Toward Robust Fault Identification of Complex Industrial Processes Using Stacked Sparse-Denoising Autoencoder With Softmax Classifier

This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE)-Softmax, for the fault identification of complex industrial processes (CIPs). Spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 53; H. 1; S. 428 - 442
Hauptverfasser: Liu, Jinping, Xu, Longcheng, Xie, Yongfang, Ma, Tianyu, Wang, Jie, Tang, Zhaohui, Gui, Weihua, Yin, Huazhan, Jahanshahi, Hadi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes a robust end-to-end deep learning-induced fault recognition scheme by stacking multiple sparse-denoising autoencoders with a Softmax classifier, called stacked spare-denoising autoencoder (SSDAE)-Softmax, for the fault identification of complex industrial processes (CIPs). Specifically, sparse denoising autoencoder (SDAE) is established by integrating a sparse AE (SAE) with a denoising AE (DAE) for the low-dimensional but intrinsic feature representation of the CIP monitoring data (CIPMD) with possible noise contamination. SSDAE-Softmax is established by stacking multiple SDAEs with a layerwise pretraining procedure, and a Softmax classifier with a global fine-tuning strategy. Furthermore, SSDAE-Softmax hyperparameters are optimized by a relatively new global optimization algorithm, referred to as the state transition algorithm (STA). Benefiting from the deep learning-based feature representation scheme with the STA-based hyperparameter optimization, the underlying intrinsic characteristics of CIPMD can be learned automatically and adaptively for accurate fault identification. A numeric simulation system, the benchmark Tennessee Eastman process (TEP), and a real industrial process, that is, the continuous casting process (CCP) from a top steel plant of China, are used to validate the performance of the proposed method. Experimental results show that the proposed SSDAE-Softmax model can effectively identify various process faults, and has stronger robustness and adaptability against the noise interference in CIPMD for the process monitoring of CIPs.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3109618