Application of ANFIS-based subtractive clustering algorithm in soil Cation Exchange Capacity estimation using soil and remotely sensed data
•The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC based on clay, organic carbon (OC) and Band 3 inputs.•The results revealed that the ANFIS model had the ability to estimate soil CEC by compu...
Gespeichert in:
| Veröffentlicht in: | Measurement : journal of the International Measurement Confederation Jg. 95; S. 173 - 180 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Elsevier Ltd
01.01.2017
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0263-2241, 1873-412X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC based on clay, organic carbon (OC) and Band 3 inputs.•The results revealed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables.
The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability for long-term experiments and projects. Therefore, this study aimed at comparing Adaptive Neuro-Fuzzy Inference System (ANFIS)-based subtractive clustering algorithm with different inputs combinations as well as sequential regression models for simulation of variations in soil CEC. Results showed that the corresponding values of root mean squared error (RMSE) and coefficient of determination (R2) between the measured and simulated CEC using the best regression equation and ANFIS models were 2.05 and 0.733, 1.35 and 0.806, respectively. Nevertheless, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. Results of the present investigation showed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables with guarantee of authenticity, reliability and reproducibility. |
|---|---|
| AbstractList | •The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC based on clay, organic carbon (OC) and Band 3 inputs.•The results revealed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables.
The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability for long-term experiments and projects. Therefore, this study aimed at comparing Adaptive Neuro-Fuzzy Inference System (ANFIS)-based subtractive clustering algorithm with different inputs combinations as well as sequential regression models for simulation of variations in soil CEC. Results showed that the corresponding values of root mean squared error (RMSE) and coefficient of determination (R2) between the measured and simulated CEC using the best regression equation and ANFIS models were 2.05 and 0.733, 1.35 and 0.806, respectively. Nevertheless, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. Results of the present investigation showed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables with guarantee of authenticity, reliability and reproducibility. The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability for long-term experiments and projects. Therefore, this study aimed at comparing Adaptive Neuro-Fuzzy Inference System (ANFIS)-based subtractive clustering algorithm with different inputs combinations as well as sequential regression models for simulation of variations in soil CEC. Results showed that the corresponding values of root mean squared error (RMSE) and coefficient of determination (R2) between the measured and simulated CEC using the best regression equation and ANFIS models were 2.05 and 0.733, 1.35 and 0.806, respectively. Nevertheless, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC, Results of the present investigation showed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables with guarantee of authenticity, reliability and reproducibility. |
| Author | Keshavarzi, Ali Iqbal, Munawar Shiri, Jalal Sarmadian, Fereydoon Omran, El-Sayed Ewis Tirado-Corbalá, Rebecca |
| Author_xml | – sequence: 1 givenname: Ali surname: Keshavarzi fullname: Keshavarzi, Ali email: alikeshavarzi@ut.ac.ir organization: Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box: 4111, Karaj 31587-77871, Iran – sequence: 2 givenname: Fereydoon surname: Sarmadian fullname: Sarmadian, Fereydoon organization: Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box: 4111, Karaj 31587-77871, Iran – sequence: 3 givenname: Jalal surname: Shiri fullname: Shiri, Jalal organization: Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran – sequence: 4 givenname: Munawar surname: Iqbal fullname: Iqbal, Munawar organization: Department of Chemistry, Qurtuba University of Science and Information Technology, Peshawar 25100, KPK, Pakistan – sequence: 5 givenname: Rebecca surname: Tirado-Corbalá fullname: Tirado-Corbalá, Rebecca organization: Department of Agro-Environmental Sciences, University of Puerto Rico-Mayagüez, PR, USA – sequence: 6 givenname: El-Sayed Ewis surname: Omran fullname: Omran, El-Sayed Ewis organization: Soil and Water Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt |
| BookMark | eNqNkE1r3DAQhkVJoZu0_0ElZ28kyx_RqSxLviA0h7TQmxhL440Wr-RIcsj-hv7pynEPpaechOad952Z55ScOO-QkK-crTnjzcV-fUCIU8ADurQucynX14yzD2TFL1tRVLz8dUJWrGxEUZYV_0ROY9wzxhohmxX5vRnHwWpI1jvqe7r5fn33WHQQ0dA4dSmATvYFqR6mmDBYt6Mw7Hyw6elAraPR24FuF_vVq34Ct8P8H0HbdKQYkz0s4hRn71s7OEPzwj7hcKQR3TzLQILP5GMPQ8Qvf98z8vP66sf2trh_uLnbbu4LLSqZihZ5DVCZTksBwAWgbipds7YVPWul6VjVNWBq0claCsNrjRw72YvuMouyFmfkfMkdg3-e8o5q76fg8khVcs7rtqlllbvk0qWDjzFgr8aQjwlHxZma2au9-oe9mtnPUmafvd_-82YcbxwyUDu8K2G7JGAG8WIxqKgtOo3GBtRJGW_fkfIHpWqulw |
| CitedBy_id | crossref_primary_10_1016_j_jece_2025_117345 crossref_primary_10_1007_s11356_020_10957_z crossref_primary_10_1016_j_compag_2017_09_023 crossref_primary_10_1007_s40515_021_00215_1 crossref_primary_10_1007_s00500_021_06095_4 crossref_primary_10_2478_ttj_2019_0027 crossref_primary_10_1007_s11356_019_06591_z crossref_primary_10_1016_j_asoc_2024_111327 crossref_primary_10_1007_s13369_020_05127_9 crossref_primary_10_1016_j_jtice_2020_10_004 crossref_primary_10_3390_math8060890 crossref_primary_10_1007_s00521_021_06870_2 crossref_primary_10_1016_j_scitotenv_2019_05_061 crossref_primary_10_1016_j_catena_2020_104802 crossref_primary_10_1007_s00024_024_03508_x crossref_primary_10_1016_j_ecoinf_2025_103015 crossref_primary_10_1080_00103624_2018_1526952 crossref_primary_10_1007_s12665_021_10059_0 crossref_primary_10_1016_j_resconrec_2018_02_025 crossref_primary_10_1016_j_measurement_2022_111706 crossref_primary_10_2166_ws_2017_208 crossref_primary_10_1038_s41598_021_96601_3 crossref_primary_10_1016_j_jobe_2017_08_008 crossref_primary_10_1080_00103624_2019_1654501 crossref_primary_10_1016_j_conbuildmat_2022_126899 crossref_primary_10_1016_j_measurement_2017_08_011 crossref_primary_10_1016_j_compag_2020_105921 crossref_primary_10_1038_s41598_022_17673_3 crossref_primary_10_1007_s12517_018_3912_9 crossref_primary_10_1016_j_compag_2017_02_016 crossref_primary_10_1007_s42729_021_00517_w crossref_primary_10_1109_ACCESS_2019_2893141 crossref_primary_10_1080_09715010_2019_1595185 crossref_primary_10_1016_j_scitotenv_2020_138244 crossref_primary_10_1007_s40860_021_00168_9 crossref_primary_10_3390_app13137434 crossref_primary_10_1155_2022_3123475 crossref_primary_10_3390_su16167002 crossref_primary_10_1016_j_envsoft_2019_05_006 crossref_primary_10_1080_09715010_2018_1464408 crossref_primary_10_1007_s12145_021_00741_z crossref_primary_10_3390_math8081209 crossref_primary_10_1088_1755_1315_1262_8_082060 crossref_primary_10_1177_11786221211042381 crossref_primary_10_1016_j_cie_2020_106619 crossref_primary_10_1080_15538362_2021_1898520 crossref_primary_10_1111_jfpp_15258 crossref_primary_10_51583_IJLTEMAS_2025_1408000012 crossref_primary_10_1080_02626667_2022_2043551 crossref_primary_10_1061__ASCE_PS_1949_1204_0000439 crossref_primary_10_1080_03067319_2020_1746775 |
| Cites_doi | 10.2136/sssaj2002.1407a 10.2136/sssaj1995.03615995005900030034x 10.1590/S1413-70542013000400001 10.1007/s10706-007-9146-3 10.14358/PERS.69.6.619 10.2478/intag-2013-0011 10.1016/j.cageo.2012.07.001 10.1016/S0016-7061(97)00024-4 10.1016/j.jenvman.2010.08.017 10.1016/j.jenvman.2010.10.001 10.1097/00010694-195204000-00001 10.1016/j.cageo.2011.08.027 10.1016/j.measurement.2013.10.018 10.2136/sssaj1991.03615995005500030026x 10.1029/96WR02278 10.1016/S0016-7061(03)00223-4 10.1016/j.geoderma.2004.05.009 10.1016/S0016-7061(02)00139-8 10.2136/sssaj1986.03615995005000010035x 10.2136/sssaj2004.0026 10.1016/j.still.2005.08.011 10.1016/S0308-521X(99)00066-9 10.1080/10286600600772348 10.1016/j.geoderma.2004.02.015 10.1016/j.geoderma.2005.04.009 10.1016/j.measurement.2013.09.020 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 2017 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2016.10.010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| EndPage | 180 |
| ExternalDocumentID | 10_1016_j_measurement_2016_10_010 S0263224116305589 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF |
| ID | FETCH-LOGICAL-c349t-7e15aa4dbc93aa13aec64c50773f079db04b6ad53b9593d15ce1eb9f3b89db953 |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390495400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Wed Aug 13 08:56:22 EDT 2025 Sat Nov 29 06:47:39 EST 2025 Tue Nov 18 22:34:40 EST 2025 Fri Feb 23 02:27:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Soil Cation Exchange Capacity Multi variable linear regression ANFIS Subtractive clustering Soil properties |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-7e15aa4dbc93aa13aec64c50773f079db04b6ad53b9593d15ce1eb9f3b89db953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2111576594 |
| PQPubID | 2047460 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2111576594 crossref_primary_10_1016_j_measurement_2016_10_010 crossref_citationtrail_10_1016_j_measurement_2016_10_010 elsevier_sciencedirect_doi_10_1016_j_measurement_2016_10_010 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 2017-01-00 20170101 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Busscher, Krueger, Novak, Kurtener (b0060) 2007; 21 Bell, Van Keulen (b0015) 1995; 59 Kisi, Shiri, Nikoofar (b0035) 2012; 41 Bower, Reitmeir, Fireman (b0155) 1952; 73 National Cartographic Center, Research Institute of NCC, Tehran, Iran Khoshnevisan, Rafiee, Mousazadeh (b0240) 2014; 47 Franssen, van Eijnsbergen, Stein (b0080) 1997; 77 McClave, Dietrich, Sinicich (b0180) 1997 Mohajer, Salehi, Herchegani (b0215) 2009; 13 Keshavarzi, Sarmadian, Ahmadi (b0070) 2011; 5 Jang, Sun, Mizutani (b0195) 1997 Mohammadi, Taheri (b0120) 2005; 2 Seybold, Grossman, Reinsch (b0225) 2005; 69 F. Newhall, C.R. Berdanier, Calculation of soil moisture regimes from the climatic record. Natural Resources Conservation Service, Soil Survey Investigation Report, No. 46 (1996), p. 13. El Omran (b0025) 2012; 2 Ghaemi, Astaraei, Sanaeinejad, Zare (b0005) 2013; 27 Dashtaki, Homaei (b0170) 2002; 3 McBratney, Minasny, Cattle, Vervoort (b0190) 2002; 109 Minasny, McBratney (b0010) 2002; 66 Soil Survey Staff (b0140) 2013 2010. Merdun, Meral, Apan (b0105) 2006; 90 Khoshnevisan, Rafiee, Omid, Mousazadeh (b0245) 2014; 47 Krueger, Prior, Kurtener, Rogers, Runion (b0045) 2011; 25 Nourbakhsh, Jalalian, Shariatmadari (b0220) 2003; 7 Black (b0150) 1982 Adrover, Farrús, Moyà, Vadell (b0230) 2012; 95 Kalkan, Akbulut, Tortum (b0130) 2008; 5 Aydin, Tortum, Yavuz (b0205) 2006; 23 Milton, McTeer, Corbet (b0175) 1997 Fard, Harchagani (b0210) 2009; 23 Menezes, Silva, Owens, Curi (b0075) 2013; 37 Ahamed, Rao, Murthy (b0125) 2000; 63 McBratney, Mendonca, Minansy (b0020) 2003; 117 Priyono, Ridwan, Alias, Rahmat, Hassan, Mam (b0030) 2005; 43 Amini, Afyuni, Fathianpour, Khademi, Fluhler (b0085) 2005; 124 Lagacherie (b0055) 2005; 128 Manrique, Jones, Dyke (b0090) 1991; 55 Drewry, Newham, Greene (b0235) 2011; 92 Ghorbani, Khalili, Alavipanah, Nakhaezadeh (b0095) 2010; 24 P.H. Cabena, R. Stadler, J. Verhees, A. Zanasi, Discovering Data Mining: From Concept to Implementation, IBM, New Jersey, p. 195. G.W. Gee, J.W. Bauder, Particle size analysis, in: A. Klute (Ed.), Methods of Soil Analaysis. Part 1. Am. Soc. Agron., Madison, Wisconsin, USA, 1986. Breeuwsma, Wösten, Vleeshouwer, Van Slobbe, Bouma (b0185) 1986; 50 Kisi, Shiri, Tombul (b0040) 2013; 51 Schaap, Bouten (b0110) 1996; 32 Sunil, Sinha, Wang (b0115) 2008; 26 Barnes, Sudduth, Hummel, Lesch, Corwin, Yang, Daughtry, Bausch (b0160) 2003; 69 Torbert, Krueger, Kurtener (b0065) 2008; 22 Zhang, Zhang, Chen, White, Li (b0050) 2004; 123 Kisi (10.1016/j.measurement.2016.10.010_b0035) 2012; 41 Khoshnevisan (10.1016/j.measurement.2016.10.010_b0245) 2014; 47 Mohammadi (10.1016/j.measurement.2016.10.010_b0120) 2005; 2 Aydin (10.1016/j.measurement.2016.10.010_b0205) 2006; 23 McBratney (10.1016/j.measurement.2016.10.010_b0020) 2003; 117 McClave (10.1016/j.measurement.2016.10.010_b0180) 1997 10.1016/j.measurement.2016.10.010_b0145 Manrique (10.1016/j.measurement.2016.10.010_b0090) 1991; 55 10.1016/j.measurement.2016.10.010_b0165 10.1016/j.measurement.2016.10.010_b0100 Schaap (10.1016/j.measurement.2016.10.010_b0110) 1996; 32 Milton (10.1016/j.measurement.2016.10.010_b0175) 1997 Torbert (10.1016/j.measurement.2016.10.010_b0065) 2008; 22 Dashtaki (10.1016/j.measurement.2016.10.010_b0170) 2002; 3 Adrover (10.1016/j.measurement.2016.10.010_b0230) 2012; 95 Fard (10.1016/j.measurement.2016.10.010_b0210) 2009; 23 Franssen (10.1016/j.measurement.2016.10.010_b0080) 1997; 77 Amini (10.1016/j.measurement.2016.10.010_b0085) 2005; 124 Khoshnevisan (10.1016/j.measurement.2016.10.010_b0240) 2014; 47 Ghorbani (10.1016/j.measurement.2016.10.010_b0095) 2010; 24 Seybold (10.1016/j.measurement.2016.10.010_b0225) 2005; 69 Black (10.1016/j.measurement.2016.10.010_b0150) 1982 Keshavarzi (10.1016/j.measurement.2016.10.010_b0070) 2011; 5 Soil Survey Staff (10.1016/j.measurement.2016.10.010_b0140) 2013 Jang (10.1016/j.measurement.2016.10.010_b0195) 1997 Ghaemi (10.1016/j.measurement.2016.10.010_b0005) 2013; 27 Nourbakhsh (10.1016/j.measurement.2016.10.010_b0220) 2003; 7 Minasny (10.1016/j.measurement.2016.10.010_b0010) 2002; 66 Krueger (10.1016/j.measurement.2016.10.010_b0045) 2011; 25 Ahamed (10.1016/j.measurement.2016.10.010_b0125) 2000; 63 Breeuwsma (10.1016/j.measurement.2016.10.010_b0185) 1986; 50 Sunil (10.1016/j.measurement.2016.10.010_b0115) 2008; 26 10.1016/j.measurement.2016.10.010_b0135 Bower (10.1016/j.measurement.2016.10.010_b0155) 1952; 73 Kalkan (10.1016/j.measurement.2016.10.010_b0130) 2008; 5 McBratney (10.1016/j.measurement.2016.10.010_b0190) 2002; 109 Priyono (10.1016/j.measurement.2016.10.010_b0030) 2005; 43 Merdun (10.1016/j.measurement.2016.10.010_b0105) 2006; 90 Bell (10.1016/j.measurement.2016.10.010_b0015) 1995; 59 Zhang (10.1016/j.measurement.2016.10.010_b0050) 2004; 123 Barnes (10.1016/j.measurement.2016.10.010_b0160) 2003; 69 Drewry (10.1016/j.measurement.2016.10.010_b0235) 2011; 92 Lagacherie (10.1016/j.measurement.2016.10.010_b0055) 2005; 128 Busscher (10.1016/j.measurement.2016.10.010_b0060) 2007; 21 Kisi (10.1016/j.measurement.2016.10.010_b0040) 2013; 51 Menezes (10.1016/j.measurement.2016.10.010_b0075) 2013; 37 Mohajer (10.1016/j.measurement.2016.10.010_b0215) 2009; 13 El Omran (10.1016/j.measurement.2016.10.010_b0025) 2012; 2 |
| References_xml | – volume: 51 start-page: 108 year: 2013 end-page: 117 ident: b0040 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Comput. Geosci. – volume: 21 start-page: 225 year: 2007 end-page: 231 ident: b0060 article-title: Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses publication-title: Int. Agrophys. – volume: 90 start-page: 108 year: 2006 end-page: 116 ident: b0105 article-title: Comparison of artificial neural network and regression Pedotransfer functions for predict of water retention and saturated hydrauli conductivity publication-title: Soil Tillage Res. – volume: 37 start-page: 287 year: 2013 end-page: 298 ident: b0075 article-title: Digital soil mapping approach based on fuzzy logic and field expert knowledge publication-title: Ciênc. Agrotec. – volume: 128 start-page: 274 year: 2005 end-page: 288 ident: b0055 article-title: An algorithm for fuzzy pattern matching to allocate soil individuals to pre-existing soil classes publication-title: Geoderma – volume: 22 start-page: 365 year: 2008 end-page: 370 ident: b0065 article-title: Soil quality assessment using fuzzy modeling publication-title: Int. Agrophys. – volume: 13 start-page: 83 year: 2009 end-page: 97 ident: b0215 article-title: Estimating of soil cation exchange capacity (in view of pedotransfer functions) using regression and artificial neural Networks and the effect of data partitioning on accuracy and precision of functions publication-title: J. Water Soil. – volume: 69 start-page: 619 year: 2003 end-page: 630 ident: b0160 article-title: Remote and ground-based sensor techniques to map soil properties publication-title: Photogram. Eng. Rem. Sens. – volume: 69 start-page: 856 year: 2005 end-page: 863 ident: b0225 article-title: Predicting cation exchange capacity for soil survey using linear models publication-title: Soil Sci. Soc. Am. J. – volume: 77 start-page: 243 year: 1997 end-page: 262 ident: b0080 article-title: Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants publication-title: Geoderma – volume: 5 start-page: 324 year: 2008 end-page: 330 ident: b0130 article-title: Prediction of the unconfined compressive strength of compacted granular soils by using inference systems publication-title: Environ. Geol. – reference: >), 2010. – volume: 66 start-page: 352 year: 2002 end-page: 361 ident: b0010 article-title: The neuro-m method for fitting neural network parametric pedotransfer functions publication-title: Soil. Sci. Soc. Am. J. – volume: 32 start-page: 3033 year: 1996 end-page: 3040 ident: b0110 article-title: Modelling water retentioncurves of sandy soils using neural networks publication-title: Water Resour. Res. – volume: 26 start-page: 47 year: 2008 end-page: 64 ident: b0115 article-title: Artificial neural network prediction models for soil compaction and permeability publication-title: Geotech. Geol. Eng. – volume: 63 start-page: 97 year: 2000 end-page: 110 ident: b0125 article-title: Fuzzy class membership approach to soil erosion modeling publication-title: Agric. Syst. – year: 2013 ident: b0140 article-title: Simplified Guide to Soil Taxonomy, USDA-Natural Resources Conservation Service – volume: 50 start-page: 186 year: 1986 end-page: 190 ident: b0185 article-title: Derivation of land qualities to assess environmental problems from soil surveys publication-title: Soil Sci. Soc. Am. J. – volume: 43 start-page: 143 year: 2005 end-page: 153 ident: b0030 article-title: Generation of fuzzy rules with subtractive clustring publication-title: J. Teknologi. – volume: 24 start-page: 417 year: 2010 end-page: 426 ident: b0095 article-title: Comparative study of the meteorological drought indices (SPI and SIAP) using data mining method (case study of Kermanshah Province) publication-title: J. Water Soil. – year: 1982 ident: b0150 article-title: Method of Soil Analysis, Chemical and Microbiological Properties – reference: F. Newhall, C.R. Berdanier, Calculation of soil moisture regimes from the climatic record. Natural Resources Conservation Service, Soil Survey Investigation Report, No. 46 (1996), p. 13. – volume: 124 start-page: 223 year: 2005 end-page: 233 ident: b0085 article-title: Continuous soil pollution mapping using fuzzy logic and spatial interpolation publication-title: Geoderma – reference: G.W. Gee, J.W. Bauder, Particle size analysis, in: A. Klute (Ed.), Methods of Soil Analaysis. Part 1. Am. Soc. Agron., Madison, Wisconsin, USA, 1986. – volume: 23 start-page: 295 year: 2006 end-page: 309 ident: b0205 article-title: Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system publication-title: Civ. Eng. Environ. Syst. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: b0020 article-title: On digital soil mapping publication-title: Geoderma – volume: 123 start-page: 319 year: 2004 end-page: 331 ident: b0050 article-title: A quantitative evaluation system of soil productivity for intensive agriculture in China publication-title: Geoderma – volume: 92 start-page: 639 year: 2011 end-page: 649 ident: b0235 article-title: Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales publication-title: J. Environ. Manage. – year: 1997 ident: b0175 article-title: Introduction to Statistics – reference: National Cartographic Center, Research Institute of NCC, Tehran, Iran (< – volume: 27 start-page: 409 year: 2013 end-page: 417 ident: b0005 article-title: Using satellite data for soil cation exchange capacity studies publication-title: Int. Agrophys. – reference: P.H. Cabena, R. Stadler, J. Verhees, A. Zanasi, Discovering Data Mining: From Concept to Implementation, IBM, New Jersey, p. 195. – volume: 2 start-page: 1 year: 2012 end-page: 18 ident: b0025 article-title: On-the-go digital soil mapping for precision agriculture publication-title: IJRSA – year: 1997 ident: b0195 article-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence – volume: 25 start-page: 93 year: 2011 end-page: 96 ident: b0045 article-title: Characterizing root distribution with adaptive neuro-fuzzy analysis publication-title: Int. Agrophys. – volume: 95 start-page: 188 year: 2012 end-page: 192 ident: b0230 article-title: Chemical properties and biological activity in soils of Mallorca following twenty years of treated waste water irrigation publication-title: J. Environ. Manage. – volume: 55 start-page: 787 year: 1991 end-page: 794 ident: b0090 article-title: Predicting cation exchange capacity from soil physical and chemical properties publication-title: Soil Sci. Soc. Am. J. – volume: 5 start-page: 1533 year: 2011 end-page: 1541 ident: b0070 article-title: Spatially-based model of land suitability analysis using Block Kriging publication-title: Aust. J. Crop. Sci. – volume: 109 start-page: 41 year: 2002 end-page: 73 ident: b0190 article-title: From pedotransfer functions to soil inference systems publication-title: Geoderma – volume: 3 start-page: 3 year: 2002 end-page: 15 ident: b0170 article-title: Prediction of parametric hydraulic function in unsaturated soils using pedotransfer functions publication-title: Agric. Eng. Res. J. – year: 1997 ident: b0180 article-title: Statistics – volume: 2 start-page: 51 year: 2005 end-page: 60 ident: b0120 article-title: Estimation of pedotransfer function using fuzzy regression publication-title: J. Agric. Sci. Technol. – volume: 47 start-page: 903 year: 2014 end-page: 910 ident: b0240 article-title: Application of multi-layer