Application of ANFIS-based subtractive clustering algorithm in soil Cation Exchange Capacity estimation using soil and remotely sensed data

•The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC based on clay, organic carbon (OC) and Band 3 inputs.•The results revealed that the ANFIS model had the ability to estimate soil CEC by compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 95; S. 173 - 180
Hauptverfasser: Keshavarzi, Ali, Sarmadian, Fereydoon, Shiri, Jalal, Iqbal, Munawar, Tirado-Corbalá, Rebecca, Omran, El-Sayed Ewis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Elsevier Ltd 01.01.2017
Elsevier Science Ltd
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC based on clay, organic carbon (OC) and Band 3 inputs.•The results revealed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables. The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability for long-term experiments and projects. Therefore, this study aimed at comparing Adaptive Neuro-Fuzzy Inference System (ANFIS)-based subtractive clustering algorithm with different inputs combinations as well as sequential regression models for simulation of variations in soil CEC. Results showed that the corresponding values of root mean squared error (RMSE) and coefficient of determination (R2) between the measured and simulated CEC using the best regression equation and ANFIS models were 2.05 and 0.733, 1.35 and 0.806, respectively. Nevertheless, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. Results of the present investigation showed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables with guarantee of authenticity, reliability and reproducibility.
AbstractList •The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC based on clay, organic carbon (OC) and Band 3 inputs.•The results revealed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables. The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability for long-term experiments and projects. Therefore, this study aimed at comparing Adaptive Neuro-Fuzzy Inference System (ANFIS)-based subtractive clustering algorithm with different inputs combinations as well as sequential regression models for simulation of variations in soil CEC. Results showed that the corresponding values of root mean squared error (RMSE) and coefficient of determination (R2) between the measured and simulated CEC using the best regression equation and ANFIS models were 2.05 and 0.733, 1.35 and 0.806, respectively. Nevertheless, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. Results of the present investigation showed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables with guarantee of authenticity, reliability and reproducibility.
The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability for long-term experiments and projects. Therefore, this study aimed at comparing Adaptive Neuro-Fuzzy Inference System (ANFIS)-based subtractive clustering algorithm with different inputs combinations as well as sequential regression models for simulation of variations in soil CEC. Results showed that the corresponding values of root mean squared error (RMSE) and coefficient of determination (R2) between the measured and simulated CEC using the best regression equation and ANFIS models were 2.05 and 0.733, 1.35 and 0.806, respectively. Nevertheless, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC, Results of the present investigation showed that the ANFIS model had the ability to estimate soil CEC by computing easily measurable variables with guarantee of authenticity, reliability and reproducibility.
Author Keshavarzi, Ali
Iqbal, Munawar
Shiri, Jalal
Sarmadian, Fereydoon
Omran, El-Sayed Ewis
Tirado-Corbalá, Rebecca
Author_xml – sequence: 1
  givenname: Ali
  surname: Keshavarzi
  fullname: Keshavarzi, Ali
  email: alikeshavarzi@ut.ac.ir
  organization: Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box: 4111, Karaj 31587-77871, Iran
– sequence: 2
  givenname: Fereydoon
  surname: Sarmadian
  fullname: Sarmadian, Fereydoon
  organization: Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box: 4111, Karaj 31587-77871, Iran
– sequence: 3
  givenname: Jalal
  surname: Shiri
  fullname: Shiri, Jalal
  organization: Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
– sequence: 4
  givenname: Munawar
  surname: Iqbal
  fullname: Iqbal, Munawar
  organization: Department of Chemistry, Qurtuba University of Science and Information Technology, Peshawar 25100, KPK, Pakistan
– sequence: 5
  givenname: Rebecca
  surname: Tirado-Corbalá
  fullname: Tirado-Corbalá, Rebecca
  organization: Department of Agro-Environmental Sciences, University of Puerto Rico-Mayagüez, PR, USA
– sequence: 6
  givenname: El-Sayed Ewis
  surname: Omran
  fullname: Omran, El-Sayed Ewis
  organization: Soil and Water Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
BookMark eNqNkE1r3DAQhkVJoZu0_0ElZ28kyx_RqSxLviA0h7TQmxhL440Wr-RIcsj-hv7pynEPpaechOad952Z55ScOO-QkK-crTnjzcV-fUCIU8ADurQucynX14yzD2TFL1tRVLz8dUJWrGxEUZYV_0ROY9wzxhohmxX5vRnHwWpI1jvqe7r5fn33WHQQ0dA4dSmATvYFqR6mmDBYt6Mw7Hyw6elAraPR24FuF_vVq34Ct8P8H0HbdKQYkz0s4hRn71s7OEPzwj7hcKQR3TzLQILP5GMPQ8Qvf98z8vP66sf2trh_uLnbbu4LLSqZihZ5DVCZTksBwAWgbipds7YVPWul6VjVNWBq0claCsNrjRw72YvuMouyFmfkfMkdg3-e8o5q76fg8khVcs7rtqlllbvk0qWDjzFgr8aQjwlHxZma2au9-oe9mtnPUmafvd_-82YcbxwyUDu8K2G7JGAG8WIxqKgtOo3GBtRJGW_fkfIHpWqulw
CitedBy_id crossref_primary_10_1016_j_jece_2025_117345
crossref_primary_10_1007_s11356_020_10957_z
crossref_primary_10_1016_j_compag_2017_09_023
crossref_primary_10_1007_s40515_021_00215_1
crossref_primary_10_1007_s00500_021_06095_4
crossref_primary_10_2478_ttj_2019_0027
crossref_primary_10_1007_s11356_019_06591_z
crossref_primary_10_1016_j_asoc_2024_111327
crossref_primary_10_1007_s13369_020_05127_9
crossref_primary_10_1016_j_jtice_2020_10_004
crossref_primary_10_3390_math8060890
crossref_primary_10_1007_s00521_021_06870_2
crossref_primary_10_1016_j_scitotenv_2019_05_061
crossref_primary_10_1016_j_catena_2020_104802
crossref_primary_10_1007_s00024_024_03508_x
crossref_primary_10_1016_j_ecoinf_2025_103015
crossref_primary_10_1080_00103624_2018_1526952
crossref_primary_10_1007_s12665_021_10059_0
crossref_primary_10_1016_j_resconrec_2018_02_025
crossref_primary_10_1016_j_measurement_2022_111706
crossref_primary_10_2166_ws_2017_208
crossref_primary_10_1038_s41598_021_96601_3
crossref_primary_10_1016_j_jobe_2017_08_008
crossref_primary_10_1080_00103624_2019_1654501
crossref_primary_10_1016_j_conbuildmat_2022_126899
crossref_primary_10_1016_j_measurement_2017_08_011
crossref_primary_10_1016_j_compag_2020_105921
crossref_primary_10_1038_s41598_022_17673_3
crossref_primary_10_1007_s12517_018_3912_9
crossref_primary_10_1016_j_compag_2017_02_016
crossref_primary_10_1007_s42729_021_00517_w
crossref_primary_10_1109_ACCESS_2019_2893141
crossref_primary_10_1080_09715010_2019_1595185
crossref_primary_10_1016_j_scitotenv_2020_138244
crossref_primary_10_1007_s40860_021_00168_9
crossref_primary_10_3390_app13137434
crossref_primary_10_1155_2022_3123475
crossref_primary_10_3390_su16167002
crossref_primary_10_1016_j_envsoft_2019_05_006
crossref_primary_10_1080_09715010_2018_1464408
crossref_primary_10_1007_s12145_021_00741_z
crossref_primary_10_3390_math8081209
crossref_primary_10_1088_1755_1315_1262_8_082060
crossref_primary_10_1177_11786221211042381
crossref_primary_10_1016_j_cie_2020_106619
crossref_primary_10_1080_15538362_2021_1898520
crossref_primary_10_1111_jfpp_15258
crossref_primary_10_51583_IJLTEMAS_2025_1408000012
crossref_primary_10_1080_02626667_2022_2043551
crossref_primary_10_1061__ASCE_PS_1949_1204_0000439
crossref_primary_10_1080_03067319_2020_1746775
Cites_doi 10.2136/sssaj2002.1407a
10.2136/sssaj1995.03615995005900030034x
10.1590/S1413-70542013000400001
10.1007/s10706-007-9146-3
10.14358/PERS.69.6.619
10.2478/intag-2013-0011
10.1016/j.cageo.2012.07.001
10.1016/S0016-7061(97)00024-4
10.1016/j.jenvman.2010.08.017
10.1016/j.jenvman.2010.10.001
10.1097/00010694-195204000-00001
10.1016/j.cageo.2011.08.027
10.1016/j.measurement.2013.10.018
10.2136/sssaj1991.03615995005500030026x
10.1029/96WR02278
10.1016/S0016-7061(03)00223-4
10.1016/j.geoderma.2004.05.009
10.1016/S0016-7061(02)00139-8
10.2136/sssaj1986.03615995005000010035x
10.2136/sssaj2004.0026
10.1016/j.still.2005.08.011
10.1016/S0308-521X(99)00066-9
10.1080/10286600600772348
10.1016/j.geoderma.2004.02.015
10.1016/j.geoderma.2005.04.009
10.1016/j.measurement.2013.09.020
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 2017
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2016.10.010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 180
ExternalDocumentID 10_1016_j_measurement_2016_10_010
S0263224116305589
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
ID FETCH-LOGICAL-c349t-7e15aa4dbc93aa13aec64c50773f079db04b6ad53b9593d15ce1eb9f3b89db953
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390495400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Wed Aug 13 08:56:22 EDT 2025
Sat Nov 29 06:47:39 EST 2025
Tue Nov 18 22:34:40 EST 2025
Fri Feb 23 02:27:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil Cation Exchange Capacity
Multi variable linear regression
ANFIS
Subtractive clustering
Soil properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-7e15aa4dbc93aa13aec64c50773f079db04b6ad53b9593d15ce1eb9f3b89db953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2111576594
PQPubID 2047460
PageCount 8
ParticipantIDs proquest_journals_2111576594
crossref_primary_10_1016_j_measurement_2016_10_010
crossref_citationtrail_10_1016_j_measurement_2016_10_010
elsevier_sciencedirect_doi_10_1016_j_measurement_2016_10_010
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Busscher, Krueger, Novak, Kurtener (b0060) 2007; 21
Bell, Van Keulen (b0015) 1995; 59
Kisi, Shiri, Nikoofar (b0035) 2012; 41
Bower, Reitmeir, Fireman (b0155) 1952; 73
National Cartographic Center, Research Institute of NCC, Tehran, Iran
Khoshnevisan, Rafiee, Mousazadeh (b0240) 2014; 47
Franssen, van Eijnsbergen, Stein (b0080) 1997; 77
McClave, Dietrich, Sinicich (b0180) 1997
Mohajer, Salehi, Herchegani (b0215) 2009; 13
Keshavarzi, Sarmadian, Ahmadi (b0070) 2011; 5
Jang, Sun, Mizutani (b0195) 1997
Mohammadi, Taheri (b0120) 2005; 2
Seybold, Grossman, Reinsch (b0225) 2005; 69
F. Newhall, C.R. Berdanier, Calculation of soil moisture regimes from the climatic record. Natural Resources Conservation Service, Soil Survey Investigation Report, No. 46 (1996), p. 13.
El Omran (b0025) 2012; 2
Ghaemi, Astaraei, Sanaeinejad, Zare (b0005) 2013; 27
Dashtaki, Homaei (b0170) 2002; 3
McBratney, Minasny, Cattle, Vervoort (b0190) 2002; 109
Minasny, McBratney (b0010) 2002; 66
Soil Survey Staff (b0140) 2013
2010.
Merdun, Meral, Apan (b0105) 2006; 90
Khoshnevisan, Rafiee, Omid, Mousazadeh (b0245) 2014; 47
Krueger, Prior, Kurtener, Rogers, Runion (b0045) 2011; 25
Nourbakhsh, Jalalian, Shariatmadari (b0220) 2003; 7
Black (b0150) 1982
Adrover, Farrús, Moyà, Vadell (b0230) 2012; 95
Kalkan, Akbulut, Tortum (b0130) 2008; 5
Aydin, Tortum, Yavuz (b0205) 2006; 23
Milton, McTeer, Corbet (b0175) 1997
Fard, Harchagani (b0210) 2009; 23
Menezes, Silva, Owens, Curi (b0075) 2013; 37
Ahamed, Rao, Murthy (b0125) 2000; 63
McBratney, Mendonca, Minansy (b0020) 2003; 117
Priyono, Ridwan, Alias, Rahmat, Hassan, Mam (b0030) 2005; 43
Amini, Afyuni, Fathianpour, Khademi, Fluhler (b0085) 2005; 124
Lagacherie (b0055) 2005; 128
Manrique, Jones, Dyke (b0090) 1991; 55
Drewry, Newham, Greene (b0235) 2011; 92
Ghorbani, Khalili, Alavipanah, Nakhaezadeh (b0095) 2010; 24
P.H. Cabena, R. Stadler, J. Verhees, A. Zanasi, Discovering Data Mining: From Concept to Implementation, IBM, New Jersey, p. 195.
G.W. Gee, J.W. Bauder, Particle size analysis, in: A. Klute (Ed.), Methods of Soil Analaysis. Part 1. Am. Soc. Agron., Madison, Wisconsin, USA, 1986.
Breeuwsma, Wösten, Vleeshouwer, Van Slobbe, Bouma (b0185) 1986; 50
Kisi, Shiri, Tombul (b0040) 2013; 51
Schaap, Bouten (b0110) 1996; 32
Sunil, Sinha, Wang (b0115) 2008; 26
Barnes, Sudduth, Hummel, Lesch, Corwin, Yang, Daughtry, Bausch (b0160) 2003; 69
Torbert, Krueger, Kurtener (b0065) 2008; 22
Zhang, Zhang, Chen, White, Li (b0050) 2004; 123
Kisi (10.1016/j.measurement.2016.10.010_b0035) 2012; 41
Khoshnevisan (10.1016/j.measurement.2016.10.010_b0245) 2014; 47
Mohammadi (10.1016/j.measurement.2016.10.010_b0120) 2005; 2
Aydin (10.1016/j.measurement.2016.10.010_b0205) 2006; 23
McBratney (10.1016/j.measurement.2016.10.010_b0020) 2003; 117
McClave (10.1016/j.measurement.2016.10.010_b0180) 1997
10.1016/j.measurement.2016.10.010_b0145
Manrique (10.1016/j.measurement.2016.10.010_b0090) 1991; 55
10.1016/j.measurement.2016.10.010_b0165
10.1016/j.measurement.2016.10.010_b0100
Schaap (10.1016/j.measurement.2016.10.010_b0110) 1996; 32
Milton (10.1016/j.measurement.2016.10.010_b0175) 1997
Torbert (10.1016/j.measurement.2016.10.010_b0065) 2008; 22
Dashtaki (10.1016/j.measurement.2016.10.010_b0170) 2002; 3
Adrover (10.1016/j.measurement.2016.10.010_b0230) 2012; 95
Fard (10.1016/j.measurement.2016.10.010_b0210) 2009; 23
Franssen (10.1016/j.measurement.2016.10.010_b0080) 1997; 77
Amini (10.1016/j.measurement.2016.10.010_b0085) 2005; 124
Khoshnevisan (10.1016/j.measurement.2016.10.010_b0240) 2014; 47
Ghorbani (10.1016/j.measurement.2016.10.010_b0095) 2010; 24
Seybold (10.1016/j.measurement.2016.10.010_b0225) 2005; 69
Black (10.1016/j.measurement.2016.10.010_b0150) 1982
Keshavarzi (10.1016/j.measurement.2016.10.010_b0070) 2011; 5
Soil Survey Staff (10.1016/j.measurement.2016.10.010_b0140) 2013
Jang (10.1016/j.measurement.2016.10.010_b0195) 1997
Ghaemi (10.1016/j.measurement.2016.10.010_b0005) 2013; 27
Nourbakhsh (10.1016/j.measurement.2016.10.010_b0220) 2003; 7
Minasny (10.1016/j.measurement.2016.10.010_b0010) 2002; 66
Krueger (10.1016/j.measurement.2016.10.010_b0045) 2011; 25
Ahamed (10.1016/j.measurement.2016.10.010_b0125) 2000; 63
