Fuzzy Clustering to Identify Clusters at Different Levels of Fuzziness: An Evolutionary Multiobjective Optimization Approach

Fuzzy clustering methods identify naturally occurring clusters in a dataset, where the extent to which different clusters are overlapped can differ. Most methods have a parameter to fix the level of fuzziness. However, the appropriate level of fuzziness depends on the application at hand. This paper...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 51; no. 5; pp. 2601 - 2611
Main Authors: Gupta, Avisek, Datta, Shounak, Das, Swagatam
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fuzzy clustering methods identify naturally occurring clusters in a dataset, where the extent to which different clusters are overlapped can differ. Most methods have a parameter to fix the level of fuzziness. However, the appropriate level of fuzziness depends on the application at hand. This paper presents an entropy <inline-formula> <tex-math notation="LaTeX">{c} </tex-math></inline-formula>-means (ECM), a method of fuzzy clustering that simultaneously optimizes two contradictory objective functions, resulting in the creation of fuzzy clusters with different levels of fuzziness. This allows ECM to identify clusters with different degrees of overlap. ECM optimizes the two objective functions using two multiobjective optimization methods, nondominated sorting genetic algorithm II (NSGA-II) and multiobjective evolutionary algorithm based on decomposition (MOEA/D). We also propose a method to select a suitable tradeoff clustering from the Pareto front. Experiments on challenging synthetic datasets as well as real-world datasets show that ECM leads to better cluster detection compared to the conventional fuzzy clustering methods as well as previously used multiobjective methods for fuzzy clustering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2907002