1007/978-3-540-70928-2_60
10.1109/TEVC.2005.860762
10.1109/TSMCB.2006.887946
10.1111/j.1467-8640.2009.00332.x
10.1162/evco.2008.16.2.225
10.1109/TEVC.2004.831456
10.1007/s00500-003-0334-7
10.1109/TEVC.2008.920671
10.1162/evco.2010.18.1.18105
10.1109/CEC.2002.1004406
10.1162/evco.2009.17.3.411
10.1007/11596448_125
10.1016/j.swevo.2011.03.001
10.1162/106365600568086
10.1007/978-3-540-31880-4_8
10.1109/4235.996017
10.1109/CEC.2007.4424730
10.1007/978-3-540-30217-9_78
10.1007/3-540-44719-9_22
10.1109/CEC.2003.1299427
10.1016/j.asoc.2007.07.005
10.1007/s00500-010-0674-z
10.1007/978-3-540-70928-2_62
10.1145/1276958.1277116
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
Springer-Verlag Berlin Heidelberg 2013.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: Springer-Verlag Berlin Heidelberg 2013.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-013-1175-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: AAdvanced Technologies & Aerospace Database (subscription)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 1929
ExternalDocumentID 10_1007_s00500_013_1175_7
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c349t-89c2e2407fa110f3389feb67b7d4ac19086443c3c7abab4a427ee02e5b28a0b13
IEDL.DBID RSV
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341866600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 04:08:02 EST 2025
Sat Nov 29 03:19:48 EST 2025
Tue Nov 18 21:55:47 EST 2025
Fri Feb 21 02:40:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Evolutionary algorithms
Dynamic multi-objective optimization
Coevolution
Predictive model
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-89c2e2407fa110f3389feb67b7d4ac19086443c3c7abab4a427ee02e5b28a0b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918057403
PQPubID 2043697
PageCount 17
ParticipantIDs proquest_journals_2918057403
crossref_citationtrail_10_1007_s00500_013_1175_7
crossref_primary_10_1007_s00500_013_1175_7
springer_journals_10_1007_s00500_013_1175_7
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Deb K, Kumar A (2007) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. Tech. Rep., Indian Institute of Technology, KanGAL 2007001
ThieleLMiettinenKKorhonenPJA preference-based evolutionary algorithm for multi-objective optimizationEvol Comput200917341143610.1162/evco.2009.17.3.411
Ryan C (1997) Diploid without dominance. In: Proceeding of the 3th Nordic workshop on genetic algorithms, pp 63–70
Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: improving the GA in a dynamic environment. In: Proceeding of genetic and evolutionary computation, Morgan Kaufmann, San Francisco, pp 504–510
Zhou AM, Zhang QF, Jin YC et al. (2006) Modeling the population distribution in multi-objective optimization by generative topographic mapping. Lecture notes in computer science, vol 4193, Springer, pp 443–452
Zeng SY, Yao SZ, Kang LS et al (2005) An efficient multi-objective evolutionary algorithm: OMOEA-II. In: Third international conference on evolutionary multi-criterion optimization. INCS, vol 3401, Springer, pp 108–119
ZhouAMQuBYLiHMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evol Comput20111324910.1016/j.swevo.2011.03.001
Bader J, Zitzler E (2010) Robustness in hypervolume-based multiobjective search. Tech. Rep. TIK 317, Computer Engineering and Networks Laboratory, ETH Zurich
Zhou AM, Jin YC, Zhang QF et al (2007) Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Conference on evolutionary multi-criterion optimization. Lecture notes in computer science, vol 4403, Springer, Berlin, pp 832–846
ElhossiniAAreibiSDonyRStrength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimizationEvol Comput201018112715610.1162/evco.2010.18.1.18105
ZhangZHMultiobjective optimization immune algorithm in dynamic environments and its application to greenhouse controlAppl Soft Comput2008895997110.1016/j.asoc.2007.07.005
YangDDJiaoLCGongMGAdaptive multi-objective optimization based on nondominated solutionsComput Intell20092528410810.1111/j.1467-8640.2009.00332.x2555634
Ryan C, Collins JJ (1997) Polygenic inheritance—a haploid scheme that can outperform diploidy. In: Proceeding of the 5th international conference on parallel problem solving from nature, Springer, Berlin, pp 178–187
Brockhoff D, Zitzler E (2007) Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods. In: IEEE congress on evolutionary computation, pp 2086–2093
Bader J, Zitzler E (2008) HypE: an algorithm for fast hypervolume-based manyobjective optimization. Tech. Rep. TIK 286, Computer Engineering and Networks Laboratory, ETH Zurich
Ma YJ, Liu RC, Shang RH (2011) A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator. Neural information processing. Lecture notes in computer science, vol 7063, Springer, pp 435–444
Mehnen J, Tobias W, Gnter R (2006) Evolutionary optimization of dynamic multiobjective functions. Technical Report CI-204/06, University of Dortmund
Ursem RK (2000) Multinational GA optimization technique in dynamic environments. In: Proceeding of genetic and evolutionary computation, Morgan Kaufmann, San Francisco, pp 19–26
Coello CAC, Sierra MR (2003) A coevolutionary multi-objective evolutionary algorithm. In: IEEE of proceeding congress on, evolutionary computation, vol 1, pp 482–489
Iason H, David W (2006) Dynamic multiobjective optimization with evolutionary algorithms: a forward-looking approach. In: Proceeding of the GECCO’ 06, Washington, USA, pp 1201–1208
ZhangQFLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
Maneeratana K, Boonlong K, Chaiyaratana N (2004) Multi-objective optimisation by co-operative co-evolution. Lecture notes in computer science, vol 3242, Springer, pp 772–781
Van Veldhuizen, David A (1999) Multi-objective evolutionary algorithms: classification, analyzes, and new innovations. PhD thesis, Wright-Patterson AFB, Air Force Institute of Technology
Shang RH, Jiao LC, Gong MG et al (2005) Clonal selection algorithm for dynamic multiobjective optimization. Computational intelligence and security. Lecture notes in computer science, vol 3801, Springer, Berlin, pp 846–851
LiBBWangLA hybrid quantum-inspired genetic algorithm for multiobjective flow shop schedulingIEEE Trans Syst Man Cybern Part B (Cybernetics)2007373576591
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput2002618219710.1109/4235.996017
Schott JR (1995) Fault tolerant design using single and multictiteria genetic algorithm optimization. Master thesis, Massachusetts Institute of Technology
Lewis J, Hart E, Ritchie G (1998) A comparison of dominance mechanism and simple mutation on non-stationary problems. Parallel problem solving from nature. LNCS, vol 1498, pp 139–148
Deb K, Sinha A, Korhonen P et al (2009) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. Tech. Rep. KanGAL 2009005, Indian Institute of Technology
Eriksson R, Olsson B, (2004) On the performance of evolutionary algorithms with lifetime adaptation in dynamic fitness landscapes. In: Proceeding of 2004 congress on evolutionary computing. Piscataway, IEEE Press, pp 1293–1300
Jin YC, Sendhoff B (2004) Constructing dynamic optimization test problems using the multiobjective optimization concept. Evolutionary computing. Lecture notes in computer science, vol 3005, Springer, pp 525–536
GongMGJiaoLCDuHFMultiobjective immune algorithm with nondominated neighbor-based selectionEvol Comput200816222525510.1162/evco.2008.16.2.225
Mori N, Kita H, Nishikawa Y (1998) Adaptation to a changing environment by means of the dynamical genetic algorithm. Lecture notes in computer science, vol 1498. Springer, pp 149–158
Grefenstette JJ (1992) Genetic algorithms for changing environments. Parallel problem solving from nature, Brussels, pp 137–144
Teich J (2001) Pareto-front exploration with uncertain objectives. Lecture notes in computer science, vol 1993. Springer, pp 314–328
Zeng SY, Chen G, Zhang LF et al (2002) A dynamic multi-objective evolutionary algorithm based on an orthogonal design. In: Proceeding of the congress on evolutionary computation, Vancouver, BC, Canada, IEEE Press, pp 2588–2595
Deb K, Bhaskara UN, Karthik S (2007) Dynamic multi-Objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Fourth international conference on evolutionary multi-criterion optimization. LNCS, vol 4403, Matsushima, Springer, pp 803–807
PotterMAJongKACooperative coevolution: an architecture for evolving coadapted subcomponentsEvol Comput200081129
Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceeding Of the evolutionary methods for design, optimization and control, Barcelona, Spain, pp 95–100
AndersonTWScolveSIntroduction to the statistical analysis of data1978BostonHoughton Mifflin0415.62001
TanKCYangYJGohCKA distributed cooperative coevolutionary algorithm for multiobjective optimizationIEEE Trans Evol Comput2006105527549
GohCKTanKCA competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimizationIEEE Trans Evol Comput200913110312710.1109/TEVC.2008.920671
Bendtsen CN, Krink T (2002) Dynamic memory model for non-stationary optimization. In: Proceedings of the 2002 congress on evolutionary computation, vol 1, issue 12–17, Piscataway, IEEE Press, pp 992–997
Lohn JD, Kraus WF, Haith GL (2002) Comparing a coevolutionary genetic algorithm for multiobjective optimization. In: Proceedings of the 2002 IEEE congress on evolutionary computation, pp 1157–1162
FarinaMAmatoPDebKDynamic multi-objective optimization problems: test cases, approximations and applicationsIEEE Trans Evol Comput20048542544210.1109/TEVC.2004.831456
Hadad BS, Eick CF (1997) Supporting polyploidy in genetic algorithms using dominance vectors. In: Proceedings of the 6th international conference on evolutionary programming, Morgan Kaufmann, San Francisco, pp 223–234
Keerativuttiumrong N, Chaiyaratana N, Varavithya V (2002) Multiobjective co-operative co-evolutionary genetic algorithm. Lecture notes in computer science, vol 2439, Springer, pp 288–297
Hughes EJ (2003) Multiple single objective Pareto sampling. In: Proceedings of the congress on evolutionary computation, Canberra, IEEE Press, pp 2678–2684
Morrison RW, Jong KA (2000) Triggered hyper-mutation revisited. In: Proceeding of congress on evolutionary computation, Piscataway, IEEE Press, pp 1025–1032
FarinaMZhangQFJinYCLinked interpolation–optimization strategies for multicriteria optimization problemsSoft Comput200591546510.1007/s00500-003-0334-7
ZhangZHQianSQArtificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problemsSoft Comput2011151333134910.1007/s00500-010-0674-z
M Farina (1175_CR14) 2005; 9
1175_CR17
1175_CR18
L Thiele (1175_CR39) 2009; 17
1175_CR12
1175_CR19
1175_CR51
1175_CR10
MG Gong (1175_CR16) 2008; 16
AM Zhou (1175_CR50) 2011; 1
1175_CR48
DD Yang (1175_CR42) 2009; 25
1175_CR49
1175_CR44
A Elhossini (1175_CR11) 2010; 18
1175_CR40
1175_CR41
1175_CR43
1175_CR37
1175_CR38
1175_CR33
1175_CR34
1175_CR35
1175_CR36
K Deb (1175_CR7) 2002; 6
1175_CR30
1175_CR31
1175_CR32
1175_CR26
1175_CR27
1175_CR28
1175_CR29
1175_CR22
ZH Zhang (1175_CR47) 2011; 15
1175_CR23
1175_CR24
1175_CR25
TW Anderson (1175_CR1) 1978
ZH Zhang (1175_CR46) 2008; 8
CK Goh (1175_CR15) 2009; 13
1175_CR8
1175_CR9
M Farina (1175_CR13) 2004; 8
1175_CR4
1175_CR5
QF Zhang (1175_CR45) 2007; 11
1175_CR6
1175_CR20
1175_CR21
1175_CR2
1175_CR3
References_xml – reference: FarinaMAmatoPDebKDynamic multi-objective optimization problems: test cases, approximations and applicationsIEEE Trans Evol Comput20048542544210.1109/TEVC.2004.831456
– reference: Grefenstette JJ (1992) Genetic algorithms for changing environments. Parallel problem solving from nature, Brussels, pp 137–144
– reference: Deb K, Bhaskara UN, Karthik S (2007) Dynamic multi-Objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Fourth international conference on evolutionary multi-criterion optimization. LNCS, vol 4403, Matsushima, Springer, pp 803–807
– reference: Morrison RW, Jong KA (2000) Triggered hyper-mutation revisited. In: Proceeding of congress on evolutionary computation, Piscataway, IEEE Press, pp 1025–1032
– reference: AndersonTWScolveSIntroduction to the statistical analysis of data1978BostonHoughton Mifflin0415.62001
– reference: Iason H, David W (2006) Dynamic multiobjective optimization with evolutionary algorithms: a forward-looking approach. In: Proceeding of the GECCO’ 06, Washington, USA, pp 1201–1208
– reference: Ursem RK (2000) Multinational GA optimization technique in dynamic environments. In: Proceeding of genetic and evolutionary computation, Morgan Kaufmann, San Francisco, pp 19–26
– reference: Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceeding Of the evolutionary methods for design, optimization and control, Barcelona, Spain, pp 95–100
– reference: ZhouAMQuBYLiHMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evol Comput20111324910.1016/j.swevo.2011.03.001
– reference: Jin YC, Sendhoff B (2004) Constructing dynamic optimization test problems using the multiobjective optimization concept. Evolutionary computing. Lecture notes in computer science, vol 3005, Springer, pp 525–536
– reference: Maneeratana K, Boonlong K, Chaiyaratana N (2004) Multi-objective optimisation by co-operative co-evolution. Lecture notes in computer science, vol 3242, Springer, pp 772–781
– reference: Mehnen J, Tobias W, Gnter R (2006) Evolutionary optimization of dynamic multiobjective functions. Technical Report CI-204/06, University of Dortmund
– reference: Lewis J, Hart E, Ritchie G (1998) A comparison of dominance mechanism and simple mutation on non-stationary problems. Parallel problem solving from nature. LNCS, vol 1498, pp 139–148
– reference: Mori N, Kita H, Nishikawa Y (1998) Adaptation to a changing environment by means of the dynamical genetic algorithm. Lecture notes in computer science, vol 1498. Springer, pp 149–158
– reference: ZhangZHQianSQArtificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problemsSoft Comput2011151333134910.1007/s00500-010-0674-z
– reference: Deb K, Sinha A, Korhonen P et al (2009) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. Tech. Rep. KanGAL 2009005, Indian Institute of Technology
– reference: Zhou AM, Jin YC, Zhang QF et al (2007) Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization. In: Conference on evolutionary multi-criterion optimization. Lecture notes in computer science, vol 4403, Springer, Berlin, pp 832–846
– reference: Van Veldhuizen, David A (1999) Multi-objective evolutionary algorithms: classification, analyzes, and new innovations. PhD thesis, Wright-Patterson AFB, Air Force Institute of Technology
– reference: GongMGJiaoLCDuHFMultiobjective immune algorithm with nondominated neighbor-based selectionEvol Comput200816222525510.1162/evco.2008.16.2.225
– reference: Coello CAC, Sierra MR (2003) A coevolutionary multi-objective evolutionary algorithm. In: IEEE of proceeding congress on, evolutionary computation, vol 1, pp 482–489
– reference: Eriksson R, Olsson B, (2004) On the performance of evolutionary algorithms with lifetime adaptation in dynamic fitness landscapes. In: Proceeding of 2004 congress on evolutionary computing. Piscataway, IEEE Press, pp 1293–1300
– reference: TanKCYangYJGohCKA distributed cooperative coevolutionary algorithm for multiobjective optimizationIEEE Trans Evol Comput2006105527549
– reference: Deb K, Kumar A (2007) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. Tech. Rep., Indian Institute of Technology, KanGAL 2007001
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput2002618219710.1109/4235.996017
– reference: Hughes EJ (2003) Multiple single objective Pareto sampling. In: Proceedings of the congress on evolutionary computation, Canberra, IEEE Press, pp 2678–2684
– reference: LiBBWangLA hybrid quantum-inspired genetic algorithm for multiobjective flow shop schedulingIEEE Trans Syst Man Cybern Part B (Cybernetics)2007373576591
– reference: YangDDJiaoLCGongMGAdaptive multi-objective optimization based on nondominated solutionsComput Intell20092528410810.1111/j.1467-8640.2009.00332.x2555634
– reference: Brockhoff D, Zitzler E (2007) Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods. In: IEEE congress on evolutionary computation, pp 2086–2093
– reference: Keerativuttiumrong N, Chaiyaratana N, Varavithya V (2002) Multiobjective co-operative co-evolutionary genetic algorithm. Lecture notes in computer science, vol 2439, Springer, pp 288–297
– reference: ThieleLMiettinenKKorhonenPJA preference-based evolutionary algorithm for multi-objective optimizationEvol Comput200917341143610.1162/evco.2009.17.3.411
– reference: Teich J (2001) Pareto-front exploration with uncertain objectives. Lecture notes in computer science, vol 1993. Springer, pp 314–328
– reference: PotterMAJongKACooperative coevolution: an architecture for evolving coadapted subcomponentsEvol Comput200081129
– reference: FarinaMZhangQFJinYCLinked interpolation–optimization strategies for multicriteria optimization problemsSoft Comput200591546510.1007/s00500-003-0334-7
– reference: Zhou AM, Zhang QF, Jin YC et al. (2006) Modeling the population distribution in multi-objective optimization by generative topographic mapping. Lecture notes in computer science, vol 4193, Springer, pp 443–452
– reference: ZhangQFLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput200711671273110.1109/TEVC.2007.892759
– reference: Zeng SY, Yao SZ, Kang LS et al (2005) An efficient multi-objective evolutionary algorithm: OMOEA-II. In: Third international conference on evolutionary multi-criterion optimization. INCS, vol 3401, Springer, pp 108–119
– reference: Bader J, Zitzler E (2008) HypE: an algorithm for fast hypervolume-based manyobjective optimization. Tech. Rep. TIK 286, Computer Engineering and Networks Laboratory, ETH Zurich
– reference: GohCKTanKCA competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimizationIEEE Trans Evol Comput200913110312710.1109/TEVC.2008.920671
– reference: ElhossiniAAreibiSDonyRStrength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimizationEvol Comput201018112715610.1162/evco.2010.18.1.18105
– reference: Schott JR (1995) Fault tolerant design using single and multictiteria genetic algorithm optimization. Master thesis, Massachusetts Institute of Technology
– reference: Shang RH, Jiao LC, Gong MG et al (2005) Clonal selection algorithm for dynamic multiobjective optimization. Computational intelligence and security. Lecture notes in computer science, vol 3801, Springer, Berlin, pp 846–851
– reference: Ma YJ, Liu RC, Shang RH (2011) A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator. Neural information processing. Lecture notes in computer science, vol 7063, Springer, pp 435–444
– reference: Bader J, Zitzler E (2010) Robustness in hypervolume-based multiobjective search. Tech. Rep. TIK 317, Computer Engineering and Networks Laboratory, ETH Zurich
– reference: Lohn JD, Kraus WF, Haith GL (2002) Comparing a coevolutionary genetic algorithm for multiobjective optimization. In: Proceedings of the 2002 IEEE congress on evolutionary computation, pp 1157–1162
– reference: Oppacher F, Wineberg M (1999) The shifting balance genetic algorithm: improving the GA in a dynamic environment. In: Proceeding of genetic and evolutionary computation, Morgan Kaufmann, San Francisco, pp 504–510
– reference: Ryan C, Collins JJ (1997) Polygenic inheritance—a haploid scheme that can outperform diploidy. In: Proceeding of the 5th international conference on parallel problem solving from nature, Springer, Berlin, pp 178–187
– reference: Zeng SY, Chen G, Zhang LF et al (2002) A dynamic multi-objective evolutionary algorithm based on an orthogonal design. In: Proceeding of the congress on evolutionary computation, Vancouver, BC, Canada, IEEE Press, pp 2588–2595
– reference: Bendtsen CN, Krink T (2002) Dynamic memory model for non-stationary optimization. In: Proceedings of the 2002 congress on evolutionary computation, vol 1, issue 12–17, Piscataway, IEEE Press, pp 992–997
– reference: Ryan C (1997) Diploid without dominance. In: Proceeding of the 3th Nordic workshop on genetic algorithms, pp 63–70
– reference: ZhangZHMultiobjective optimization immune algorithm in dynamic environments and its application to greenhouse controlAppl Soft Comput2008895997110.1016/j.asoc.2007.07.005
– reference: Hadad BS, Eick CF (1997) Supporting polyploidy in genetic algorithms using dominance vectors. In: Proceedings of the 6th international conference on evolutionary programming, Morgan Kaufmann, San Francisco, pp 223–234
– ident: 1175_CR12
  doi: 10.1109/CEC.2004.1331046
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 1175_CR45
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– ident: 1175_CR8
  doi: 10.1007/978-3-540-70928-2_60
– ident: 1175_CR23
– ident: 1175_CR4
– ident: 1175_CR37
  doi: 10.1109/TEVC.2005.860762
– ident: 1175_CR24
  doi: 10.1109/TSMCB.2006.887946
– ident: 1175_CR33
– volume: 25
  start-page: 84
  issue: 2
  year: 2009
  ident: 1175_CR42
  publication-title: Comput Intell
  doi: 10.1111/j.1467-8640.2009.00332.x
– ident: 1175_CR29
– volume: 16
  start-page: 225
  issue: 2
  year: 2008
  ident: 1175_CR16
  publication-title: Evol Comput
  doi: 10.1162/evco.2008.16.2.225
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 1175_CR13
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.831456
– ident: 1175_CR22
– volume: 9
  start-page: 54
  issue: 1
  year: 2005
  ident: 1175_CR14
  publication-title: Soft Comput
  doi: 10.1007/s00500-003-0334-7
– ident: 1175_CR26
– ident: 1175_CR43
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 1175_CR15
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.920671
– ident: 1175_CR3
– volume: 18
  start-page: 127
  issue: 1
  year: 2010
  ident: 1175_CR11
  publication-title: Evol Comput
  doi: 10.1162/evco.2010.18.1.18105
– ident: 1175_CR25
  doi: 10.1109/CEC.2002.1004406
– volume: 17
  start-page: 411
  issue: 3
  year: 2009
  ident: 1175_CR39
  publication-title: Evol Comput
  doi: 10.1162/evco.2009.17.3.411
– ident: 1175_CR36
  doi: 10.1007/11596448_125
– volume: 1
  start-page: 32
  year: 2011
  ident: 1175_CR50
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.03.001
– ident: 1175_CR40
– ident: 1175_CR34
– ident: 1175_CR28
– ident: 1175_CR32
  doi: 10.1162/106365600568086
– ident: 1175_CR30
– ident: 1175_CR44
  doi: 10.1007/978-3-540-31880-4_8
– volume-title: Introduction to the statistical analysis of data
  year: 1978
  ident: 1175_CR1
– volume: 6
  start-page: 182
  year: 2002
  ident: 1175_CR7
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 1175_CR21
– ident: 1175_CR5
  doi: 10.1109/CEC.2007.4424730
– ident: 1175_CR6
– ident: 1175_CR18
– ident: 1175_CR2
– ident: 1175_CR27
  doi: 10.1007/978-3-540-30217-9_78
– ident: 1175_CR38
  doi: 10.1007/3-540-44719-9_22
– ident: 1175_CR19
  doi: 10.1109/CEC.2003.1299427
– ident: 1175_CR10
– ident: 1175_CR31
– ident: 1175_CR35
– volume: 8
  start-page: 959
  year: 2008
  ident: 1175_CR46
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.005
– volume: 15
  start-page: 1333
  year: 2011
  ident: 1175_CR47
  publication-title: Soft Comput
  doi: 10.1007/s00500-010-0674-z
– ident: 1175_CR48
  doi: 10.1007/978-3-540-70928-2_62
– ident: 1175_CR49
– ident: 1175_CR20
– ident: 1175_CR17
– ident: 1175_CR51
– ident: 1175_CR41
– ident: 1175_CR9
  doi: 10.1145/1276958.1277116
SSID ssj0021753
Score 2.247233
Snippet Dynamic multi-objective optimization problem (DMOP) is quite challenging and it dues to that there are multiple conflicting objects changing over with time or...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1913
SubjectTerms Algorithms
Artificial Intelligence
Capital budgeting
Computational Intelligence
Control
Decomposition
Engineering
Genetic algorithms
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Multiple objective analysis
Optimization algorithms
Optimization techniques
Pareto optimization
Prediction models
Regression analysis
Robotics
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAcmkEXiOHUyoQpRMaCKAaRukV8poDYpbanEv-fsOK1AogtbpDjWKWfffec7f4fQpeCdTq41IDdwN4QZExIBjowYGSSppRTT2lHmP_J-PxkM0id_4DbzZZW1TXSGWpfKnpHf0DRMAFuwILqdfBDbNcpmV30LjU20FVIwwjYpy8ky4PIslAAJQBZwvXVWM3AkorG9Ux1GxJJVEv7TL63A5q_8qHM7veZ_Bd5Dux5w4m61QvbRhikOULNu5oD93j5ERRcX5cKMsCrLian4wOHZLPzaFNMvrKv29dhVIZJSvlfWEpdgd8b-QicWoyGIMX8dY1tTP8QCA3LHk6nNCLnRrvnOEXrp3T_fPRDfjIGoiKVzkqSKGhv-5QIQQw6RbZob2eGSayYUwIoEkFWkIsWFFJIJRrkxATWxpIkIZBgdo0ZRFuYEYS5pbBiE9PCLGA1zEeeKx5TrSARaStpCQa2KTHmmctswY5QtOZad9jLQniUrjzPeQlfLTyYVTce6we1aY5nfsbNspa4Wuq51vnr952Sn6yc7QzsAsVhV_tdGjfn005yjbbWYv82mF265fgNWp_FH
  priority: 102
  providerName: ProQuest
Title A novel cooperative coevolutionary dynamic multi-objective optimization algorithm using a new predictive model
URI https://link.springer.com/article/10.1007/s00500-013-1175-7
https://www.proquest.com/docview/2918057403
Volume 18
WOSCitedRecordID wos000341866600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1wfSw6elEA3TTftUUURlGXxhXgpSZrqytou3XXBf--kTdcHKuilFDoNIZnMfMNMvgHYk6LdTpMEkRu6G8qNaVGJjowa5YWRpRRLkpIy_0J0OuHdXdR197iHdbV7nZIsLfXkspulKrFFVD619JJUTMNsYMlmbIh-dTuJshz1JOIAnAD62zqV-d0Qn53RO8L8khQtfc3p0r9muQyLDlqSw0oXVmDKZKuwVLdtIO4Ur8LCBw7CNcgOSZaPTZ_oPB-Yigcc383Y6aQsXklSta0nZfUhzdVTZSVJjvbm2V3kJLL_kBe90eMzsbX0D0QSROxkUNhMUCldNt1Zh5vTk-vjM-qaMFDt82hEw0gzY8O-VCJSSDGijVKj2kKJhEuNcCJEROVrXwuppOKSM2GMx0ygWCg91fI3YCbLM7MJRCgWGI6hPItanLVSGaRaBEwkvvQSpVgDvHo3Yu0Yym2jjH484VYuVzfG1bUk5UEsGrA_-WVQ0XP8JrxTb3HsTuowxrmEiFm55zfgoN7S988_Drb1J-ltmEekxasqwB2YGRUvZhfm9HjUGxZNmD066XQvmzB9Lig-u8F9s1TqN8797tA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAkulE8RKLAHuIBW2Ot11j4gVKBVq4aoQkXqzezHuBQldkhCUP4Uv5FZe50IJHrrgZsl2yutd3beG8_OG4DnWg0GpXPE3AhuuESMuSYg42iiLPeSYs41kvlDNRplZ2f5yRb86mph_LHKzic2jtrV1v8jfy3yOCNuIaPk7fQ7912jfHa1a6HRmsUxrn5SyDZ_c_SB1veFEAf7p-8PeegqwG0i8wXPcivQxzGlJugrKUTLSzQDZZST2hI-ZkQREptYpY02UkuhECOBqRGZjkyc0LjXYFsmcpD2YPvd_ujk0zrEC7qXREJo9gT2XR41amRLU1_FHSfcy2Ny9ScSbujtXxnZBugOdv63T3QbbgVKzfbaPXAHtrC6CztduwoWvNc9qPZYVS9xzGxdT7FVPKdrXIbdp2cr5laVnlxY1pyz5LX51uIBq8mzTkLJKtPjc5r24uuE-aqBc6YZxSZsOvM5r-bppr3Qffh8JbN-AL2qrvAhMGVEihKNoCWRIi51WlqVCuUSHTljRB-ibukLG7TYfUuQcbFWkW6spSBr8XLsaaH68HL9yrQVIrns4d3OQorgk-bFxjz68Kqzsc3tfw726PLBnsGNw9OPw2J4NDp-DDeJUMr2sOMu9BazH_gErtvl4mI-exo2C4MvV218vwEdvk_o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VilB74I26hYIPnEAWWcdZJ0dUumoFWqEWELfIryygJVll05X494wTZ3moVELcImVsjTy25xvN-BuAPSl6vcwYRG7obii3tkslOjJqVRAnjlLMmJoy_1QMBvHVVXLm-5xO2mr3NiXZvGlwLE15dTg22eHs4ZujLXEFVSF1VJNUzMFHjoGMq-n6_edyFnF5GkrEBKgM-t42rfmvKZ47pke0-SJBWvud_vK7NV6BJQ85yVGzR1bhg83XYLlt50D86V6Dz0-4CdchPyJ5MbUjootibBt-cPy2U79XZXlPTNPOntRVibRQt83tSQq8h-78A08iR8OivKmu74irsR8SSRDJk3HpMkS1dN2MZwMu-j_Ov_-kvjkD1SFPKhonmlkXDmYSEUSGkW6SWdUTShguNcKMGJFWqEMtpJKKS86EtQGzkWKxDFQ33IT5vMjtFyBCschyDPFZ0uWsm8ko0yJiwoQyMEqxDgStZVLtmctdA41ROuNcrlc3xdV15OVRKjqwPxsybmg7_ie83Zo79Sd4kqIuMWJZHoQdOGjN-_j71cm-vkl6FxbPjvvp6a_ByRZ8QjDGm0LBbZivyr_2GyzoaXUzKXfqff0ACxv3Lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+cooperative+coevolutionary+dynamic+multi-objective+optimization+algorithm+using+a+new+predictive+model&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Liu%2C+Ruochen&rft.au=Chen%2C+Yangyang&rft.au=Ma%2C+Wenping&rft.au=Mu%2C+Caihong&rft.date=2014-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=18&rft.issue=10&rft.spage=1913&rft.epage=1929&rft_id=info:doi/10.1007%2Fs00500-013-1175-7&rft.externalDocID=10_1007_s00500_013_1175_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon