Estimates of the trace of the inverse of a symmetric matrix using the modified Chebyshev algorithm

In this paper we study how to compute an estimate of the trace of the inverse of a symmetric matrix by using Gauss quadrature and the modified Chebyshev algorithm. As auxiliary polynomials we use the shifted Chebyshev polynomials. Since this can be too costly in computer storage for large matrices w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 51; číslo 3; s. 309 - 318
Hlavní autor: Meurant, Gérard
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.07.2009
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we study how to compute an estimate of the trace of the inverse of a symmetric matrix by using Gauss quadrature and the modified Chebyshev algorithm. As auxiliary polynomials we use the shifted Chebyshev polynomials. Since this can be too costly in computer storage for large matrices we also propose to compute the modified moments with a stochastic approach due to Hutchinson (Commun Stat Simul 18:1059–1076, 1989 ).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-008-9246-z