Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces

This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypothes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 156; číslo 3; s. 683 - 700
Hlavní autoři: Rodríguez-Marín, Luis, Sama, Miguel
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2013
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with Lagrange multiplier rules for constrained set-valued optimization problems in infinite-dimensional spaces, where the multipliers appear as scalarization functions of the maps instead of the derivatives. These rules provide necessary conditions for weak minimizers under hypotheses of stability, convexity, and directional compactness. Counterexamples show that the hypotheses are minimal.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-012-0154-y