Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces
This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypothes...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 156; číslo 3; s. 683 - 700 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.03.2013
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypotheses of stability, convexity, and directional compactness. Counterexamples show that the hypotheses are minimal. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-012-0154-y |