adaptive neuro-fuzzy inference system for estimation of green house strawberry yield publication-title: Measurement – volume: 73 start-page: 251 year: 1952 end-page: 261 ident: b0155 article-title: Exchangeable cation analysis of saline and alkali soils publication-title: Soil Sci. – volume: 41 start-page: 169 year: 2012 end-page: 180 ident: b0035 article-title: Forecasting daily lake levels using artificial intelligence approaches publication-title: Comput. Geosci. – volume: 59 start-page: 865 year: 1995 end-page: 871 ident: b0015 article-title: Soil pedotransfer functions for four Mexican soils publication-title: Soil. Sci. Soc. Am. J. – volume: 23 start-page: 90 year: 2009 end-page: 99 ident: b0210 article-title: Comparison of artificial neural network and regression pedotransfer functions models for prediction of soil cation exchange capacity in Chaharmahal-e-Bakhtiari province publication-title: J. Water Soil. – volume: 7 start-page: 107 year: 2003 end-page: 118 ident: b0220 article-title: Estimation of cation exchange capacity from some soil physical and chemical properties publication-title: J. Water Soil Sci. – volume: 47 start-page: 521 year: 2014 end-page: 530 ident: b0245 article-title: Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system publication-title: Measurement – volume: 66 start-page: 352 year: 2002 ident: 10.1016/j.measurement.2016.10.010_b0010 article-title: The neuro-m method for fitting neural network parametric pedotransfer functions publication-title: Soil. Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1407a – volume: 59 start-page: 865 year: 1995 ident: 10.1016/j.measurement.2016.10.010_b0015 article-title: Soil pedotransfer functions for four Mexican soils publication-title: Soil. Sci. Soc. Am. J. doi: 10.2136/sssaj1995.03615995005900030034x – volume: 37 start-page: 287 issue: 4 year: 2013 ident: 10.1016/j.measurement.2016.10.010_b0075 article-title: Digital soil mapping approach based on fuzzy logic and field expert knowledge publication-title: Ciênc. Agrotec. doi: 10.1590/S1413-70542013000400001 – volume: 26 start-page: 47 year: 2008 ident: 10.1016/j.measurement.2016.10.010_b0115 article-title: Artificial neural network prediction models for soil compaction and permeability publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-007-9146-3 – volume: 69 start-page: 619 issue: 6 year: 2003 ident: 10.1016/j.measurement.2016.10.010_b0160 article-title: Remote and ground-based sensor techniques to map soil properties publication-title: Photogram. Eng. Rem. Sens. doi: 10.14358/PERS.69.6.619 – volume: 27 start-page: 409 year: 2013 ident: 10.1016/j.measurement.2016.10.010_b0005 article-title: Using satellite data for soil cation exchange capacity studies publication-title: Int. Agrophys. doi: 10.2478/intag-2013-0011 – volume: 5 start-page: 1533 issue: 12 year: 2011 ident: 10.1016/j.measurement.2016.10.010_b0070 article-title: Spatially-based model of land suitability analysis using Block Kriging publication-title: Aust. J. Crop. Sci. – volume: 2 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.measurement.2016.10.010_b0025 article-title: On-the-go digital soil mapping for precision agriculture publication-title: IJRSA – volume: 22 start-page: 365 year: 2008 ident: 10.1016/j.measurement.2016.10.010_b0065 article-title: Soil quality assessment using fuzzy modeling publication-title: Int. Agrophys. – volume: 51 start-page: 108 year: 2013 ident: 10.1016/j.measurement.2016.10.010_b0040 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.07.001 – volume: 77 start-page: 243 year: 1997 ident: 10.1016/j.measurement.2016.10.010_b0080 article-title: Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants publication-title: Geoderma doi: 10.1016/S0016-7061(97)00024-4 – volume: 95 start-page: 188 year: 2012 ident: 10.1016/j.measurement.2016.10.010_b0230 article-title: Chemical properties and biological activity in soils of Mallorca following twenty years of treated waste water irrigation publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.08.017 – volume: 43 start-page: 143 issue: 2005 year: 2005 ident: 10.1016/j.measurement.2016.10.010_b0030 article-title: Generation of fuzzy rules with subtractive clustring publication-title: J. Teknologi. – volume: 7 start-page: 107 year: 2003 ident: 10.1016/j.measurement.2016.10.010_b0220 article-title: Estimation of cation exchange capacity from some soil physical and chemical properties publication-title: J. Water Soil Sci. – volume: 92 start-page: 639 year: 2011 ident: 10.1016/j.measurement.2016.10.010_b0235 article-title: Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.10.001 – volume: 73 start-page: 251 year: 1952 ident: 10.1016/j.measurement.2016.10.010_b0155 article-title: Exchangeable cation analysis of saline and alkali soils publication-title: Soil Sci. doi: 10.1097/00010694-195204000-00001 – volume: 2 start-page: 51 year: 2005 ident: 10.1016/j.measurement.2016.10.010_b0120 article-title: Estimation of pedotransfer function using fuzzy regression publication-title: J. Agric. Sci. Technol. – volume: 41 start-page: 169 year: 2012 ident: 10.1016/j.measurement.2016.10.010_b0035 article-title: Forecasting daily lake levels using artificial intelligence approaches publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.08.027 – volume: 23 start-page: 90 issue: 4 year: 2009 ident: 10.1016/j.measurement.2016.10.010_b0210 article-title: Comparison of artificial neural network and regression pedotransfer functions models for prediction of soil cation exchange capacity in Chaharmahal-e-Bakhtiari province publication-title: J. Water Soil. – volume: 24 start-page: 417 year: 2010 ident: 10.1016/j.measurement.2016.10.010_b0095 article-title: Comparative study of the meteorological drought indices (SPI and SIAP) using data mining method (case study of Kermanshah Province) publication-title: J. Water Soil. – year: 1997 ident: 10.1016/j.measurement.2016.10.010_b0175 – volume: 47 start-page: 903 year: 2014 ident: 10.1016/j.measurement.2016.10.010_b0240 article-title: Application of multi-layer adaptive neuro-fuzzy inference system for estimation of green house strawberry yield publication-title: Measurement doi: 10.1016/j.measurement.2013.10.018 – volume: 21 start-page: 225 issue: 3 year: 2007 ident: 10.1016/j.measurement.2016.10.010_b0060 article-title: Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses publication-title: Int. Agrophys. – volume: 55 start-page: 787 year: 1991 ident: 10.1016/j.measurement.2016.10.010_b0090 article-title: Predicting cation exchange capacity from soil physical and chemical properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1991.03615995005500030026x – volume: 32 start-page: 3033 year: 1996 ident: 10.1016/j.measurement.2016.10.010_b0110 article-title: Modelling water retentioncurves of sandy soils using neural networks publication-title: Water Resour. Res. doi: 10.1029/96WR02278 – ident: 10.1016/j.measurement.2016.10.010_b0145 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.measurement.2016.10.010_b0020 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – year: 1982 ident: 10.1016/j.measurement.2016.10.010_b0150 – volume: 124 start-page: 223 year: 2005 ident: 10.1016/j.measurement.2016.10.010_b0085 article-title: Continuous soil pollution mapping using fuzzy logic and spatial interpolation publication-title: Geoderma doi: 10.1016/j.geoderma.2004.05.009 – volume: 109 start-page: 41 year: 2002 ident: 10.1016/j.measurement.2016.10.010_b0190 article-title: From pedotransfer functions to soil inference systems publication-title: Geoderma doi: 10.1016/S0016-7061(02)00139-8 – ident: 10.1016/j.measurement.2016.10.010_b0135 – volume: 50 start-page: 186 year: 1986 ident: 10.1016/j.measurement.2016.10.010_b0185 article-title: Derivation of land qualities to assess environmental problems from soil surveys publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000010035x – volume: 69 start-page: 856 year: 2005 ident: 10.1016/j.measurement.2016.10.010_b0225 article-title: Predicting cation exchange capacity for soil survey using linear models publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0026 – volume: 90 start-page: 108 year: 2006 ident: 10.1016/j.measurement.2016.10.010_b0105 article-title: Comparison of artificial neural network and regression Pedotransfer functions for predict of water retention and saturated hydrauli conductivity publication-title: Soil Tillage Res. doi: 10.1016/j.still.2005.08.011 – volume: 63 start-page: 97 year: 2000 ident: 10.1016/j.measurement.2016.10.010_b0125 article-title: Fuzzy class membership approach to soil erosion modeling publication-title: Agric. Syst. doi: 10.1016/S0308-521X(99)00066-9 – volume: 23 start-page: 295 issue: 4 year: 2006 ident: 10.1016/j.measurement.2016.10.010_b0205 article-title: Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system publication-title: Civ. Eng. Environ. Syst. doi: 10.1080/10286600600772348 – volume: 123 start-page: 319 year: 2004 ident: 10.1016/j.measurement.2016.10.010_b0050 article-title: A quantitative evaluation system of soil productivity for intensive agriculture in China publication-title: Geoderma doi: 10.1016/j.geoderma.2004.02.015 – ident: 10.1016/j.measurement.2016.10.010_b0100 – volume: 5 start-page: 324 year: 2008 ident: 10.1016/j.measurement.2016.10.010_b0130 article-title: Prediction of the unconfined compressive strength of compacted granular soils by using inference systems publication-title: Environ. Geol. – volume: 3 start-page: 3 year: 2002 ident: 10.1016/j.measurement.2016.10.010_b0170 article-title: Prediction of parametric hydraulic function in unsaturated soils using pedotransfer functions publication-title: Agric. Eng. Res. J. – volume: 25 start-page: 93 year: 2011 ident: 10.1016/j.measurement.2016.10.010_b0045 article-title: Characterizing root distribution with adaptive neuro-fuzzy analysis publication-title: Int. Agrophys. – year: 1997 ident: 10.1016/j.measurement.2016.10.010_b0195 – volume: 13 start-page: 83 year: 2009 ident: 10.1016/j.measurement.2016.10.010_b0215 article-title: Estimating of soil cation exchange capacity (in view of pedotransfer functions) using regression and artificial neural Networks and the effect of data partitioning on accuracy and precision of functions publication-title: J. Water Soil. – year: 2013 ident: 10.1016/j.measurement.2016.10.010_b0140 – ident: 10.1016/j.measurement.2016.10.010_b0165 – year: 1997 ident: 10.1016/j.measurement.2016.10.010_b0180 – volume: 128 start-page: 274 year: 2005 ident: 10.1016/j.measurement.2016.10.010_b0055 article-title: An algorithm for fuzzy pattern matching to allocate soil individuals to pre-existing soil classes publication-title: Geoderma doi: 10.1016/j.geoderma.2005.04.009 – volume: 47 start-page: 521 year: 2014 ident: 10.1016/j.measurement.2016.10.010_b0245 article-title: Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system publication-title: Measurement doi: 10.1016/j.measurement.2013.09.020 |
| SSID | ssj0006396 |
| Score | 2.3465593 |
| Snippet | •The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC... The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 173 |
| SubjectTerms | Adaptive systems Algorithms ANFIS Artificial neural networks Cation exchanging Clustering Computer simulation Fuzzy logic Fuzzy sets Fuzzy systems Ion exchange Multi variable linear regression Regression analysis Regression models Remote sensing Reproducibility Sensitivity analysis Soil Cation Exchange Capacity Soil investigations Soil properties Soils Subtractive clustering |
| Title | Application of ANFIS-based subtractive clustering algorithm in soil Cation Exchange Capacity estimation using soil and remotely sensed data |
| URI | https://dx.doi.org/10.1016/j.measurement.2016.10.010 https://www.proquest.com/docview/2111576594 |
| Volume | 95 |
| WOSCitedRecordID | wos000390495400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWqDRA8IBhMDAYyEm9VpjrflnipUCc6sQppQ-pb5CQOy5SlW9N2hb_A_-WZe-18eEMTBYmXqE1jN8k9sc89ufeakHduJjMnECG4JVJaLgd3h4d8YKUi9ZiIWWpLVTL_UzCZhNMp_9zr_WxyYVZFUJbhes0v_6upYR8YG1Nn_8LcbaewAz6D0WELZoftRoYfdq-kFc2cHI5PLJys0n61jBcqK2ol-0mxxBoJKkex-Dqb54uzCxQ_qlleYF4gNh-tdV4wfAfXGvk61uTQyY79pVIZ1OEqRl2C0WXxrV-BYwz_VSe9tcz3uBMjlQxhlKzoAjgbZdI8WOUkYn3QGyED-KZqJebfc52lk7dKEUr0iHnFyiUANZ11zU7Ocp1ZfyQK0caWjK_0sgf942UprsXcVEJYYCghesC0fcdCSmKO7twzhmeml02pZ3qm15D6bRLResb5wUV3rRgD6B9gGGAdhHujcPetCbUNc2wi6M4jo6sIu4L9kcoM3LYDj8OEsj0cj6ZHLYcA3uhrdVBf0QPytotMvOO87mJWtziGIk6nT8jj2uOhQ43Up6Qnyx3yyKiDuUPuqzjkpHpGfhjopbOMGuilBnpph17aopfmJUU4Uo1e2qCXNuilHXqpQq8-HNBLG_RSjV6K6H1OvhyOTj98tOr1QqzEcfnCCiTzhHDTOOGOEMwRMvHdBByewMkGAU_jgRv7MAY5MVbjTpmXSCZjnjlxCD9yz9klW-WslC8IzWQSOyyDuzrIXJ-nYep5Nrg2sYcSBRvskbC511FSF9PHNV2K6I823yN22_RSV5TZpNH7xqBRTY015Y0AtJs0329AENWPdxXZDAtt-R53X_7LKb0iD7uHcJ9sLeZL-ZrcS1aLvJq_qQH9C9hX9ko |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+ANFIS-based+subtractive+clustering+algorithm+in+soil+Cation+Exchange+Capacity+estimation+using+soil+and+remotely+sensed+data&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Keshavarzi%2C+Ali&rft.au=Sarmadian%2C+Fereydoon&rft.au=Shiri%2C+Jalal&rft.au=Iqbal%2C+Munawar&rft.date=2017-01-01&rft.issn=0263-2241&rft.volume=95&rft.spage=173&rft.epage=180&rft_id=info:doi/10.1016%2Fj.measurement.2016.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2016_10_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |