Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review

With the increase of the scale and complexity of mechanical equipment, traditional intelligent fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the demand of coupling faults. In the past decades, the vigorous development of deep learning (DL) brings new opportunities...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement : journal of the International Measurement Confederation Ročník 189; s. 110460
Hlavní autoři: Yang, Zheng, Xu, Binbin, Luo, Wei, Chen, Fei
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Elsevier Ltd 15.02.2022
Elsevier Science Ltd
Témata:
ISSN:0263-2241, 1873-412X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increase of the scale and complexity of mechanical equipment, traditional intelligent fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the demand of coupling faults. In the past decades, the vigorous development of deep learning (DL) brings new opportunities for IFD, especially the representation learning based on Autoencoder (AE) theory has been widely applied. To provide a more comprehensive reference, the theoretical foundations of multi-type AEs and the training method of stacked autoencoder (SAE) are briefly introduced. Then the application advances of AE are reviewed from optimization and combination aspects, which are aiming at improving the representation learning ability. To provide ways for the application of AE-based methods, two typical study cases for ideal and complex engineering systems are illustrated respectively. Finally, the challenges and prospects of AE-based representation learning are reported from four aspects, which give a guidance for the future research direction.
AbstractList With the increase of the scale and complexity of mechanical equipment, traditional intelligent fault diagnosis (IFD) based on shallow machine learning methods is unable to meet the demand of coupling faults. In the past decades, the vigorous development of deep learning (DL) brings new opportunities for IFD, especially the representation learning based on Autoencoder (AE) theory has been widely applied. To provide a more comprehensive reference, the theoretical foundations of multi-type AEs and the training method of stacked autoencoder (SAE) are briefly introduced. Then the application advances of AE are reviewed from optimization and combination aspects, which are aiming at improving the representation learning ability. To provide ways for the application of AE-based methods, two typical study cases for ideal and complex engineering systems are illustrated respectively. Finally, the challenges and prospects of AE-based representation learning are reported from four aspects, which give a guidance for the future research direction.
ArticleNumber 110460
Author Chen, Fei
Luo, Wei
Yang, Zheng
Xu, Binbin
Author_xml – sequence: 1
  givenname: Zheng
  surname: Yang
  fullname: Yang, Zheng
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
– sequence: 2
  givenname: Binbin
  surname: Xu
  fullname: Xu, Binbin
  organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
– sequence: 3
  givenname: Wei
  surname: Luo
  fullname: Luo, Wei
  organization: Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
– sequence: 4
  givenname: Fei
  surname: Chen
  fullname: Chen, Fei
  email: chenfei@sztu.edu.cn
  organization: Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
BookMark eNqNkc2KFDEURoOMYM8471DiunpukjLVcSNNo44wMJsR3IX83DRpqpMySSm-_aQpF-Jq4EIW9_tOyMk1uYopIiHvKGwpUHF32p5RlyXjGWPdMmB0SykMAl6RDd2NvB8o-3FFNsAE7xkb6BtyXcoJAASXYkP8fqkJo00Oc290QddlnDOWhtM1pNhNqHMM8djp6LpQS6fneQp2XYbLVJymcGyFzutlqp0L-hhTCeVjt2-0XwF_vyWvvZ4K3v49b8j3L5-fDvf9w-PXb4f9Q2_5IGs_GmE8t05Q6bw0AgyM1vhxQA9cGjAWQEsnRgfswyA9jLuRuZ1B6Y2X2vMb8n7lzjn9XLBUdUpLju1K1QRI4ILvWEt9WlM2p1IyemXD-tqadZgUBXWRq07qH7nqIletchtB_keYczjr_OdF3cPaxSaiycmq2NC-AF3IaKtyKbyA8gyjy6Ew
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116648
crossref_primary_10_1177_01423312231182464
crossref_primary_10_3390_su152014977
crossref_primary_10_3390_e25020242
crossref_primary_10_1016_j_aei_2024_103053
crossref_primary_10_1016_j_jrras_2024_101022
crossref_primary_10_1016_j_engappai_2023_107697
crossref_primary_10_1016_j_engappai_2024_108789
crossref_primary_10_1016_j_jtice_2023_105098
crossref_primary_10_1016_j_engappai_2023_106927
crossref_primary_10_3390_electronics12234723
crossref_primary_10_1109_JSEN_2024_3384262
crossref_primary_10_1016_j_compind_2025_104357
crossref_primary_10_3390_fire5060212
crossref_primary_10_1002_cjce_25759
crossref_primary_10_1016_j_displa_2024_102775
crossref_primary_10_3390_buildings14072014
crossref_primary_10_1016_j_engappai_2024_109489
crossref_primary_10_1109_JIOT_2024_3503634
crossref_primary_10_1109_TII_2024_3476547
crossref_primary_10_1007_s40808_023_01717_2
crossref_primary_10_1088_1361_6501_ad20c3
crossref_primary_10_1109_TNNLS_2022_3232147
crossref_primary_10_1109_TII_2025_3563536
crossref_primary_10_1016_j_ress_2024_110252
crossref_primary_10_1002_aisy_202400828
crossref_primary_10_3390_vibration8020027
crossref_primary_10_1007_s10489_023_04665_7
crossref_primary_10_1016_j_ifacol_2024_07_248
crossref_primary_10_1109_ACCESS_2022_3216573
crossref_primary_10_1109_TIM_2022_3225013
crossref_primary_10_1088_1361_6501_ad3b29
crossref_primary_10_1016_j_neucom_2025_129588
crossref_primary_10_3390_ai4030039
crossref_primary_10_3390_s23167239
crossref_primary_10_1016_j_measurement_2024_115270
crossref_primary_10_3390_electronics14173395
crossref_primary_10_1109_TIM_2023_3329156
crossref_primary_10_1007_s10462_023_10590_5
crossref_primary_10_3390_s24237435
crossref_primary_10_1088_1361_6501_acf67d
crossref_primary_10_3390_app13158933
crossref_primary_10_1007_s42417_022_00841_0
crossref_primary_10_3390_machines13050378
crossref_primary_10_1016_j_ijrefrig_2023_10_021
crossref_primary_10_3390_math11133008
crossref_primary_10_1109_JSEN_2023_3321725
crossref_primary_10_1016_j_engappai_2023_106590
crossref_primary_10_1016_j_eswa_2025_128484
crossref_primary_10_3390_machines13060457
crossref_primary_10_1088_1361_6501_ad1871
crossref_primary_10_1016_j_epsr_2025_111426
crossref_primary_10_1016_j_ress_2024_110596
crossref_primary_10_3390_mi14020376
crossref_primary_10_1016_j_engappai_2024_109402
crossref_primary_10_1088_1361_6501_adc8c3
crossref_primary_10_1016_j_jmbbm_2023_106077
crossref_primary_10_1109_TCE_2023_3294489
crossref_primary_10_1109_ACCESS_2024_3525263
crossref_primary_10_1007_s10489_023_05128_9
crossref_primary_10_1016_j_engappai_2025_110015
crossref_primary_10_1038_s41598_025_94703_w
crossref_primary_10_1109_JSEN_2023_3316392
crossref_primary_10_1088_2631_8695_adbe26
crossref_primary_10_3390_app15063275
crossref_primary_10_1016_j_iswa_2025_200532
crossref_primary_10_1016_j_jprocont_2025_103495
crossref_primary_10_1016_j_apenergy_2025_126380
crossref_primary_10_1016_j_psep_2024_12_027
crossref_primary_10_3390_machines11070746
crossref_primary_10_1016_j_jrras_2024_100932
crossref_primary_10_1177_14759217241289575
crossref_primary_10_1109_TIM_2025_3580880
crossref_primary_10_1016_j_aei_2024_102837
crossref_primary_10_3390_computation13060130
crossref_primary_10_1088_1361_6501_aca348
crossref_primary_10_1088_1361_6501_acc885
crossref_primary_10_7717_peerj_cs_2602
crossref_primary_10_1016_j_aei_2023_102157
crossref_primary_10_1016_j_ifacol_2024_07_274
crossref_primary_10_1016_j_engappai_2025_111991
crossref_primary_10_1016_j_psep_2025_106942
crossref_primary_10_3390_s23156951
crossref_primary_10_1109_TIM_2025_3576027
crossref_primary_10_1155_2022_4632137
crossref_primary_10_1016_j_knosys_2024_111397
crossref_primary_10_1016_j_precisioneng_2023_09_007
crossref_primary_10_1109_JSEN_2024_3416958
crossref_primary_10_1038_s41598_025_06623_4
crossref_primary_10_3390_electronics12194099
crossref_primary_10_3390_s24124006
crossref_primary_10_1016_j_aei_2022_101598
crossref_primary_10_1109_ACCESS_2025_3574140
crossref_primary_10_1109_JSEN_2023_3309013
crossref_primary_10_1016_j_rser_2023_113446
crossref_primary_10_1016_j_aei_2024_102963
crossref_primary_10_1016_j_conbuildmat_2024_137227
crossref_primary_10_1016_j_measurement_2023_112818
crossref_primary_10_1108_IMDS_02_2025_0133
crossref_primary_10_1016_j_jenvman_2025_125158
crossref_primary_10_1016_j_measurement_2025_118883
crossref_primary_10_1088_1361_6501_ac85d4
crossref_primary_10_1109_TIM_2023_3234095
crossref_primary_10_1016_j_ress_2023_109850
crossref_primary_10_3390_jmse13071231
crossref_primary_10_3390_photonics11050442
crossref_primary_10_3390_jmse12030495
crossref_primary_10_1007_s11042_024_19850_0
crossref_primary_10_1007_s12598_024_03089_7
crossref_primary_10_1007_s10489_025_06278_8
crossref_primary_10_1088_1742_6596_2816_1_012100
crossref_primary_10_1016_j_measurement_2025_117359
crossref_primary_10_3390_electronics12153212
crossref_primary_10_1109_JOE_2025_3532036
crossref_primary_10_1007_s10489_023_04828_6
crossref_primary_10_3233_JIFS_233668
crossref_primary_10_3390_en15228693
crossref_primary_10_3390_en15238783
crossref_primary_10_3390_math12193124
crossref_primary_10_1007_s42243_024_01197_3
crossref_primary_10_1109_ACCESS_2025_3529899
crossref_primary_10_3390_pr12122824
crossref_primary_10_1016_j_cja_2022_12_015
crossref_primary_10_3390_en16114406
crossref_primary_10_1109_JIOT_2024_3358871
crossref_primary_10_1109_TIM_2023_3310069
crossref_primary_10_1080_23080477_2024_2364537
crossref_primary_10_3390_app142411977
crossref_primary_10_1016_j_measurement_2024_114237
crossref_primary_10_1177_14759217241305159
crossref_primary_10_1088_1361_6501_ad6203
crossref_primary_10_1109_TIM_2025_3551906
crossref_primary_10_1007_s42773_025_00446_2
crossref_primary_10_1145_3769087
crossref_primary_10_1007_s10489_025_06535_w
crossref_primary_10_1109_TEC_2025_3546347
crossref_primary_10_1016_j_ymssp_2023_110639
crossref_primary_10_1007_s11227_024_06659_9
crossref_primary_10_3390_app13127055
crossref_primary_10_1007_s43684_025_00100_5
crossref_primary_10_3103_S0146411624700081
crossref_primary_10_1109_TIM_2024_3453339
crossref_primary_10_1016_j_ymssp_2024_111189
crossref_primary_10_1016_j_engstruct_2024_118171
crossref_primary_10_1007_s11071_024_10270_1
crossref_primary_10_1016_j_engappai_2025_111941
crossref_primary_10_1016_j_ress_2024_110439
crossref_primary_10_1016_j_displa_2024_102903
Cites_doi 10.1016/j.engappai.2018.09.010
10.1016/j.ymssp.2015.10.025
10.1016/j.ymssp.2017.11.024
10.1109/TIM.2017.2759418
10.1016/B978-0-12-811534-3.00006-8
10.1007/s10115-012-0487-8
10.1016/j.eswa.2009.06.060
10.1177/1475921718788299
10.1007/s00170-020-05202-3
10.1109/TII.2020.2966326
10.1016/j.ymssp.2017.06.027
10.1016/j.ymssp.2019.05.049
10.1007/s11265-019-01463-8
10.1006/mssp.2001.1469
10.1177/1461348417744302
10.1109/JSEN.2020.3040696
10.1016/j.ymssp.2015.04.039
10.1016/j.sigpro.2016.07.028
10.1126/science.1127647
10.1109/ACCESS.2020.2974942
10.1109/ACCESS.2017.2728010
10.1016/j.measurement.2018.08.010
10.3390/s17061279
10.1109/JSEN.2020.3008177
10.1109/TIM.2017.2698738
10.1016/j.measurement.2020.107929
10.1007/s40313-016-0248-0
10.1016/j.compind.2019.01.008
10.1006/mssp.2001.1462
10.1109/PHM-Chongqing.2018.00221
10.1007/978-3-642-23783-6_41
10.1016/j.ymssp.2018.02.016
10.1177/1687814018797261
10.1109/TII.2018.2793246
10.1016/j.asoc.2020.106333
10.3390/s20174930
10.3390/s17122876
10.1016/j.neucom.2017.07.032
10.1016/j.knosys.2016.10.022
10.1016/j.ymssp.2012.09.015
10.1016/j.ymssp.2013.09.015
10.1016/j.ymssp.2015.08.023
10.1016/j.measurement.2019.107320
10.1088/1361-6501/ab55f8
10.1016/j.isatra.2019.08.053
10.1016/j.neucom.2021.04.122
10.3390/s18041129
10.1016/j.measurement.2016.04.007
10.3390/s19040758
10.1155/2016/7974090
10.1016/j.jmsy.2020.05.005
10.1016/j.ymssp.2018.05.050
10.1016/j.knosys.2018.09.005
10.1016/j.measurement.2020.108371
10.1016/j.ymssp.2005.09.006
10.3390/en9060379
10.3390/app7010041
10.1109/TIP.2010.2103949
10.1016/j.microrel.2017.03.006
10.1155/2020/8891905
10.1016/j.measurement.2019.107232
10.1109/TIM.2019.2905752
10.3390/s150923903
10.1016/j.ymssp.2018.07.034
10.3390/s19040972
10.3390/s20174965
10.1016/j.ymssp.2015.11.014
10.1016/j.ymssp.2018.03.011
10.1109/LSP.2018.2878356
10.1016/j.measurement.2019.107132
10.1109/JSEN.2020.2976523
10.1016/j.neucom.2020.05.021
10.1016/j.conengprac.2020.104358
10.1109/ACCESS.2017.2717492
10.1016/j.eswa.2013.12.026
10.1016/j.asoc.2019.106060
10.1016/j.isatra.2018.11.044
10.1016/j.measurement.2019.01.063
10.1016/j.rcim.2019.101920
10.1155/2016/1329561
10.1016/j.ifacol.2018.09.582
10.1049/iet-smt.2016.0423
10.1016/j.isatra.2018.04.005
10.1016/j.measurement.2014.08.041
10.1016/j.ymssp.2017.03.034
10.1016/j.ymssp.2017.09.026
10.1016/j.renene.2018.10.047
10.1016/j.ymssp.2019.106587
10.1016/j.knosys.2016.12.012
10.1109/ACCESS.2019.2963193
10.1016/j.neucom.2018.05.040
10.1145/1390156.1390294
10.1177/0954406216675896
10.1016/j.jprocont.2020.06.001
10.1115/1.4000478
10.1111/j.1467-9868.2005.00503.x
10.1109/TIM.2017.2669947
10.1016/j.knosys.2017.10.024
10.3390/app7050515
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 15, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 15, 2022
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2021.110460
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2021_110460
S0263224121013464
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
AGCQF
ID FETCH-LOGICAL-c349t-7b6bf3cd619df9b60b07cbf74ef039b0bc00a9d67d02549f07872d8be9fbf9af3
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749800300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Wed Aug 13 07:23:31 EDT 2025
Tue Nov 18 21:33:10 EST 2025
Sat Nov 29 07:24:34 EST 2025
Fri Feb 23 02:40:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Representation learning
Intelligent fault diagnosis
Autoencoder
Application
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-7b6bf3cd619df9b60b07cbf74ef039b0bc00a9d67d02549f07872d8be9fbf9af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2639036382
PQPubID 2047460
ParticipantIDs proquest_journals_2639036382
crossref_citationtrail_10_1016_j_measurement_2021_110460
crossref_primary_10_1016_j_measurement_2021_110460
elsevier_sciencedirect_doi_10_1016_j_measurement_2021_110460
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Islam, Kim (b0135) 2019; 106
Liu, Zhou, Zheng, Jiang, Zhang (b0150) 2018; 77
Arias Chao, Adey, Fink (b0500) 2021; 454
Chen, Li, Pan, Chen, Zi, Yuan, Chen, He (b0170) 2016; 70–71
Heydarzadeh, Kia, Nourani, Henao, Capolino (b0300) 2016
Sun, Yan, Wen (b0470) 2017; 67
Chen, Li (b0165) 2017; 66
Shao, Jiang, Wang, Zhao (b0530) 2017; 119
Xiong, Zhou, He, Zhang, Xia, Xuan, Shi (b0125) 2020; 20
Liu, Bao, Han (b0405) 2018; 2018
Dong, Luo, Zhong, Chen, Xu (b0065) 2017; 36
Lei, Zuo, He, Zi (b0040) 2010; 37
Saufi, Ahmad, Leong, Lim (b0455) 2018; 29
Zhang, Li, Gao, Chen, Li (b0525) 2020; 151
Huang, Sun, Wang (b0020) 2017; 17
Yang, Wang, Zhong (b0550) 2016; 9
Dinuzzo, Ong, Gehler, Pillonetto (b0565) 2011
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (b0055) 2013; 34
Liu, Yang, Zio, Chen (b0180) 2018; 108
Xu, Cao, Song, Zhang, Liu, Alsaadi (b0495) 2018; 311
Yang, Huang, Lu, Zhong (b0155) 2018; 51
Palácios, Goedtel, Godoy, Fabri (b0060) 2016; 27
Zou, Hastie (b0375) 2005; 67
Rezaeianjouybari, Shang (b0030) 2020; 163
Anas, Jianping, Farqad, Osama, Ali (b0440) 2020
Yu, Zhang (b0385) 2020; 92
Jiang, Shao, Chen, Huang, Li, de Oliveira (b0110) 2018; 34
Wang, Sun, Jin (b0585) 2020; 92
Wei, Wang, He, Bao (b0035) 2017; 116
Jin, Feng, Du, Li, Zhao (b0090) 2014; 16
Liu, Li, Ma (b0235) 2016; 2016
Zhang, Yan, Fu, Wang, Gao (b0410) 2020; 65
Xia, Li, Liu, Xu, Silva (b0230) 2017; 11
Meng, Zhan, Li, Pan (b0380) 2018; 130
Hinton, Salakhutdinov (b0100) 2006; 313
Duong, Kim, Jong-Myon, Bach (b0450) 2018; 18
Samanta, Al-Balushi (b0075) 2003; 17
Kong, Mao, Wang, Ma, Yang (b0430) 2020; 151
Hemmer, Klausen, Khang, Robbersmyr, Waag (b0275) 2020; 8
Shao, Jiang, Zhao, Wang (b0340) 2017; 95
Guo, Gao, Huang, He, Li (b0310) 2016; 2016
Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes, Keane, Nenadic (b0005) 2019; 133
Tran, AlThobiani, Ball (b0115) 2014; 41
Ahmed, Wong, Nandi (b0465) 2018; 99
Baur, Albertelli, Monno (b0010) 2020; 107
Gan, Wang, Zhu (b0120) 2016; 72–73
Jiang, He, Xie, Tang (b0460) 2017; 66
Jia, Lei, Guo, Lin, Xing (b0480) 2018; 272
Lu, Yan (b0350) 2020; 56
Mao, Feng, Liang (b0570) 2019; 117
Zhao, Yan, Chen, Mao, Wang, Gao (b0190) 2019; 115
Shao, Jiang, Lin, Li (b0435) 2018; 102
Li, Zeng, Qing, Huang (b0560) 2020; 409
Yang, Xie, Yang (b0520) 2020; 98
Zhu, Cheng, Zhang, Wu, Shao (b0475) 2020; 88
Dixit, Verma (b0400) 2020; 20
Wang, Dun, Liu, Xue, Li, Han (b0490) 2018; 2018
Lei, Yang, Jiang, Jia, Li, Nandi (b0195) 2020; 138
Cerrada, Sánchez, Cabrera, Zurita, Li (b0050) 2015; 15
San Martin, López Droguett, Meruane, das Chagas Moura (b0270) 2019; 18
Jiang, Zhou, Liu, Shan (b0535) 2019; 87
Liu, Zhou, Zhao, Shen, Xiong (b0140) 2019; 19
Yi, Fu, Cui, Zhao (b0250) 2018
Gao, Wang, Miao, Su, Li (b0145) 2019; 91
Zhao, Jia, Liu (b0255) 2020; 8
S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: International Conference on Machine Learning, 2011.
Yu, Zhou (b0575) 2020; 16
Y. Lei, Intelligent fault diagnosis and remaining useful life prediction of rotating machinery, 2016.
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008.
Tong, Luo, Pan, Zheng, Zhang (b0360) 2020; 2020
Li, Zhang, Peng, Liu (b0365) 2018; 6
Haidong, Hongkai, Xingqiu, Shuaipeng (b0420) 2018; 140
Wang, Li, Han, An, Xin, Qian, Wu (b0485) 2019; 30
Lu, Wang, Qin, Ma (b0225) 2017; 130
Xiang, Zhang, Zhang, Xia (b0285) 2019; 138
Wang, Xiang, Markert, Liang (b0175) 2016; 66-67
D.P. Kingma, M. Welling, Auto-encoding variational bayes, (2013).
Huijie, Ting, Xinqing, You, Husheng (b0335) 2015
B. Ma, Y. Zhao, Z. Jiang, Application of variational auto-encoder in mechanical fault early warning, in: Prognostics and System Health Management Conference, 2018.
Guo, Shen, Chen (b0220) 2016; 7
Wang, Jin, Sun, Sun (b0280) 2019; 163
Chen, Chen, He, He, Tang (b0240) 2017; 231
Kong, Yan (b0395) 2020; 31
He, Hu, Zheng, Kong (b0345) 2011; 20
Yang, Yang, Xie (b0355) 2020; 20
Zhang, Ye, Wang, Habetler (b0515) 2021; 21
Unal, Onat, Demetgul, Kucuk (b0080) 2014; 58
S. Zhang, F. Ye, B. Wang, T.G. Habetler, Semi-supervised learning of bearing anomaly detection via deep variational autoencoders, (2019).
Yang, Stronach, Macconnell, Penman (b0070) 2002; 16
Lei, Lin, He, Zuo (b0015) 2013; 35
Pang, Yang, Zhang, Lin (b0315) 2020; 98
Yu, Wang, Li (b0425) 2018; 25
Chen, Deng, Chen, Li, Sanchez, Qin (b0160) 2017; 75
Zhang, Tang, Qin, Deng (b0505) 2019; 131
Jia, Lei, Lin, Zhou, Lu (b0105) 2016; 72–73
Haidong, Hongkai, Ke, Dongdong, Xingqiu (b0415) 2018; 110
Yuan, Chu (b0095) 2006; 20
Pang, Yang, Zhang (b0555) 2016; 2016
Sun, He, Zi, Yuan, Wang, Chen, He (b0045) 2014; 43
Zhao, Liu, Gu, Sun, Wang, Wei, Zhang (b0580) 2019; 31
Zhao, Jia, Lin (b0390) 2020; 152
Long, Sun, Li, Hong, Bai, Zhang (b0445) 2020; 69
Luo, Bo, Peng, Hou (b0130) 2020; 20
Kasun, Zhou, Huang, Vong (b0540) 2013; 28
Liu, Jiang, Wu, Li (b0590) 2021; 168
J. Wen, H. Gao, Degradation assessment for the ball screw with variational autoencoder and kernel density estimation, Adv. Mech. Eng. 10 (2018) 168781401879726.
W. Mao, J. He, Y. Li, Y. Yan, Bearing fault diagnosis with auto-encoder extreme learning machine: a comparative study, P. I. Mech. Eng. C – J. Mec. 231 (2017) 1560–1578.
Sohaib, Kim, Kim (b0305) 2017; 17
Khan, Yairi (b0185) 2018; 107
Dong, Seltzer (b0200) 2011
Sohaib, Kim (b0295) 2018; 2018
Qi, Shen, Wang, Shi, Jiang, Zhu (b0290) 2017; 5
Ma, Sun, Chen (b0320) 2018; 14
Qu, He, Deutsch, He (b0595) 2017; 7
Sun, Shao, Zhao, Yan, Zhang, Chen (b0330) 2016; 89
Tao, Zhang, Yang, Wang, Lu (b0325) 2015
A. Makhzani, B. Frey, Winner-take-all autoencoders, in: Advances in Neural Information Processing Systems, 2015.
Lei, He, Zi (b0085) 2009; 131
Shen, Qi, Wang, Cai, Zhu (b0245) 2018; 76
Li, Li, He, Qu (b0600) 2019; 19
Palácios (10.1016/j.measurement.2021.110460_b0060) 2016; 27
Wang (10.1016/j.measurement.2021.110460_b0175) 2016; 66-67
Qu (10.1016/j.measurement.2021.110460_b0595) 2017; 7
10.1016/j.measurement.2021.110460_b0260
Chen (10.1016/j.measurement.2021.110460_b0160) 2017; 75
Shao (10.1016/j.measurement.2021.110460_b0340) 2017; 95
Samanta (10.1016/j.measurement.2021.110460_b0075) 2003; 17
Wang (10.1016/j.measurement.2021.110460_b0280) 2019; 163
Li (10.1016/j.measurement.2021.110460_b0560) 2020; 409
Zhang (10.1016/j.measurement.2021.110460_b0515) 2021; 21
Tong (10.1016/j.measurement.2021.110460_b0360) 2020; 2020
Sun (10.1016/j.measurement.2021.110460_b0045) 2014; 43
Shen (10.1016/j.measurement.2021.110460_b0245) 2018; 76
Dong (10.1016/j.measurement.2021.110460_b0065) 2017; 36
Ma (10.1016/j.measurement.2021.110460_b0320) 2018; 14
Sun (10.1016/j.measurement.2021.110460_b0470) 2017; 67
Liu (10.1016/j.measurement.2021.110460_b0150) 2018; 77
Khan (10.1016/j.measurement.2021.110460_b0185) 2018; 107
Hinton (10.1016/j.measurement.2021.110460_b0100) 2006; 313
10.1016/j.measurement.2021.110460_b0370
Zhang (10.1016/j.measurement.2021.110460_b0505) 2019; 131
Liu (10.1016/j.measurement.2021.110460_b0590) 2021; 168
Xiong (10.1016/j.measurement.2021.110460_b0125) 2020; 20
Lei (10.1016/j.measurement.2021.110460_b0040) 2010; 37
Gan (10.1016/j.measurement.2021.110460_b0120) 2016; 72–73
Yu (10.1016/j.measurement.2021.110460_b0575) 2020; 16
Sohaib (10.1016/j.measurement.2021.110460_b0295) 2018; 2018
Haidong (10.1016/j.measurement.2021.110460_b0415) 2018; 110
Chen (10.1016/j.measurement.2021.110460_b0170) 2016; 70–71
Qi (10.1016/j.measurement.2021.110460_b0290) 2017; 5
Huijie (10.1016/j.measurement.2021.110460_b0335) 2015
Liu (10.1016/j.measurement.2021.110460_b0180) 2018; 108
Pang (10.1016/j.measurement.2021.110460_b0555) 2016; 2016
Li (10.1016/j.measurement.2021.110460_b0365) 2018; 6
Anas (10.1016/j.measurement.2021.110460_b0440) 2020
10.1016/j.measurement.2021.110460_b0510
Zou (10.1016/j.measurement.2021.110460_b0375) 2005; 67
Liu (10.1016/j.measurement.2021.110460_b0140) 2019; 19
Shao (10.1016/j.measurement.2021.110460_b0435) 2018; 102
Liu (10.1016/j.measurement.2021.110460_b0235) 2016; 2016
Arias Chao (10.1016/j.measurement.2021.110460_b0500) 2021; 454
Yang (10.1016/j.measurement.2021.110460_b0155) 2018; 51
Zhu (10.1016/j.measurement.2021.110460_b0475) 2020; 88
Yang (10.1016/j.measurement.2021.110460_b0070) 2002; 16
Yuan (10.1016/j.measurement.2021.110460_b0095) 2006; 20
Yang (10.1016/j.measurement.2021.110460_b0520) 2020; 98
Luo (10.1016/j.measurement.2021.110460_b0130) 2020; 20
Islam (10.1016/j.measurement.2021.110460_b0135) 2019; 106
Chen (10.1016/j.measurement.2021.110460_b0165) 2017; 66
Guo (10.1016/j.measurement.2021.110460_b0310) 2016; 2016
Huang (10.1016/j.measurement.2021.110460_b0020) 2017; 17
Zhang (10.1016/j.measurement.2021.110460_b0410) 2020; 65
Meng (10.1016/j.measurement.2021.110460_b0380) 2018; 130
Tran (10.1016/j.measurement.2021.110460_b0115) 2014; 41
Kong (10.1016/j.measurement.2021.110460_b0395) 2020; 31
Jiang (10.1016/j.measurement.2021.110460_b0460) 2017; 66
Shao (10.1016/j.measurement.2021.110460_b0530) 2017; 119
Zhao (10.1016/j.measurement.2021.110460_b0390) 2020; 152
Pang (10.1016/j.measurement.2021.110460_b0315) 2020; 98
Mao (10.1016/j.measurement.2021.110460_b0570) 2019; 117
Dixit (10.1016/j.measurement.2021.110460_b0400) 2020; 20
Xu (10.1016/j.measurement.2021.110460_b0495) 2018; 311
Guo (10.1016/j.measurement.2021.110460_b0220) 2016; 7
He (10.1016/j.measurement.2021.110460_b0345) 2011; 20
San Martin (10.1016/j.measurement.2021.110460_b0270) 2019; 18
10.1016/j.measurement.2021.110460_b0215
10.1016/j.measurement.2021.110460_b0210
Stetco (10.1016/j.measurement.2021.110460_b0005) 2019; 133
Gao (10.1016/j.measurement.2021.110460_b0145) 2019; 91
Xiang (10.1016/j.measurement.2021.110460_b0285) 2019; 138
Dinuzzo (10.1016/j.measurement.2021.110460_b0565) 2011
Liu (10.1016/j.measurement.2021.110460_b0405) 2018; 2018
Lei (10.1016/j.measurement.2021.110460_b0085) 2009; 131
Jiang (10.1016/j.measurement.2021.110460_b0110) 2018; 34
Rezaeianjouybari (10.1016/j.measurement.2021.110460_b0030) 2020; 163
Cerrada (10.1016/j.measurement.2021.110460_b0050) 2015; 15
Heydarzadeh (10.1016/j.measurement.2021.110460_b0300) 2016
Yu (10.1016/j.measurement.2021.110460_b0425) 2018; 25
Yang (10.1016/j.measurement.2021.110460_b0550) 2016; 9
Zhao (10.1016/j.measurement.2021.110460_b0580) 2019; 31
Duong (10.1016/j.measurement.2021.110460_b0450) 2018; 18
10.1016/j.measurement.2021.110460_b0205
Dong (10.1016/j.measurement.2021.110460_b0200) 2011
Wang (10.1016/j.measurement.2021.110460_b0490) 2018; 2018
Hemmer (10.1016/j.measurement.2021.110460_b0275) 2020; 8
Zhao (10.1016/j.measurement.2021.110460_b0190) 2019; 115
Yi (10.1016/j.measurement.2021.110460_b0250) 2018
Jia (10.1016/j.measurement.2021.110460_b0105) 2016; 72–73
Lei (10.1016/j.measurement.2021.110460_b0195) 2020; 138
Kong (10.1016/j.measurement.2021.110460_b0430) 2020; 151
Xia (10.1016/j.measurement.2021.110460_b0230) 2017; 11
Zhang (10.1016/j.measurement.2021.110460_b0525) 2020; 151
Zhao (10.1016/j.measurement.2021.110460_b0255) 2020; 8
Yu (10.1016/j.measurement.2021.110460_b0385) 2020; 92
Jia (10.1016/j.measurement.2021.110460_b0480) 2018; 272
Yang (10.1016/j.measurement.2021.110460_b0355) 2020; 20
Sun (10.1016/j.measurement.2021.110460_b0330) 2016; 89
Long (10.1016/j.measurement.2021.110460_b0445) 2020; 69
Lu (10.1016/j.measurement.2021.110460_b0350) 2020; 56
Haidong (10.1016/j.measurement.2021.110460_b0420) 2018; 140
Wang (10.1016/j.measurement.2021.110460_b0585) 2020; 92
Chen (10.1016/j.measurement.2021.110460_b0240) 2017; 231
Li (10.1016/j.measurement.2021.110460_b0600) 2019; 19
Ahmed (10.1016/j.measurement.2021.110460_b0465) 2018; 99
Jin (10.1016/j.measurement.2021.110460_b0090) 2014; 16
Sohaib (10.1016/j.measurement.2021.110460_b0305) 2017; 17
Tao (10.1016/j.measurement.2021.110460_b0325) 2015
Kasun (10.1016/j.measurement.2021.110460_b0540) 2013; 28
10.1016/j.measurement.2021.110460_b0545
Saufi (10.1016/j.measurement.2021.110460_b0455) 2018; 29
10.1016/j.measurement.2021.110460_b0265
Lei (10.1016/j.measurement.2021.110460_b0015) 2013; 35
10.1016/j.measurement.2021.110460_b0025
Wei (10.1016/j.measurement.2021.110460_b0035) 2017; 116
Unal (10.1016/j.measurement.2021.110460_b0080) 2014; 58
Lu (10.1016/j.measurement.2021.110460_b0225) 2017; 130
Jiang (10.1016/j.measurement.2021.110460_b0535) 2019; 87
Baur (10.1016/j.measurement.2021.110460_b0010) 2020; 107
Bolón-Canedo (10.1016/j.measurement.2021.110460_b0055) 2013; 34
Wang (10.1016/j.measurement.2021.110460_b0485) 2019; 30
References_xml – volume: 106
  start-page: 142
  year: 2019
  end-page: 153
  ident: b0135
  article-title: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network
  publication-title: Comput. Ind.
– year: 2015
  ident: b0325
  article-title: Bearing fault diagnosis method based on stacked autoencoder and softmax regression
  publication-title: Proceedings of the 34th Chinese Control Conferenc
– volume: 37
  start-page: 1419
  year: 2010
  end-page: 1430
  ident: b0040
  article-title: A multidimensional hybrid intelligent method for gear fault diagnosis
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 1485
  year: 2011
  end-page: 1494
  ident: b0345
  article-title: Robust principal component analysis based on maximum correntropy criterion
  publication-title: IEEE T. Image Process.
– volume: 34
  start-page: 483
  year: 2013
  end-page: 519
  ident: b0055
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
– volume: 16
  start-page: 391
  year: 2002
  end-page: 411
  ident: b0070
  article-title: Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks
  publication-title: Mech. Syst. Signal Process.
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: b0340
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 138
  start-page: 106587
  year: 2020
  ident: b0195
  article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap
  publication-title: Mech. Syst. Signal Process.
– volume: 138
  start-page: 162
  year: 2019
  end-page: 174
  ident: b0285
  article-title: Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder
  publication-title: Measurement
– volume: 35
  start-page: 108
  year: 2013
  end-page: 126
  ident: b0015
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
– volume: 151
  start-page: 107132
  year: 2020
  ident: b0430
  article-title: A multi-ensemble method based on deep auto-encoders for fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 131
  start-page: 243
  year: 2019
  end-page: 260
  ident: b0505
  article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks
  publication-title: Mech. Syst. Signal Process.
– volume: 11
  start-page: 687
  year: 2017
  end-page: 695
  ident: b0230
  article-title: Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder
  publication-title: IET Sci. Meas. Technol.
– volume: 5
  start-page: 15066
  year: 2017
  end-page: 15079
  ident: b0290
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
– volume: 151
  start-page: 107232
  year: 2020
  ident: b0525
  article-title: Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method
  publication-title: Measurement
– reference: S. Zhang, F. Ye, B. Wang, T.G. Habetler, Semi-supervised learning of bearing anomaly detection via deep variational autoencoders, (2019).
– volume: 70–71
  start-page: 1
  year: 2016
  end-page: 35
  ident: b0170
  article-title: Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 14337
  year: 2020
  end-page: 14346
  ident: b0400
  article-title: Intelligent condition-based monitoring of rotary machines with few samples
  publication-title: IEEE Sens. J.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0405
  article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis
  publication-title: Math. Probl. Eng.
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: b0330
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: International Conference on Machine Learning, 2008.
– volume: 21
  start-page: 6476
  year: 2021
  end-page: 6486
  ident: b0515
  article-title: Semi-supervised bearing fault diagnosis and classification using variational autoencoder-based deep generative models
  publication-title: IEEE Sens. J.
– volume: 272
  start-page: 619
  year: 2018
  end-page: 628
  ident: b0480
  article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines
  publication-title: Neurocomputing
– volume: 163
  year: 2020
  ident: b0030
  article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities
  publication-title: Measurement
– volume: 131
  start-page: 0645021
  year: 2009
  end-page: 0645026
  ident: b0085
  article-title: A combination of WKNN to fault diagnosis of rolling element bearings
  publication-title: J. Vib. Acoust.
– volume: 8
  start-page: 35842
  year: 2020
  end-page: 35852
  ident: b0275
  article-title: Health indicator for low-speed axial bearings using variational autoencoders
  publication-title: IEEE Access
– volume: 36
  start-page: 354
  year: 2017
  end-page: 365
  ident: b0065
  article-title: Fault diagnosis of bearing based on the kernel principal component analysis and optimized k-nearest neighbour model
  publication-title: J. Low Freq. Noise V. A.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0235
  article-title: Rolling bearing fault diagnosis based on STFT-deep learning and sound signals
  publication-title: Shock Vib.
– volume: 87
  start-page: 235
  year: 2019
  end-page: 250
  ident: b0535
  article-title: A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder
  publication-title: ISA T.
– volume: 7
  start-page: 515
  year: 2017
  ident: b0595
  article-title: Detection of pitting in gears using a deep sparse autoencoder
  publication-title: Appl. Sci.-Basel
– volume: 17
  start-page: 1279
  year: 2017
  ident: b0020
  article-title: Resonance-based sparse signal decomposition and its application in mechanical fault diagnosis: a review
  publication-title: Sensors
– volume: 17
  start-page: 317
  year: 2003
  end-page: 328
  ident: b0075
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0310
  article-title: Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
  publication-title: Shock Vib.
– volume: 43
  start-page: 1
  year: 2014
  end-page: 24
  ident: b0045
  article-title: Multiwavelet transform and its applications in mechanical fault diagnosis – A review
  publication-title: Mech. Syst. Signal Process.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0490
  article-title: An enhancement deep feature extraction method for bearing fault diagnosis based on kernel function and autoencoder
  publication-title: Shock Vib.
– volume: 102
  start-page: 278
  year: 2018
  end-page: 297
  ident: b0435
  article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
  publication-title: Mech. Syst. Signal Process.
– year: 2011
  ident: b0565
  article-title: Learning output kernels with block coordinate descent
  publication-title: Proceedings of the 28th International Conference on Machine Learning
– volume: 92
  start-page: 119
  year: 2020
  end-page: 136
  ident: b0385
  article-title: Manifold regularized stacked autoencoders-based feature learning for fault detection in industrial processes
  publication-title: J. Process Contr.
– volume: 30
  year: 2019
  ident: b0485
  article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis
  publication-title: Meas. Sci. Techno.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0100
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 2018
  ident: b0250
  article-title: A deep contractive auto-encoding network for machinery fault diagnosis
  publication-title: The 18th International Symposium on Communications and Information Technologies (ISCIT)
– volume: 25
  start-page: 1880
  year: 2018
  end-page: 1884
  ident: b0425
  article-title: Multiscale representations fusion with joint multiple reconstructions autoencoder for intelligent fault diagnosis
  publication-title: IEEE Signal Proc. Let.
– volume: 66
  start-page: 1693
  year: 2017
  end-page: 1702
  ident: b0165
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE T. Instrum. Meas.
– volume: 18
  start-page: 1092
  year: 2019
  end-page: 1128
  ident: b0270
  article-title: Deep variational auto-encoders: a promising tool for dimensionality reduction and ball bearing elements fault diagnosis
  publication-title: Struct. Health Monit.
– volume: 163
  start-page: 438
  year: 2019
  end-page: 449
  ident: b0280
  article-title: Planetary gearbox fault feature learning using conditional variational neural networks under noise environment
  publication-title: Knowl.-Based Syst.
– volume: 72–73
  start-page: 92
  year: 2016
  end-page: 104
  ident: b0120
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 67
  start-page: 185
  year: 2017
  end-page: 195
  ident: b0470
  article-title: Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning
  publication-title: IEEE T. Instrum. Meas.
– volume: 41
  start-page: 4113
  year: 2014
  end-page: 4122
  ident: b0115
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
– volume: 107
  start-page: 2843
  year: 2020
  end-page: 2863
  ident: b0010
  article-title: A review of prognostics and health management of machine tools
  publication-title: Int. J. Adv. Manuf. Tech.
– volume: 9
  start-page: 379
  year: 2016
  ident: b0550
  article-title: Representational learning for fault diagnosis of wind turbine equipment: a multi-layered extreme learning machines approach
  publication-title: Energies
– volume: 31
  year: 2020
  ident: b0395
  article-title: Industrial process deep feature representation by regularization strategy autoencoders for process monitoring
  publication-title: Meas. Sci. Techno.
– reference: A. Makhzani, B. Frey, Winner-take-all autoencoders, in: Advances in Neural Information Processing Systems, 2015.
– volume: 110
  start-page: 193
  year: 2018
  end-page: 209
  ident: b0415
  article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 409
  start-page: 275
  year: 2020
  end-page: 285
  ident: b0560
  article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis
  publication-title: Neurocomputing
– volume: 88
  start-page: 106060
  year: 2020
  ident: b0475
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
– volume: 56
  start-page: 241
  year: 2020
  end-page: 251
  ident: b0350
  article-title: Deep fisher autoencoder combined with self-organizing map for visual industrial process monitoring
  publication-title: J Manuf. Syst.
– volume: 99
  start-page: 459
  year: 2018
  end-page: 477
  ident: b0465
  article-title: Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features
  publication-title: Mech. Syst. Signal Process.
– volume: 133
  start-page: 620
  year: 2019
  end-page: 635
  ident: b0005
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew. Energ.
– volume: 98
  start-page: 320
  year: 2020
  end-page: 337
  ident: b0315
  article-title: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features
  publication-title: ISA T.
– year: 2011
  ident: b0200
  article-title: Improved bottleneck features using pretrained deep neural networks
  publication-title: 12th Annual Conference of the International Speech Communication Association
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0295
  article-title: Reliable fault diagnosis of rotary machine bearings using a stacked sparse autoencoder-based deep neural network
  publication-title: Shock Vib.
– volume: 92
  year: 2020
  ident: b0585
  article-title: Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 972
  year: 2019
  ident: b0140
  article-title: Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network
  publication-title: Sensors
– reference: S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, in: International Conference on Machine Learning, 2011.
– year: 2020
  ident: b0440
  article-title: A novel unsupervised learning method for intelligent fault diagnosis of rolling element bearings based on deep functional auto-encoder
  publication-title: J. Mech. Sci. Technol.
– volume: 98
  start-page: 104358
  year: 2020
  ident: b0520
  article-title: An improved ensemble fusion autoencoder model for fault diagnosis from imbalanced and incomplete data
  publication-title: Control Eng. Pract.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: b0375
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. B
– volume: 34
  start-page: 3513
  year: 2018
  end-page: 3521
  ident: b0110
  article-title: A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
  publication-title: J. Intell. Fuzzy Syst.
– volume: 231
  start-page: 666
  year: 2017
  end-page: 679
  ident: b0240
  article-title: Rolling bearing fault severity identification using deep sparse auto-encoder network with noise added sample expansion
  publication-title: P. I. Mech. Eng. O-J. Ris.
– volume: 51
  start-page: 228
  year: 2018
  end-page: 232
  ident: b0155
  article-title: Rotating machinery fault diagnosis using long-short-term memory recurrent neural network
  publication-title: IFAC-PapersOnLine
– volume: 58
  start-page: 187
  year: 2014
  end-page: 196
  ident: b0080
  article-title: Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network
  publication-title: Measurement
– volume: 91
  start-page: 1237
  year: 2019
  end-page: 1247
  ident: b0145
  article-title: ASM1D-GAN: an intelligent fault diagnosis method based on assembled 1D convolutional neural network and generative adversarial networks
  publication-title: J. Signal. Process Sys.
– volume: 20
  start-page: 939
  year: 2006
  end-page: 952
  ident: b0095
  article-title: Support vector machines-based fault diagnosis for turbo-pump rotor
  publication-title: Mech. Syst. Signal Process.
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, (2013).
– volume: 66
  start-page: 2391
  year: 2017
  end-page: 2402
  ident: b0460
  article-title: Stacked multilevel-denoising autoencoders: a new representation learning approach for wind turbine gearbox fault diagnosis
  publication-title: IEEE T. Instrum. Meas.
– volume: 19
  start-page: 758
  year: 2019
  ident: b0600
  article-title: A novel method for early gear pitting fault diagnosis using stacked SAE and GBRBM
  publication-title: Sensors
– reference: Y. Lei, Intelligent fault diagnosis and remaining useful life prediction of rotating machinery, 2016.
– volume: 20
  start-page: 8336
  year: 2020
  end-page: 8348
  ident: b0355
  article-title: Diagnosis of incipient fault based on sliding-scale resampling strategy and improved deep autoencoder
  publication-title: IEEE Sens. J.
– volume: 31
  start-page: 35004
  year: 2019
  ident: b0580
  article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder
  publication-title: Meas. Sci. Technol.
– volume: 69
  start-page: 683
  year: 2020
  end-page: 692
  ident: b0445
  article-title: A novel sparse echo autoencoder network for data-driven fault diagnosis of delta 3-D printers
  publication-title: IEEE T. Instrum. Meas.
– volume: 119
  start-page: 200
  year: 2017
  end-page: 220
  ident: b0530
  article-title: An enhancement deep feature fusion method for rotating machinery fault diagnosis
  publication-title: Knowl.-Based Syst.
– volume: 7
  start-page: 41
  year: 2016
  ident: b0220
  article-title: Deep Fault Recognizer: An integrated model to denoise and extract features for fault diagnosis in rotating machinery
  publication-title: Appl. Sci-Basel.
– volume: 76
  start-page: 170
  year: 2018
  end-page: 184
  ident: b0245
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intel.
– year: 2015
  ident: b0335
  article-title: Fault diagnosis of hydraulic pump based on stacked autoencoders
  publication-title: IEEE International Conference on Electronic Measurement & Instruments
– volume: 29
  year: 2018
  ident: b0455
  article-title: Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis
  publication-title: Meas. Sci. Techno.
– volume: 18
  start-page: 1129
  year: 2018
  ident: b0450
  article-title: Non-mutually exclusive deep neural network classifier for combined modes of bearing fault diagnosis
  publication-title: Sensors
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0555
  article-title: Aero engine component fault diagnosis using multi-hidden-layer extreme learning machine with optimized structure
  publication-title: Int. J. Aerospace Eng.
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: b0225
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
– volume: 454
  start-page: 324
  year: 2021
  end-page: 338
  ident: b0500
  article-title: Implicit supervision for fault detection and segmentation of emerging fault types with Deep Variational Autoencoders
  publication-title: Neurocomputing
– volume: 16
  start-page: 2582
  year: 2014
  end-page: 2592
  ident: b0090
  article-title: Rotor fault classification technique and precision analysis with kernel principal component analysis and multi-support vector machines
  publication-title: J. Vibroeng.
– volume: 8
  start-page: 99154
  year: 2020
  end-page: 99170
  ident: b0255
  article-title: Fault diagnosis framework of rolling bearing using adaptive sparse contrative auto-encoder with optimized unsupervised extreme learning machine
  publication-title: IEEE Access
– volume: 168
  year: 2021
  ident: b0590
  article-title: Rolling bearing fault diagnosis using variational autoencoding generative adversarial networks with deep regret analysis
  publication-title: Measurement
– volume: 140
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0420
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
– volume: 116
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0035
  article-title: A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection
  publication-title: Knowl.-Based Syst.
– volume: 16
  start-page: 6347
  year: 2020
  end-page: 6358
  ident: b0575
  article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis
  publication-title: IEEE T. Ind. Inform.
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: b0180
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
– volume: 27
  start-page: 406
  year: 2016
  end-page: 418
  ident: b0060
  article-title: Fault identification in the stator winding of induction motors using PCA with artificial neural networks
  publication-title: J. Control Autom. Electr. Syst.
– volume: 130
  start-page: 448
  year: 2018
  end-page: 454
  ident: b0380
  article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis
  publication-title: Measurement
– reference: W. Mao, J. He, Y. Li, Y. Yan, Bearing fault diagnosis with auto-encoder extreme learning machine: a comparative study, P. I. Mech. Eng. C – J. Mec. 231 (2017) 1560–1578.
– reference: B. Ma, Y. Zhao, Z. Jiang, Application of variational auto-encoder in mechanical fault early warning, in: Prognostics and System Health Management Conference, 2018.
– volume: 6
  start-page: 6103
  year: 2018
  end-page: 6115
  ident: b0365
  article-title: Bearing fault diagnosis using fully-connected winner-take-all autoencoder
  publication-title: IEEE Access
– volume: 117
  start-page: 293
  year: 2019
  end-page: 318
  ident: b0570
  article-title: A novel deep output kernel learning method for bearing fault structural diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 4965
  year: 2020
  ident: b0125
  article-title: A novel end-to-end fault diagnosis approach for rolling bearings by integrating wavelet packet transform into convolutional neural network structures
  publication-title: Sensors
– volume: 152
  year: 2020
  ident: b0390
  article-title: Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
– volume: 28
  start-page: 31
  year: 2013
  end-page: 34
  ident: b0540
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intell Syst
– volume: 66-67
  start-page: 679
  year: 2016
  end-page: 698
  ident: b0175
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications
  publication-title: Mech. Syst. Signal Process.
– volume: 311
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0495
  article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
  publication-title: Neurocomputing
– reference: J. Wen, H. Gao, Degradation assessment for the ball screw with variational autoencoder and kernel density estimation, Adv. Mech. Eng. 10 (2018) 168781401879726.
– volume: 72–73
  start-page: 303
  year: 2016
  end-page: 315
  ident: b0105
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
– volume: 14
  start-page: 1137
  year: 2018
  end-page: 1145
  ident: b0320
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE T. Ind. Inform.
– volume: 15
  start-page: 23903
  year: 2015
  end-page: 23926
  ident: b0050
  article-title: Multi-stage feature selection by using genetic algorithms for fault diagnosis in gearboxes based on vibration signal
  publication-title: Sensors
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0360
  article-title: A novel cuckoo search optimized deep auto-encoder network-based fault diagnosis method for rolling bearing
  publication-title: Shock Vib
– volume: 20
  start-page: 4930
  year: 2020
  ident: b0130
  article-title: Fault diagnosis for high-speed train axle-box bearing using simplified shallow information fusion convolutional neural network
  publication-title: Sensors
– volume: 75
  start-page: 327
  year: 2017
  end-page: 333
  ident: b0160
  article-title: Deep neural networks-based rolling bearing fault diagnosis
  publication-title: Microelectron. Reliab.
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: b0190
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– volume: 17
  start-page: 2876
  year: 2017
  ident: b0305
  article-title: A hybrid feature model and deep-learning-based bearing fault diagnosis
  publication-title: Sensors
– volume: 65
  start-page: 101920
  year: 2020
  ident: b0410
  article-title: Ensemble sparse supervised model for bearing fault diagnosis in smart manufacturing
  publication-title: Robot. Cim-Int. Manuf.
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: b0185
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
– volume: 77
  start-page: 167
  year: 2018
  end-page: 178
  ident: b0150
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA T.
– year: 2016
  ident: b0300
  article-title: Gear fault diagnosis using discrete wavelet transform and deep neural networks
  publication-title: Conference of the IEEE Industrial Electronics Society
– volume: 76
  start-page: 170
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0245
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2018.09.010
– volume: 72–73
  start-page: 303
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0105
  article-title: Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0185
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.024
– volume: 67
  start-page: 185
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0470
  article-title: Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2017.2759418
– ident: 10.1016/j.measurement.2021.110460_b0025
  doi: 10.1016/B978-0-12-811534-3.00006-8
– volume: 34
  start-page: 483
  issue: 3
  year: 2013
  ident: 10.1016/j.measurement.2021.110460_b0055
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0487-8
– volume: 30
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0485
  article-title: Construction of a batch-normalized autoencoder network and its application in mechanical intelligent fault diagnosis
  publication-title: Meas. Sci. Techno.
– volume: 37
  start-page: 1419
  issue: 2
  year: 2010
  ident: 10.1016/j.measurement.2021.110460_b0040
  article-title: A multidimensional hybrid intelligent method for gear fault diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.060
– volume: 18
  start-page: 1092
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0270
  article-title: Deep variational auto-encoders: a promising tool for dimensionality reduction and ball bearing elements fault diagnosis
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718788299
– volume: 231
  start-page: 666
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0240
  article-title: Rolling bearing fault severity identification using deep sparse auto-encoder network with noise added sample expansion
  publication-title: P. I. Mech. Eng. O-J. Ris.
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0405
  article-title: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis
  publication-title: Math. Probl. Eng.
– ident: 10.1016/j.measurement.2021.110460_b0215
– volume: 107
  start-page: 2843
  issue: 5-6
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0010
  article-title: A review of prognostics and health management of machine tools
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-020-05202-3
– volume: 34
  start-page: 3513
  issue: 6
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0110
  article-title: A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
  publication-title: J. Intell. Fuzzy Syst.
– year: 2015
  ident: 10.1016/j.measurement.2021.110460_b0325
  article-title: Bearing fault diagnosis method based on stacked autoencoder and softmax regression
– volume: 16
  start-page: 6347
  issue: 10
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0575
  article-title: One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis
  publication-title: IEEE T. Ind. Inform.
  doi: 10.1109/TII.2020.2966326
– volume: 99
  start-page: 459
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0465
  article-title: Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.027
– volume: 131
  start-page: 243
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0505
  article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.049
– ident: 10.1016/j.measurement.2021.110460_b0510
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0295
  article-title: Reliable fault diagnosis of rotary machine bearings using a stacked sparse autoencoder-based deep neural network
  publication-title: Shock Vib.
– volume: 91
  start-page: 1237
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0145
  article-title: ASM1D-GAN: an intelligent fault diagnosis method based on assembled 1D convolutional neural network and generative adversarial networks
  publication-title: J. Signal. Process Sys.
  doi: 10.1007/s11265-019-01463-8
– volume: 16
  start-page: 391
  issue: 2-3
  year: 2002
  ident: 10.1016/j.measurement.2021.110460_b0070
  article-title: Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1469
– volume: 36
  start-page: 354
  issue: 4
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0065
  article-title: Fault diagnosis of bearing based on the kernel principal component analysis and optimized k-nearest neighbour model
  publication-title: J. Low Freq. Noise V. A.
  doi: 10.1177/1461348417744302
– volume: 21
  start-page: 6476
  issue: 5
  year: 2021
  ident: 10.1016/j.measurement.2021.110460_b0515
  article-title: Semi-supervised bearing fault diagnosis and classification using variational autoencoder-based deep generative models
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3040696
– volume: 66-67
  start-page: 679
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0175
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: a review with applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.039
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0225
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– year: 2015
  ident: 10.1016/j.measurement.2021.110460_b0335
  article-title: Fault diagnosis of hydraulic pump based on stacked autoencoders
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.measurement.2021.110460_b0100
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 8
  start-page: 35842
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0275
  article-title: Health indicator for low-speed axial bearings using variational autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974942
– volume: 5
  start-page: 15066
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0290
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
– volume: 130
  start-page: 448
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0380
  article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.010
– volume: 17
  start-page: 1279
  issue: 6
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0020
  article-title: Resonance-based sparse signal decomposition and its application in mechanical fault diagnosis: a review
  publication-title: Sensors
  doi: 10.3390/s17061279
– ident: 10.1016/j.measurement.2021.110460_b0370
– volume: 20
  start-page: 14337
  issue: 23
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0400
  article-title: Intelligent condition-based monitoring of rotary machines with few samples
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3008177
– volume: 66
  start-page: 2391
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0460
  article-title: Stacked multilevel-denoising autoencoders: a new representation learning approach for wind turbine gearbox fault diagnosis
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2017.2698738
– volume: 163
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0030
  article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107929
– volume: 27
  start-page: 406
  issue: 4
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0060
  article-title: Fault identification in the stator winding of induction motors using PCA with artificial neural networks
  publication-title: J. Control Autom. Electr. Syst.
  doi: 10.1007/s40313-016-0248-0
– volume: 106
  start-page: 142
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0135
  article-title: Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.008
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  ident: 10.1016/j.measurement.2021.110460_b0075
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1006/mssp.2001.1462
– ident: 10.1016/j.measurement.2021.110460_b0260
  doi: 10.1109/PHM-Chongqing.2018.00221
– ident: 10.1016/j.measurement.2021.110460_b0210
  doi: 10.1007/978-3-642-23783-6_41
– volume: 108
  start-page: 33
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0180
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– year: 2011
  ident: 10.1016/j.measurement.2021.110460_b0200
  article-title: Improved bottleneck features using pretrained deep neural networks
– ident: 10.1016/j.measurement.2021.110460_b0265
  doi: 10.1177/1687814018797261
– volume: 14
  start-page: 1137
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0320
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE T. Ind. Inform.
  doi: 10.1109/TII.2018.2793246
– volume: 92
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0585
  article-title: Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106333
– volume: 20
  start-page: 4930
  issue: 17
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0130
  article-title: Fault diagnosis for high-speed train axle-box bearing using simplified shallow information fusion convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20174930
– volume: 31
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0395
  article-title: Industrial process deep feature representation by regularization strategy autoencoders for process monitoring
  publication-title: Meas. Sci. Techno.
– year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0440
  article-title: A novel unsupervised learning method for intelligent fault diagnosis of rolling element bearings based on deep functional auto-encoder
  publication-title: J. Mech. Sci. Technol.
– volume: 17
  start-page: 2876
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0305
  article-title: A hybrid feature model and deep-learning-based bearing fault diagnosis
  publication-title: Sensors
  doi: 10.3390/s17122876
– volume: 272
  start-page: 619
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0480
  article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.032
– volume: 116
  start-page: 1
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0035
  article-title: A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.10.022
– volume: 29
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0455
  article-title: Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis
  publication-title: Meas. Sci. Techno.
– volume: 35
  start-page: 108
  issue: 1-2
  year: 2013
  ident: 10.1016/j.measurement.2021.110460_b0015
  article-title: A review on empirical mode decomposition in fault diagnosis of rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.09.015
– volume: 43
  start-page: 1
  issue: 1-2
  year: 2014
  ident: 10.1016/j.measurement.2021.110460_b0045
  article-title: Multiwavelet transform and its applications in mechanical fault diagnosis – A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.09.015
– volume: 70–71
  start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0170
  article-title: Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.08.023
– volume: 152
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0390
  article-title: Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107320
– volume: 31
  start-page: 35004
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0580
  article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab55f8
– volume: 98
  start-page: 320
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0315
  article-title: Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features
  publication-title: ISA T.
  doi: 10.1016/j.isatra.2019.08.053
– volume: 454
  start-page: 324
  year: 2021
  ident: 10.1016/j.measurement.2021.110460_b0500
  article-title: Implicit supervision for fault detection and segmentation of emerging fault types with Deep Variational Autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.122
– volume: 18
  start-page: 1129
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0450
  article-title: Non-mutually exclusive deep neural network classifier for combined modes of bearing fault diagnosis
  publication-title: Sensors
  doi: 10.3390/s18041129
– volume: 28
  start-page: 31
  year: 2013
  ident: 10.1016/j.measurement.2021.110460_b0540
  article-title: Representational learning with ELMs for big data
  publication-title: IEEE Intell Syst
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0330
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 19
  start-page: 758
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0600
  article-title: A novel method for early gear pitting fault diagnosis using stacked SAE and GBRBM
  publication-title: Sensors
  doi: 10.3390/s19040758
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0235
  article-title: Rolling bearing fault diagnosis based on STFT-deep learning and sound signals
  publication-title: Shock Vib.
  doi: 10.1155/2016/7974090
– volume: 56
  start-page: 241
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0350
  article-title: Deep fisher autoencoder combined with self-organizing map for visual industrial process monitoring
  publication-title: J Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.05.005
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0190
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 16
  start-page: 2582
  year: 2014
  ident: 10.1016/j.measurement.2021.110460_b0090
  article-title: Rotor fault classification technique and precision analysis with kernel principal component analysis and multi-support vector machines
  publication-title: J. Vibroeng.
– volume: 163
  start-page: 438
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0280
  article-title: Planetary gearbox fault feature learning using conditional variational neural networks under noise environment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.005
– volume: 168
  year: 2021
  ident: 10.1016/j.measurement.2021.110460_b0590
  article-title: Rolling bearing fault diagnosis using variational autoencoding generative adversarial networks with deep regret analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108371
– volume: 20
  start-page: 939
  issue: 4
  year: 2006
  ident: 10.1016/j.measurement.2021.110460_b0095
  article-title: Support vector machines-based fault diagnosis for turbo-pump rotor
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.09.006
– volume: 9
  start-page: 379
  issue: 6
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0550
  article-title: Representational learning for fault diagnosis of wind turbine equipment: a multi-layered extreme learning machines approach
  publication-title: Energies
  doi: 10.3390/en9060379
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0310
  article-title: Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
  publication-title: Shock Vib.
– volume: 7
  start-page: 41
  issue: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0220
  article-title: Deep Fault Recognizer: An integrated model to denoise and extract features for fault diagnosis in rotating machinery
  publication-title: Appl. Sci-Basel.
  doi: 10.3390/app7010041
– volume: 20
  start-page: 1485
  year: 2011
  ident: 10.1016/j.measurement.2021.110460_b0345
  article-title: Robust principal component analysis based on maximum correntropy criterion
  publication-title: IEEE T. Image Process.
  doi: 10.1109/TIP.2010.2103949
– volume: 75
  start-page: 327
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0160
  article-title: Deep neural networks-based rolling bearing fault diagnosis
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2017.03.006
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0360
  article-title: A novel cuckoo search optimized deep auto-encoder network-based fault diagnosis method for rolling bearing
  publication-title: Shock Vib
  doi: 10.1155/2020/8891905
– volume: 151
  start-page: 107232
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0525
  article-title: Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107232
– volume: 69
  start-page: 683
  issue: 3
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0445
  article-title: A novel sparse echo autoencoder network for data-driven fault diagnosis of delta 3-D printers
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2019.2905752
– volume: 15
  start-page: 23903
  issue: 9
  year: 2015
  ident: 10.1016/j.measurement.2021.110460_b0050
  article-title: Multi-stage feature selection by using genetic algorithms for fault diagnosis in gearboxes based on vibration signal
  publication-title: Sensors
  doi: 10.3390/s150923903
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0490
  article-title: An enhancement deep feature extraction method for bearing fault diagnosis based on kernel function and autoencoder
  publication-title: Shock Vib.
– volume: 117
  start-page: 293
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0570
  article-title: A novel deep output kernel learning method for bearing fault structural diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.07.034
– volume: 19
  start-page: 972
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0140
  article-title: Fault diagnosis of rotating machinery under noisy environment conditions based on a 1-D convolutional autoencoder and 1-D convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s19040972
– volume: 20
  start-page: 4965
  issue: 17
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0125
  article-title: A novel end-to-end fault diagnosis approach for rolling bearings by integrating wavelet packet transform into convolutional neural network structures
  publication-title: Sensors
  doi: 10.3390/s20174965
– volume: 72–73
  start-page: 92
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0120
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.014
– volume: 110
  start-page: 193
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0415
  article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.011
– volume: 25
  start-page: 1880
  issue: 12
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0425
  article-title: Multiscale representations fusion with joint multiple reconstructions autoencoder for intelligent fault diagnosis
  publication-title: IEEE Signal Proc. Let.
  doi: 10.1109/LSP.2018.2878356
– volume: 151
  start-page: 107132
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0430
  article-title: A multi-ensemble method based on deep auto-encoders for fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107132
– volume: 20
  start-page: 8336
  issue: 15
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0355
  article-title: Diagnosis of incipient fault based on sliding-scale resampling strategy and improved deep autoencoder
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2976523
– volume: 409
  start-page: 275
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0560
  article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.021
– volume: 98
  start-page: 104358
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0520
  article-title: An improved ensemble fusion autoencoder model for fault diagnosis from imbalanced and incomplete data
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104358
– volume: 6
  start-page: 6103
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0365
  article-title: Bearing fault diagnosis using fully-connected winner-take-all autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2717492
– volume: 41
  start-page: 4113
  issue: 9
  year: 2014
  ident: 10.1016/j.measurement.2021.110460_b0115
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.026
– volume: 88
  start-page: 106060
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0475
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.106060
– volume: 87
  start-page: 235
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0535
  article-title: A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder
  publication-title: ISA T.
  doi: 10.1016/j.isatra.2018.11.044
– year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0250
  article-title: A deep contractive auto-encoding network for machinery fault diagnosis
– volume: 138
  start-page: 162
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0285
  article-title: Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto-encoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.01.063
– volume: 65
  start-page: 101920
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0410
  article-title: Ensemble sparse supervised model for bearing fault diagnosis in smart manufacturing
  publication-title: Robot. Cim-Int. Manuf.
  doi: 10.1016/j.rcim.2019.101920
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0555
  article-title: Aero engine component fault diagnosis using multi-hidden-layer extreme learning machine with optimized structure
  publication-title: Int. J. Aerospace Eng.
  doi: 10.1155/2016/1329561
– volume: 51
  start-page: 228
  issue: 24
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0155
  article-title: Rotating machinery fault diagnosis using long-short-term memory recurrent neural network
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.582
– volume: 11
  start-page: 687
  issue: 6
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0230
  article-title: Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2016.0423
– volume: 77
  start-page: 167
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0150
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA T.
  doi: 10.1016/j.isatra.2018.04.005
– year: 2016
  ident: 10.1016/j.measurement.2021.110460_b0300
  article-title: Gear fault diagnosis using discrete wavelet transform and deep neural networks
– volume: 58
  start-page: 187
  year: 2014
  ident: 10.1016/j.measurement.2021.110460_b0080
  article-title: Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.041
– volume: 95
  start-page: 187
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0340
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0435
  article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.09.026
– volume: 133
  start-page: 620
  year: 2019
  ident: 10.1016/j.measurement.2021.110460_b0005
  article-title: Machine learning methods for wind turbine condition monitoring: a review
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2018.10.047
– volume: 138
  start-page: 106587
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0195
  article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106587
– volume: 119
  start-page: 200
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0530
  article-title: An enhancement deep feature fusion method for rotating machinery fault diagnosis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.12.012
– volume: 8
  start-page: 99154
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0255
  article-title: Fault diagnosis framework of rolling bearing using adaptive sparse contrative auto-encoder with optimized unsupervised extreme learning machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963193
– volume: 311
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0495
  article-title: Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.040
– year: 2011
  ident: 10.1016/j.measurement.2021.110460_b0565
  article-title: Learning output kernels with block coordinate descent
– ident: 10.1016/j.measurement.2021.110460_b0205
  doi: 10.1145/1390156.1390294
– ident: 10.1016/j.measurement.2021.110460_b0545
  doi: 10.1177/0954406216675896
– volume: 92
  start-page: 119
  year: 2020
  ident: 10.1016/j.measurement.2021.110460_b0385
  article-title: Manifold regularized stacked autoencoders-based feature learning for fault detection in industrial processes
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2020.06.001
– volume: 131
  start-page: 0645021
  year: 2009
  ident: 10.1016/j.measurement.2021.110460_b0085
  article-title: A combination of WKNN to fault diagnosis of rolling element bearings
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4000478
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.measurement.2021.110460_b0375
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 66
  start-page: 1693
  issue: 7
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0165
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE T. Instrum. Meas.
  doi: 10.1109/TIM.2017.2669947
– volume: 140
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.110460_b0420
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.10.024
– volume: 7
  start-page: 515
  issue: 5
  year: 2017
  ident: 10.1016/j.measurement.2021.110460_b0595
  article-title: Detection of pitting in gears using a deep sparse autoencoder
  publication-title: Appl. Sci.-Basel
  doi: 10.3390/app7050515
SSID ssj0006396
Score 2.6347013
Snippet With the increase of the scale and complexity of mechanical equipment, traditional intelligent fault diagnosis (IFD) based on shallow machine learning methods...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110460
SubjectTerms Application
Autoencoder
Complexity
Deep learning
Fault diagnosis
Intelligent fault diagnosis
Intelligent systems
Machine learning
Mathematical models
Optimization
Representation learning
Representations
Title Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review
URI https://dx.doi.org/10.1016/j.measurement.2021.110460
https://www.proquest.com/docview/2639036382
Volume 189
WOSCitedRecordID wos000749800300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ha9QwFA_npjI_iM6J0ykR_CYdbdNrGvHLIRsqMgSnnn4pTdJox9kd13bs_9k_6kuTNHU6OBHhKEe4NHf3fk1efnnv9xB6BnsEKQgnASdTFiRpogIuChIUNFVCSsqjXkj70zt6dJTN5-z9ZHLhcmHOFrSus_NztvyvpoY2MLZOnf0Lcw83hQZ4D0aHK5gdrmsZfta1p1qdUparQK9ROj1l6ZOMalco4ttwbjA6xNb0RzWodLbPVdEtWk3Q6ni8qjF57Ct_nuBqQXmmsecYRnoUPjrT0Y7jD_cJh1r8cxwP8MVy2F-_l3ZdhcZ510Oxqnnlo4i6nuj9XFY-SsFMo4e2yfIZsBXW1VWmnmRziTY-qqnp9WFJoL0Ns2yZuTqjJEiivhr7aDJnf1wYDEdxsv_D_8R9GD3SaRCJqWhwSXf7gx5TDwmb4ogAiq-hzZhOGcz-m7M3B_O3w4IPTl5qqDzzHW-ipz6M8IoBr3KDLjkEvZdzfAfdttsTPDOwuosmZb2Nbo1EK7fRjT5oWDT3kPoNavhXqGEHNQxQwwA1PIIarvRrgBruoYYHqL3AM2yAtoM-Hh4cv3od2LodgSAJawPKU66IkLA3l4rxNOQhFVzRpFQhYTzkIgwLJlMqtRQDU-Cl0lhmvGSKK1Yoch9t1Kd1-QDhkhAZapY6YWFSiIzHmdbsi2mUCKII20WZ-xtzYUXtdW2VRe6iF0_ykQVybYHcWGAXxUPXpVF2WafTS2er3LqoxvXMAWjrdN9z9s3tk9jkABumwymy-OG_3f0R2vIP1B7aaFdd-RhdF2dt1ayeWNT-BOvCzCU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-based+representation+learning+and+its+application+in+intelligent+fault+diagnosis%3A+A+review&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Yang%2C+Zheng&rft.au=Xu%2C+Binbin&rft.au=Luo%2C+Wei&rft.au=Chen%2C+Fei&rft.date=2022-02-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=189&rft_id=info:doi/10.1016%2Fj.measurement.2021.110460&rft.externalDocID=S0263224121013464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon