Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces

This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypothes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 156; číslo 3; s. 683 - 700
Hlavní autori: Rodríguez-Marín, Luis, Sama, Miguel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.03.2013
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypotheses of stability, convexity, and directional compactness. Counterexamples show that the hypotheses are minimal.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-012-0154-y