Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces

This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypothes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 156; H. 3; S. 683 - 700
Hauptverfasser: Rodríguez-Marín, Luis, Sama, Miguel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.03.2013
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypotheses of stability, convexity, and directional compactness. Counterexamples show that the hypotheses are minimal.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-012-0154-y