Breeuwsma (10.1016/j.measurement.2016.10.010_b0185) 1986; 50
Sunil (10.1016/j.measurement.2016.10.010_b0115) 2008; 26
10.1016/j.measurement.2016.10.010_b0135
Bower (10.1016/j.measurement.2016.10.010_b0155) 1952; 73
Kalkan (10.1016/j.measurement.2016.10.010_b0130) 2008; 5
McBratney (10.1016/j.measurement.2016.10.010_b0190) 2002; 109
Priyono (10.1016/j.measurement.2016.10.010_b0030) 2005; 43
Merdun (10.1016/j.measurement.2016.10.010_b0105) 2006; 90
Bell (10.1016/j.measurement.2016.10.010_b0015) 1995; 59
Zhang (10.1016/j.measurement.2016.10.010_b0050) 2004; 123
Barnes (10.1016/j.measurement.2016.10.010_b0160) 2003; 69
Drewry (10.1016/j.measurement.2016.10.010_b0235) 2011; 92
Lagacherie (10.1016/j.measurement.2016.10.010_b0055) 2005; 128
Busscher (10.1016/j.measurement.2016.10.010_b0060) 2007; 21
Kisi (10.1016/j.measurement.2016.10.010_b0040) 2013; 51
Menezes (10.1016/j.measurement.2016.10.010_b0075) 2013; 37
Mohajer (10.1016/j.measurement.2016.10.010_b0215) 2009; 13
El Omran (10.1016/j.measurement.2016.10.010_b0025) 2012; 2
References_xml – volume: 51
  start-page: 108
  year: 2013
  end-page: 117
  ident: b0040
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Comput. Geosci.
– volume: 21
  start-page: 225
  year: 2007
  end-page: 231
  ident: b0060
  article-title: Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses
  publication-title: Int. Agrophys.
– volume: 90
  start-page: 108
  year: 2006
  end-page: 116
  ident: b0105
  article-title: Comparison of artificial neural network and regression Pedotransfer functions for predict of water retention and saturated hydrauli conductivity
  publication-title: Soil Tillage Res.
– volume: 37
  start-page: 287
  year: 2013
  end-page: 298
  ident: b0075
  article-title: Digital soil mapping approach based on fuzzy logic and field expert knowledge
  publication-title: Ciênc. Agrotec.
– volume: 128
  start-page: 274
  year: 2005
  end-page: 288
  ident: b0055
  article-title: An algorithm for fuzzy pattern matching to allocate soil individuals to pre-existing soil classes
  publication-title: Geoderma
– volume: 22
  start-page: 365
  year: 2008
  end-page: 370
  ident: b0065
  article-title: Soil quality assessment using fuzzy modeling
  publication-title: Int. Agrophys.
– volume: 13
  start-page: 83
  year: 2009
  end-page: 97
  ident: b0215
  article-title: Estimating of soil cation exchange capacity (in view of pedotransfer functions) using regression and artificial neural Networks and the effect of data partitioning on accuracy and precision of functions
  publication-title: J. Water Soil.
– volume: 69
  start-page: 619
  year: 2003
  end-page: 630
  ident: b0160
  article-title: Remote and ground-based sensor techniques to map soil properties
  publication-title: Photogram. Eng. Rem. Sens.
– volume: 69
  start-page: 856
  year: 2005
  end-page: 863
  ident: b0225
  article-title: Predicting cation exchange capacity for soil survey using linear models
  publication-title: Soil Sci. Soc. Am. J.
– volume: 77
  start-page: 243
  year: 1997
  end-page: 262
  ident: b0080
  article-title: Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants
  publication-title: Geoderma
– volume: 5
  start-page: 324
  year: 2008
  end-page: 330
  ident: b0130
  article-title: Prediction of the unconfined compressive strength of compacted granular soils by using inference systems
  publication-title: Environ. Geol.
– reference: >), 2010.
– volume: 66
  start-page: 352
  year: 2002
  end-page: 361
  ident: b0010
  article-title: The neuro-m method for fitting neural network parametric pedotransfer functions
  publication-title: Soil. Sci. Soc. Am. J.
– volume: 32
  start-page: 3033
  year: 1996
  end-page: 3040
  ident: b0110
  article-title: Modelling water retentioncurves of sandy soils using neural networks
  publication-title: Water Resour. Res.
– volume: 26
  start-page: 47
  year: 2008
  end-page: 64
  ident: b0115
  article-title: Artificial neural network prediction models for soil compaction and permeability
  publication-title: Geotech. Geol. Eng.
– volume: 63
  start-page: 97
  year: 2000
  end-page: 110
  ident: b0125
  article-title: Fuzzy class membership approach to soil erosion modeling
  publication-title: Agric. Syst.
– year: 2013
  ident: b0140
  article-title: Simplified Guide to Soil Taxonomy, USDA-Natural Resources Conservation Service
– volume: 50
  start-page: 186
  year: 1986
  end-page: 190
  ident: b0185
  article-title: Derivation of land qualities to assess environmental problems from soil surveys
  publication-title: Soil Sci. Soc. Am. J.
– volume: 43
  start-page: 143
  year: 2005
  end-page: 153
  ident: b0030
  article-title: Generation of fuzzy rules with subtractive clustring
  publication-title: J. Teknologi.
– volume: 24
  start-page: 417
  year: 2010
  end-page: 426
  ident: b0095
  article-title: Comparative study of the meteorological drought indices (SPI and SIAP) using data mining method (case study of Kermanshah Province)
  publication-title: J. Water Soil.
– year: 1982
  ident: b0150
  article-title: Method of Soil Analysis, Chemical and Microbiological Properties
– reference: F. Newhall, C.R. Berdanier, Calculation of soil moisture regimes from the climatic record. Natural Resources Conservation Service, Soil Survey Investigation Report, No. 46 (1996), p. 13.
– volume: 124
  start-page: 223
  year: 2005
  end-page: 233
  ident: b0085
  article-title: Continuous soil pollution mapping using fuzzy logic and spatial interpolation
  publication-title: Geoderma
– reference: G.W. Gee, J.W. Bauder, Particle size analysis, in: A. Klute (Ed.), Methods of Soil Analaysis. Part 1. Am. Soc. Agron., Madison, Wisconsin, USA, 1986.
– volume: 23
  start-page: 295
  year: 2006
  end-page: 309
  ident: b0205
  article-title: Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system
  publication-title: Civ. Eng. Environ. Syst.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0020
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 123
  start-page: 319
  year: 2004
  end-page: 331
  ident: b0050
  article-title: A quantitative evaluation system of soil productivity for intensive agriculture in China
  publication-title: Geoderma
– volume: 92
  start-page: 639
  year: 2011
  end-page: 649
  ident: b0235
  article-title: Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales
  publication-title: J. Environ. Manage.
– year: 1997
  ident: b0175
  article-title: Introduction to Statistics
– reference: National Cartographic Center, Research Institute of NCC, Tehran, Iran (<
– volume: 27
  start-page: 409
  year: 2013
  end-page: 417
  ident: b0005
  article-title: Using satellite data for soil cation exchange capacity studies
  publication-title: Int. Agrophys.
– reference: P.H. Cabena, R. Stadler, J. Verhees, A. Zanasi, Discovering Data Mining: From Concept to Implementation, IBM, New Jersey, p. 195.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 18
  ident: b0025
  article-title: On-the-go digital soil mapping for precision agriculture
  publication-title: IJRSA
– year: 1997
  ident: b0195
  article-title: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
– volume: 25
  start-page: 93
  year: 2011
  end-page: 96
  ident: b0045
  article-title: Characterizing root distribution with adaptive neuro-fuzzy analysis
  publication-title: Int. Agrophys.
– volume: 95
  start-page: 188
  year: 2012
  end-page: 192
  ident: b0230
  article-title: Chemical properties and biological activity in soils of Mallorca following twenty years of treated waste water irrigation
  publication-title: J. Environ. Manage.
– volume: 55
  start-page: 787
  year: 1991
  end-page: 794
  ident: b0090
  article-title: Predicting cation exchange capacity from soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 5
  start-page: 1533
  year: 2011
  end-page: 1541
  ident: b0070
  article-title: Spatially-based model of land suitability analysis using Block Kriging
  publication-title: Aust. J. Crop. Sci.
– volume: 109
  start-page: 41
  year: 2002
  end-page: 73
  ident: b0190
  article-title: From pedotransfer functions to soil inference systems
  publication-title: Geoderma
– volume: 3
  start-page: 3
  year: 2002
  end-page: 15
  ident: b0170
  article-title: Prediction of parametric hydraulic function in unsaturated soils using pedotransfer functions
  publication-title: Agric. Eng. Res. J.
– year: 1997
  ident: b0180
  article-title: Statistics
– volume: 2
  start-page: 51
  year: 2005
  end-page: 60
  ident: b0120
  article-title: Estimation of pedotransfer function using fuzzy regression
  publication-title: J. Agric. Sci. Technol.
– volume: 47
  start-page: 903
  year: 2014
  end-page: 910
  ident: b0240
  article-title: Application of multi-layer adaptive neuro-fuzzy inference system for estimation of green house strawberry yield
  publication-title: Measurement
– volume: 73
  start-page: 251
  year: 1952
  end-page: 261
  ident: b0155
  article-title: Exchangeable cation analysis of saline and alkali soils
  publication-title: Soil Sci.
– volume: 41
  start-page: 169
  year: 2012
  end-page: 180
  ident: b0035
  article-title: Forecasting daily lake levels using artificial intelligence approaches
  publication-title: Comput. Geosci.
– volume: 59
  start-page: 865
  year: 1995
  end-page: 871
  ident: b0015
  article-title: Soil pedotransfer functions for four Mexican soils
  publication-title: Soil. Sci. Soc. Am. J.
– volume: 23
  start-page: 90
  year: 2009
  end-page: 99
  ident: b0210
  article-title: Comparison of artificial neural network and regression pedotransfer functions models for prediction of soil cation exchange capacity in Chaharmahal-e-Bakhtiari province
  publication-title: J. Water Soil.
– volume: 7
  start-page: 107
  year: 2003
  end-page: 118
  ident: b0220
  article-title: Estimation of cation exchange capacity from some soil physical and chemical properties
  publication-title: J. Water Soil Sci.
– volume: 47
  start-page: 521
  year: 2014
  end-page: 530
  ident: b0245
  article-title: Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system
  publication-title: Measurement
– volume: 66
  start-page: 352
  year: 2002
  ident: 10.1016/j.measurement.2016.10.010_b0010
  article-title: The neuro-m method for fitting neural network parametric pedotransfer functions
  publication-title: Soil. Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1407a
– volume: 59
  start-page: 865
  year: 1995
  ident: 10.1016/j.measurement.2016.10.010_b0015
  article-title: Soil pedotransfer functions for four Mexican soils
  publication-title: Soil. Sci. Soc. Am. J.
  doi: 10.2136/sssaj1995.03615995005900030034x
– volume: 37
  start-page: 287
  issue: 4
  year: 2013
  ident: 10.1016/j.measurement.2016.10.010_b0075
  article-title: Digital soil mapping approach based on fuzzy logic and field expert knowledge
  publication-title: Ciênc. Agrotec.
  doi: 10.1590/S1413-70542013000400001
– volume: 26
  start-page: 47
  year: 2008
  ident: 10.1016/j.measurement.2016.10.010_b0115
  article-title: Artificial neural network prediction models for soil compaction and permeability
  publication-title: Geotech. Geol. Eng.
  doi: 10.1007/s10706-007-9146-3
– volume: 69
  start-page: 619
  issue: 6
  year: 2003
  ident: 10.1016/j.measurement.2016.10.010_b0160
  article-title: Remote and ground-based sensor techniques to map soil properties
  publication-title: Photogram. Eng. Rem. Sens.
  doi: 10.14358/PERS.69.6.619
– volume: 27
  start-page: 409
  year: 2013
  ident: 10.1016/j.measurement.2016.10.010_b0005
  article-title: Using satellite data for soil cation exchange capacity studies
  publication-title: Int. Agrophys.
  doi: 10.2478/intag-2013-0011
– volume: 5
  start-page: 1533
  issue: 12
  year: 2011
  ident: 10.1016/j.measurement.2016.10.010_b0070
  article-title: Spatially-based model of land suitability analysis using Block Kriging
  publication-title: Aust. J. Crop. Sci.
– volume: 2
  start-page: 1
  issue: 3
  year: 2012
  ident: 10.1016/j.measurement.2016.10.010_b0025
  article-title: On-the-go digital soil mapping for precision agriculture
  publication-title: IJRSA
– volume: 22
  start-page: 365
  year: 2008
  ident: 10.1016/j.measurement.2016.10.010_b0065
  article-title: Soil quality assessment using fuzzy modeling
  publication-title: Int. Agrophys.
– volume: 51
  start-page: 108
  year: 2013
  ident: 10.1016/j.measurement.2016.10.010_b0040
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.07.001
– volume: 77
  start-page: 243
  year: 1997
  ident: 10.1016/j.measurement.2016.10.010_b0080
  article-title: Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00024-4
– volume: 95
  start-page: 188
  year: 2012
  ident: 10.1016/j.measurement.2016.10.010_b0230
  article-title: Chemical properties and biological activity in soils of Mallorca following twenty years of treated waste water irrigation
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.08.017
– volume: 43
  start-page: 143
  issue: 2005
  year: 2005
  ident: 10.1016/j.measurement.2016.10.010_b0030
  article-title: Generation of fuzzy rules with subtractive clustring
  publication-title: J. Teknologi.
– volume: 7
  start-page: 107
  year: 2003
  ident: 10.1016/j.measurement.2016.10.010_b0220
  article-title: Estimation of cation exchange capacity from some soil physical and chemical properties
  publication-title: J. Water Soil Sci.
– volume: 92
  start-page: 639
  year: 2011
  ident: 10.1016/j.measurement.2016.10.010_b0235
  article-title: Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.10.001
– volume: 73
  start-page: 251
  year: 1952
  ident: 10.1016/j.measurement.2016.10.010_b0155
  article-title: Exchangeable cation analysis of saline and alkali soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-195204000-00001
– volume: 2
  start-page: 51
  year: 2005
  ident: 10.1016/j.measurement.2016.10.010_b0120
  article-title: Estimation of pedotransfer function using fuzzy regression
  publication-title: J. Agric. Sci. Technol.
– volume: 41
  start-page: 169
  year: 2012
  ident: 10.1016/j.measurement.2016.10.010_b0035
  article-title: Forecasting daily lake levels using artificial intelligence approaches
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.08.027
– volume: 23
  start-page: 90
  issue: 4
  year: 2009
  ident: 10.1016/j.measurement.2016.10.010_b0210
  article-title: Comparison of artificial neural network and regression pedotransfer functions models for prediction of soil cation exchange capacity in Chaharmahal-e-Bakhtiari province
  publication-title: J. Water Soil.
– volume: 24
  start-page: 417
  year: 2010
  ident: 10.1016/j.measurement.2016.10.010_b0095
  article-title: Comparative study of the meteorological drought indices (SPI and SIAP) using data mining method (case study of Kermanshah Province)
  publication-title: J. Water Soil.
– year: 1997
  ident: 10.1016/j.measurement.2016.10.010_b0175
– volume: 47
  start-page: 903
  year: 2014
  ident: 10.1016/j.measurement.2016.10.010_b0240
  article-title: Application of multi-layer adaptive neuro-fuzzy inference system for estimation of green house strawberry yield
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.10.018
– volume: 21
  start-page: 225
  issue: 3
  year: 2007
  ident: 10.1016/j.measurement.2016.10.010_b0060
  article-title: Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses
  publication-title: Int. Agrophys.
– volume: 55
  start-page: 787
  year: 1991
  ident: 10.1016/j.measurement.2016.10.010_b0090
  article-title: Predicting cation exchange capacity from soil physical and chemical properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1991.03615995005500030026x
– volume: 32
  start-page: 3033
  year: 1996
  ident: 10.1016/j.measurement.2016.10.010_b0110
  article-title: Modelling water retentioncurves of sandy soils using neural networks
  publication-title: Water Resour. Res.
  doi: 10.1029/96WR02278
– ident: 10.1016/j.measurement.2016.10.010_b0145
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.measurement.2016.10.010_b0020
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– year: 1982
  ident: 10.1016/j.measurement.2016.10.010_b0150
– volume: 124
  start-page: 223
  year: 2005
  ident: 10.1016/j.measurement.2016.10.010_b0085
  article-title: Continuous soil pollution mapping using fuzzy logic and spatial interpolation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.05.009
– volume: 109
  start-page: 41
  year: 2002
  ident: 10.1016/j.measurement.2016.10.010_b0190
  article-title: From pedotransfer functions to soil inference systems
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00139-8
– ident: 10.1016/j.measurement.2016.10.010_b0135
– volume: 50
  start-page: 186
  year: 1986
  ident: 10.1016/j.measurement.2016.10.010_b0185
  article-title: Derivation of land qualities to assess environmental problems from soil surveys
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000010035x
– volume: 69
  start-page: 856
  year: 2005
  ident: 10.1016/j.measurement.2016.10.010_b0225
  article-title: Predicting cation exchange capacity for soil survey using linear models
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2004.0026
– volume: 90
  start-page: 108
  year: 2006
  ident: 10.1016/j.measurement.2016.10.010_b0105
  article-title: Comparison of artificial neural network and regression Pedotransfer functions for predict of water retention and saturated hydrauli conductivity
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2005.08.011
– volume: 63
  start-page: 97
  year: 2000
  ident: 10.1016/j.measurement.2016.10.010_b0125
  article-title: Fuzzy class membership approach to soil erosion modeling
  publication-title: Agric. Syst.
  doi: 10.1016/S0308-521X(99)00066-9
– volume: 23
  start-page: 295
  issue: 4
  year: 2006
  ident: 10.1016/j.measurement.2016.10.010_b0205
  article-title: Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system
  publication-title: Civ. Eng. Environ. Syst.
  doi: 10.1080/10286600600772348
– volume: 123
  start-page: 319
  year: 2004
  ident: 10.1016/j.measurement.2016.10.010_b0050
  article-title: A quantitative evaluation system of soil productivity for intensive agriculture in China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.02.015
– ident: 10.1016/j.measurement.2016.10.010_b0100
– volume: 5
  start-page: 324
  year: 2008
  ident: 10.1016/j.measurement.2016.10.010_b0130
  article-title: Prediction of the unconfined compressive strength of compacted granular soils by using inference systems
  publication-title: Environ. Geol.
– volume: 3
  start-page: 3
  year: 2002
  ident: 10.1016/j.measurement.2016.10.010_b0170
  article-title: Prediction of parametric hydraulic function in unsaturated soils using pedotransfer functions
  publication-title: Agric. Eng. Res. J.
– volume: 25
  start-page: 93
  year: 2011
  ident: 10.1016/j.measurement.2016.10.010_b0045
  article-title: Characterizing root distribution with adaptive neuro-fuzzy analysis
  publication-title: Int. Agrophys.
– year: 1997
  ident: 10.1016/j.measurement.2016.10.010_b0195
– volume: 13
  start-page: 83
  year: 2009
  ident: 10.1016/j.measurement.2016.10.010_b0215
  article-title: Estimating of soil cation exchange capacity (in view of pedotransfer functions) using regression and artificial neural Networks and the effect of data partitioning on accuracy and precision of functions
  publication-title: J. Water Soil.
– year: 2013
  ident: 10.1016/j.measurement.2016.10.010_b0140
– ident: 10.1016/j.measurement.2016.10.010_b0165
– year: 1997
  ident: 10.1016/j.measurement.2016.10.010_b0180
– volume: 128
  start-page: 274
  year: 2005
  ident: 10.1016/j.measurement.2016.10.010_b0055
  article-title: An algorithm for fuzzy pattern matching to allocate soil individuals to pre-existing soil classes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.04.009
– volume: 47
  start-page: 521
  year: 2014
  ident: 10.1016/j.measurement.2016.10.010_b0245
  article-title: Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.020
SSID ssj0006396
Score 2.3465593
Snippet •The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming.•MR and ANFIS models were employed to predict the soil CEC...
The conventional procedures for soil Cation Exchange Capacity (CEC) measurement are time consuming and laborious. It is also difficult to maintain stability...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 173
SubjectTerms Adaptive systems
Algorithms
ANFIS
Artificial neural networks
Cation exchanging
Clustering
Computer simulation
Fuzzy logic
Fuzzy sets
Fuzzy systems
Ion exchange
Multi variable linear regression
Regression analysis
Regression models
Remote sensing
Reproducibility
Sensitivity analysis
Soil Cation Exchange Capacity
Soil investigations
Soil properties
Soils
Subtractive clustering
Title Application of ANFIS-based subtractive clustering algorithm in soil Cation Exchange Capacity estimation using soil and remotely sensed data
URI https://dx.doi.org/10.1016/j.measurement.2016.10.010
https://www.proquest.com/docview/2111576594
Volume 95
WOSCitedRecordID wos000390495400019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWqDRA8IBhMDAYyEm9VpjrflnipUCc6sQppQ-pb5CQOy5SlW9N2hb_A_-WZe-18eEMTBYmXqE1jN8k9sc89ufeakHduJjMnECG4JVJaLgd3h4d8YKUi9ZiIWWpLVTL_UzCZhNMp_9zr_WxyYVZFUJbhes0v_6upYR8YG1Nn_8LcbaewAz6D0WELZoftRoYfdq-kFc2cHI5PLJys0n61jBcqK2ol-0mxxBoJKkex-Dqb54uzCxQ_qlleYF4gNh-tdV4wfAfXGvk61uTQyY79pVIZ1OEqRl2C0WXxrV-BYwz_VSe9tcz3uBMjlQxhlKzoAjgbZdI8WOUkYn3QGyED-KZqJebfc52lk7dKEUr0iHnFyiUANZ11zU7Ocp1ZfyQK0caWjK_0sgf942UprsXcVEJYYCghesC0fcdCSmKO7twzhmeml02pZ3qm15D6bRLResb5wUV3rRgD6B9gGGAdhHujcPetCbUNc2wi6M4jo6sIu4L9kcoM3LYDj8OEsj0cj6ZHLYcA3uhrdVBf0QPytotMvOO87mJWtziGIk6nT8jj2uOhQ43Up6Qnyx3yyKiDuUPuqzjkpHpGfhjopbOMGuilBnpph17aopfmJUU4Uo1e2qCXNuilHXqpQq8-HNBLG_RSjV6K6H1OvhyOTj98tOr1QqzEcfnCCiTzhHDTOOGOEMwRMvHdBByewMkGAU_jgRv7MAY5MVbjTpmXSCZjnjlxCD9yz9klW-WslC8IzWQSOyyDuzrIXJ-nYep5Nrg2sYcSBRvskbC511FSF9PHNV2K6I823yN22_RSV5TZpNH7xqBRTY015Y0AtJs0329AENWPdxXZDAtt-R53X_7LKb0iD7uHcJ9sLeZL-ZrcS1aLvJq_qQH9C9hX9ko
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+ANFIS-based+subtractive+clustering+algorithm+in+soil+Cation+Exchange+Capacity+estimation+using+soil+and+remotely+sensed+data&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Keshavarzi%2C+Ali&rft.au=Sarmadian%2C+Fereydoon&rft.au=Shiri%2C+Jalal&rft.au=Iqbal%2C+Munawar&rft.date=2017-01-01&rft.issn=0263-2241&rft.volume=95&rft.spage=173&rft.epage=180&rft_id=info:doi/10.1016%2Fj.measurement.2016.10.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2016_10_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon