A data-driven robust optimization approach to scenario-based stochastic model predictive control

•A novel data-driven approach is proposed for stochastic model predictive control.•Support vector clustering is adopted to learn an uncertainty set from scenarios.•A calibration procedure is developed to provide desirable probabilistic guarantees.•Finally, an uncertainty set-induced robust optimizat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of process control Vol. 75; pp. 24 - 39
Main Authors: Shang, Chao, You, Fengqi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2019
Subjects:
ISSN:0959-1524, 1873-2771
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel data-driven approach is proposed for stochastic model predictive control.•Support vector clustering is adopted to learn an uncertainty set from scenarios.•A calibration procedure is developed to provide desirable probabilistic guarantees.•Finally, an uncertainty set-induced robust optimization problem is solved.•The proposed method requires less scenarios and can reduce conservatism. Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances.
AbstractList •A novel data-driven approach is proposed for stochastic model predictive control.•Support vector clustering is adopted to learn an uncertainty set from scenarios.•A calibration procedure is developed to provide desirable probabilistic guarantees.•Finally, an uncertainty set-induced robust optimization problem is solved.•The proposed method requires less scenarios and can reduce conservatism. Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances.
Author You, Fengqi
Shang, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: Shang
  fullname: Shang, Chao
  email: c-shang@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology, and Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Fengqi
  surname: You
  fullname: You, Fengqi
  email: fengqi.you@cornell.edu
  organization: Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
BookMark eNqFkE1LAzEQQINUsK3-Bckf2DXJfmQXPFiKX1Dwouc4m0xoSrtZkljQX-_W6sVLLzOn95h5MzLpfY-EXHOWc8brm02-GYLXvk-5YLzJucgZL87IlDeyyISUfEKmrK3ajFeivCCzGDeMsUKKekreF9RAgswEt8eeBt99xET9kNzOfUFyvqcwjHrQa5o8jRp7CM5nHUQ0NCav1xCT03TnDW7pENA4nUYXPRwU_PaSnFvYRrz63XPy9nD_unzKVi-Pz8vFKtNF2aZM8kZII20tpQXbILSmLKyRrBS2QhB8nHVhgVWlbmxrWs27uuMMeYdg26qYk9ujVwcfY0CrtEs_D6QAbqs4U4daaqP-aqlDLcWFGmuNeP0PH4LbQfg8Dd4dQRyf2zsMKmqHvR47BNRJGe9OKb4BhCuO3g
CitedBy_id crossref_primary_10_1016_j_oceaneng_2024_117727
crossref_primary_10_1016_j_apenergy_2021_117103
crossref_primary_10_1016_j_egyr_2020_10_057
crossref_primary_10_1016_j_jclepro_2024_142544
crossref_primary_10_1007_s40435_022_01029_w
crossref_primary_10_1016_j_dche_2023_100130
crossref_primary_10_1016_j_ces_2022_117919
crossref_primary_10_3390_aerospace12090810
crossref_primary_10_1016_j_conengprac_2025_106249
crossref_primary_10_1016_j_fbp_2024_11_021
crossref_primary_10_1016_j_enbuild_2021_110924
crossref_primary_10_1016_j_apenergy_2023_121450
crossref_primary_10_1109_TPWRS_2024_3450369
crossref_primary_10_1080_02331934_2025_2451812
crossref_primary_10_3390_electronics13091670
crossref_primary_10_1109_TII_2024_3379665
crossref_primary_10_1002_rnc_6279
crossref_primary_10_1109_TAC_2023_3273775
crossref_primary_10_3390_buildings15183298
crossref_primary_10_1016_j_ijhydene_2020_11_190
crossref_primary_10_1016_j_apenergy_2020_116303
crossref_primary_10_1016_j_jprocont_2024_103339
crossref_primary_10_1109_TCST_2019_2916753
crossref_primary_10_3390_pr11113188
crossref_primary_10_3390_en16217302
crossref_primary_10_1016_j_conengprac_2023_105769
crossref_primary_10_1016_j_energy_2022_123291
crossref_primary_10_1016_j_ifacol_2020_12_118
crossref_primary_10_1007_s00158_024_03825_8
crossref_primary_10_1016_j_rser_2020_110120
crossref_primary_10_1016_j_apenergy_2022_119334
crossref_primary_10_1016_j_jprocont_2024_103212
crossref_primary_10_1016_j_ejor_2020_11_027
crossref_primary_10_1002_aic_16963
crossref_primary_10_1109_JAS_2024_124974
crossref_primary_10_1109_TIV_2024_3449035
crossref_primary_10_1016_j_jprocont_2021_10_004
crossref_primary_10_1016_j_compchemeng_2019_03_034
crossref_primary_10_1016_j_cherd_2025_07_039
crossref_primary_10_1016_j_automatica_2020_109402
crossref_primary_10_1109_TCST_2021_3094999
crossref_primary_10_1016_j_jprocont_2021_10_008
crossref_primary_10_1016_j_jprocont_2022_04_013
crossref_primary_10_1007_s12206_024_0240_8
crossref_primary_10_1016_j_jobe_2025_113152
crossref_primary_10_1145_3459664
crossref_primary_10_3390_su12104171
crossref_primary_10_1016_j_ijepes_2024_110025
crossref_primary_10_1016_j_ijepes_2019_105800
crossref_primary_10_1016_j_jprocont_2023_03_001
crossref_primary_10_1002_cjce_25153
crossref_primary_10_1002_cta_3370
crossref_primary_10_1016_j_ifacol_2022_07_469
crossref_primary_10_1016_j_arcontrol_2020_09_001
crossref_primary_10_1002_aic_17043
crossref_primary_10_1016_j_oceaneng_2023_115578
crossref_primary_10_1016_j_rser_2022_112790
crossref_primary_10_1016_j_apenergy_2025_126256
crossref_primary_10_1016_j_apenergy_2022_120023
crossref_primary_10_1109_TITS_2024_3402365
crossref_primary_10_1109_TNNLS_2023_3262541
crossref_primary_10_1002_rnc_7010
crossref_primary_10_1016_j_apenergy_2023_122133
crossref_primary_10_1016_j_apenergy_2023_121165
crossref_primary_10_1016_j_compchemeng_2023_108461
crossref_primary_10_1287_ijoc_2022_0330
crossref_primary_10_1016_j_apenergy_2019_114381
crossref_primary_10_1016_j_apenergy_2023_122334
crossref_primary_10_1016_j_ces_2023_119112
crossref_primary_10_1016_j_cjche_2023_11_014
crossref_primary_10_1016_j_apenergy_2024_123802
crossref_primary_10_1109_TII_2020_2976043
crossref_primary_10_1016_j_cor_2022_106087
crossref_primary_10_1016_j_jfranklin_2025_107597
crossref_primary_10_1002_aic_16546
crossref_primary_10_1016_j_energy_2019_06_086
Cites_doi 10.1016/S0098-1354(98)00301-9
10.1021/acs.iecr.7b00644
10.1016/j.compchemeng.2017.07.004
10.1016/S0967-0661(02)00186-7
10.1016/0005-1098(96)00063-5
10.1016/j.jprocont.2006.06.006
10.1007/s10107-014-0789-6
10.1137/090773490
10.1016/j.jprocont.2017.10.006
10.1016/j.envsoft.2015.12.012
10.1016/j.jprocont.2016.03.005
10.1016/j.automatica.2004.08.019
10.1016/j.jprocont.2015.12.006
10.1016/j.arcontrol.2016.04.006
10.1002/aic.11801
10.1109/TCST.2013.2272178
10.1016/j.compchemeng.2017.09.026
10.1016/j.compchemeng.2017.12.002
10.1007/s10107-003-0499-y
10.1109/TAC.2012.2203054
10.1007/s10107-003-0454-y
10.1021/acs.iecr.7b00602
10.1109/TAC.2006.875041
10.1287/opre.1030.0065
10.1016/j.automatica.2005.08.023
10.1016/S0005-1098(99)00214-9
10.1016/j.buildenv.2013.11.016
10.1016/S0959-1524(02)00134-8
10.1016/S0304-4149(99)00012-5
10.1109/TSG.2014.2321762
10.1109/TCST.2013.2272179
10.1002/oca.2269
10.3354/cr002183
10.1016/j.automatica.2014.02.042
10.1016/j.automatica.2014.10.035
10.3182/20110828-6-IT-1002.01426
10.1016/j.compchemeng.2015.04.011
10.1002/aic.15717
10.1109/TAC.2011.2159422
10.1137/07069821X
10.1109/TCST.2017.2658193
10.1109/LCSYS.2018.2845108
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2018.12.013
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 39
ExternalDocumentID 10_1016_j_jprocont_2018_12_013
S0959152418305663
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-71827d7f677faf8ea9d43fd7042f5ea21f5e63fa054c8f9d9c1b6b10e1beaf953
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463983000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-1524
IngestDate Tue Nov 18 21:45:06 EST 2025
Sat Nov 29 07:05:57 EST 2025
Fri Feb 23 02:49:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chance constraints
Stochastic model predictive control
Robust model predictive control
Scenario programs
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-71827d7f677faf8ea9d43fd7042f5ea21f5e63fa054c8f9d9c1b6b10e1beaf953
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_jprocont_2018_12_013
crossref_primary_10_1016_j_jprocont_2018_12_013
elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_12_013
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ning, You (bib0115) 2018; 108
Mayne (bib0130) 2016; 41
Hokayem, Chatterjee, Lygeros (bib0150) 2009
Campi, Garatti (bib0080) 2008; 19
Calafiore (bib0085) 2010; 20
Ning, You (bib0110) 2017; 63
Rawlings, Mayne (bib0015) 2009
Mayne, Rawlings, Rao, Scokaert (bib0240) 2000; 36
Chu, You (bib0020) 2015; 83
Cherukuri, Chatterjee, Hokayem, Lygeros (bib0250) 2011; 44
Velloso, Street, Pozo, Arroyo, Cobos (bib0230) 2018
Afram, Janabi-Sharifi (bib0275) 2014; 72
Maciejowski (bib0005) 2002
Kadam, Schlegel, Srinivasan, Bonvin, Marquardt (bib0045) 2007; 17
Delgoda, Malano, Saleem, Halgamuge (bib0235) 2016; 78
Schildbach, Fagiano, Frei, Morari (bib0220) 2014; 50
Di Cairano, Bernardini, Bemporad, Kolmanovsky (bib0095) 2014; 22
Ben-Tal, Goryashko, Guslitzer, Nemirovski (bib0145) 2004; 99
Paulson, Martin-Casas, Mesbah (bib0210) 2017; 56
Zhu, Hug (bib0090) 2014; 5
Georghiou, Wiesemann, Kuhn (bib0195) 2015; 152
Kothare, Balakrishnan, Morari (bib0260) 1996; 32
Liu, Mu noz de la Pe na, Christofides (bib0030) 2009; 55
Krishnamoorthy, Suwartadi, Foss, Skogestad, Jäschke (bib0170) 2018
Ma, Borrelli, Hencey, Packard, Bortoff (bib0270) 2009
Gonçalves, Guay (bib0060) 2016; 39
Oldewurtel, Jones, Parisio, Morari (bib0205) 2014; 22
Bertsimas, Sim (bib0200) 2004; 52
Saltık, Özkan, Ludlage, Weiland, Van den Hof (bib0065) 2018; 61
Pourkargar, Almansoori, Daoutidis (bib0035) 2017; 56
Zhang, Margellos, Goulart, Lygeros (bib0165) 2013
Grosso, Velarde, Ocampo-Martinez, Maestre, Puig (bib0225) 2017; 38
Pemantle, Rosenthal (bib0255) 1999; 82
Zheng, Hunt, Running (bib0285) 1993
Mayne, Seron, Raković (bib0135) 2005; 41
Qin, Badgwell (bib0010) 2003; 11
Ben-Hur, Horn, Siegelmann, Vapnik (bib0180) 2001; 2
Christofides, El-Farra (bib0040) 2005
Farina, Giulioni, Scattolini (bib0070) 2016; 44
Paulson J.A., Buehler E.A., Braatz R.D., Mesbah A., Stochastic model predictive control with joint chance constraints. Int. J. Contr., in press.
Pannocchia (bib0050) 2003; 13
Sturzenegger, Gyalistras, Semeraro, Morari, Smith (bib0280) 2014
Morari, Lee (bib0025) 1999; 23
You K., Tempo R., Xie P., Distributed algorithms for robust convex optimization via the scenario approach. IEEE Trans. Automatic Contr., in press.
Paulson, Mesbah (bib0215) 2017
Chatterjee, Hokayem, Lygeros (bib0245) 2011; 56
Tempo, Calafiore, Dabbene (bib0190) 2012
Petersen, Tempo (bib0055) 2014; 50
Grant, Boyd, Ye (bib0265) 2008
Shang, You (bib0120) 2018; 110
Calafiore, Fagiano (bib0160) 2013; 58
Goulart, Kerrigan, Maciejowski (bib0140) 2006; 42
Moser, Schmied, Waschl, del Re (bib0100) 2018; 26
Calafiore, Campi (bib0105) 2005; 102
Calafiore, Campi (bib0075) 2006; 51
Hong, Huang, Lam (bib0185) 2016
Shang, Huang, You (bib0125) 2017; 106
Kadam (10.1016/j.jprocont.2018.12.013_bib0045) 2007; 17
Ning (10.1016/j.jprocont.2018.12.013_bib0110) 2017; 63
Shang (10.1016/j.jprocont.2018.12.013_bib0125) 2017; 106
Goulart (10.1016/j.jprocont.2018.12.013_bib0140) 2006; 42
Zhang (10.1016/j.jprocont.2018.12.013_bib0165) 2013
Mayne (10.1016/j.jprocont.2018.12.013_bib0135) 2005; 41
10.1016/j.jprocont.2018.12.013_bib0155
Campi (10.1016/j.jprocont.2018.12.013_bib0080) 2008; 19
Cherukuri (10.1016/j.jprocont.2018.12.013_bib0250) 2011; 44
Zheng (10.1016/j.jprocont.2018.12.013_bib0285) 1993
Krishnamoorthy (10.1016/j.jprocont.2018.12.013_bib0170) 2018
Petersen (10.1016/j.jprocont.2018.12.013_bib0055) 2014; 50
Mayne (10.1016/j.jprocont.2018.12.013_bib0240) 2000; 36
Calafiore (10.1016/j.jprocont.2018.12.013_bib0075) 2006; 51
Rawlings (10.1016/j.jprocont.2018.12.013_bib0015) 2009
Liu (10.1016/j.jprocont.2018.12.013_bib0030) 2009; 55
Georghiou (10.1016/j.jprocont.2018.12.013_bib0195) 2015; 152
Calafiore (10.1016/j.jprocont.2018.12.013_bib0105) 2005; 102
Afram (10.1016/j.jprocont.2018.12.013_bib0275) 2014; 72
Calafiore (10.1016/j.jprocont.2018.12.013_bib0085) 2010; 20
Shang (10.1016/j.jprocont.2018.12.013_bib0120) 2018; 110
Paulson (10.1016/j.jprocont.2018.12.013_bib0215) 2017
Chatterjee (10.1016/j.jprocont.2018.12.013_bib0245) 2011; 56
Delgoda (10.1016/j.jprocont.2018.12.013_bib0235) 2016; 78
Pourkargar (10.1016/j.jprocont.2018.12.013_bib0035) 2017; 56
Schildbach (10.1016/j.jprocont.2018.12.013_bib0220) 2014; 50
Di Cairano (10.1016/j.jprocont.2018.12.013_bib0095) 2014; 22
Ning (10.1016/j.jprocont.2018.12.013_bib0115) 2018; 108
Grosso (10.1016/j.jprocont.2018.12.013_bib0225) 2017; 38
Bertsimas (10.1016/j.jprocont.2018.12.013_bib0200) 2004; 52
Mayne (10.1016/j.jprocont.2018.12.013_bib0130) 2016; 41
Oldewurtel (10.1016/j.jprocont.2018.12.013_bib0205) 2014; 22
Velloso (10.1016/j.jprocont.2018.12.013_bib0230) 2018
Maciejowski (10.1016/j.jprocont.2018.12.013_bib0005) 2002
Morari (10.1016/j.jprocont.2018.12.013_bib0025) 1999; 23
Tempo (10.1016/j.jprocont.2018.12.013_bib0190) 2012
Christofides (10.1016/j.jprocont.2018.12.013_bib0040) 2005
Ben-Hur (10.1016/j.jprocont.2018.12.013_bib0180) 2001; 2
10.1016/j.jprocont.2018.12.013_bib0175
Pemantle (10.1016/j.jprocont.2018.12.013_bib0255) 1999; 82
Moser (10.1016/j.jprocont.2018.12.013_bib0100) 2018; 26
Kothare (10.1016/j.jprocont.2018.12.013_bib0260) 1996; 32
Grant (10.1016/j.jprocont.2018.12.013_bib0265) 2008
Ma (10.1016/j.jprocont.2018.12.013_bib0270) 2009
Saltık (10.1016/j.jprocont.2018.12.013_bib0065) 2018; 61
Paulson (10.1016/j.jprocont.2018.12.013_bib0210) 2017; 56
Ben-Tal (10.1016/j.jprocont.2018.12.013_bib0145) 2004; 99
Qin (10.1016/j.jprocont.2018.12.013_bib0010) 2003; 11
Sturzenegger (10.1016/j.jprocont.2018.12.013_bib0280) 2014
Zhu (10.1016/j.jprocont.2018.12.013_bib0090) 2014; 5
Gonçalves (10.1016/j.jprocont.2018.12.013_bib0060) 2016; 39
Chu (10.1016/j.jprocont.2018.12.013_bib0020) 2015; 83
Hokayem (10.1016/j.jprocont.2018.12.013_bib0150) 2009
Calafiore (10.1016/j.jprocont.2018.12.013_bib0160) 2013; 58
Pannocchia (10.1016/j.jprocont.2018.12.013_bib0050) 2003; 13
Hong (10.1016/j.jprocont.2018.12.013_bib0185) 2016
Farina (10.1016/j.jprocont.2018.12.013_bib0070) 2016; 44
References_xml – reference: Paulson J.A., Buehler E.A., Braatz R.D., Mesbah A., Stochastic model predictive control with joint chance constraints. Int. J. Contr., in press.
– volume: 17
  start-page: 389
  year: 2007
  end-page: 398
  ident: bib0045
  article-title: Dynamic optimization in the presence of uncertainty: From off-line nominal solution to measurement-based implementation
  publication-title: J. Process Contr.
– volume: 26
  start-page: 114
  year: 2018
  end-page: 127
  ident: bib0100
  article-title: Flexible spacing adaptive cruise control using stochastic model predictive control
  publication-title: IEEE Trans. Contr. Syst. Technol.
– volume: 41
  start-page: 219
  year: 2005
  end-page: 224
  ident: bib0135
  article-title: Robust model predictive control of constrained linear systems with bounded disturbances
  publication-title: Automatica
– volume: 63
  start-page: 3790
  year: 2017
  end-page: 3817
  ident: bib0110
  article-title: Data-driven adaptive nested robust optimization: General modeling framework and efficient computational algorithm for decision making under uncertainty
  publication-title: AIChE J.
– volume: 78
  start-page: 40
  year: 2016
  end-page: 53
  ident: bib0235
  article-title: Irrigation control based on model predictive control (mpc): Formulation of theory and validation using weather forecast data and aquacrop model
  publication-title: Environ. Model. Softw.
– start-page: 183
  year: 1993
  end-page: 191
  ident: bib0285
  article-title: A daily soil temperature model based on air temperature and precipitation for continental applications
  publication-title: Clim. Res.
– volume: 51
  start-page: 742
  year: 2006
  end-page: 753
  ident: bib0075
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. Automatic Contr.
– volume: 5
  start-page: 2044
  year: 2014
  end-page: 2053
  ident: bib0090
  article-title: Decomposed stochastic model predictive control for optimal dispatch of storage and generation
  publication-title: IEEE Trans. Smart Grid
– start-page: 389
  year: 2016
  end-page: 400
  ident: bib0185
  article-title: Approximating data-driven joint chance-constrained programs via uncertainty set construction
  publication-title: Winter Simulation Conference (WSC)
– volume: 23
  start-page: 667
  year: 1999
  end-page: 682
  ident: bib0025
  article-title: Model predictive control: past, present and future
  publication-title: Comput. Chem. Eng.
– year: 2012
  ident: bib0190
  article-title: Randomized Algorithms for Analysis and Control of Uncertain Systems: With Applications
– volume: 20
  start-page: 3427
  year: 2010
  end-page: 3464
  ident: bib0085
  article-title: Random convex programs
  publication-title: SIAM J. Optimization
– volume: 50
  start-page: 1315
  year: 2014
  end-page: 1335
  ident: bib0055
  article-title: Robust control of uncertain systems: classical results and recent developments
  publication-title: Automatica
– volume: 41
  start-page: 184
  year: 2016
  end-page: 192
  ident: bib0130
  article-title: Robust and stochastic model predictive control: Are we going in the right direction
  publication-title: Annu. Rev. Contr.
– year: 2017
  ident: bib0215
  article-title: An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems
  publication-title: Int. J. Robust Nonlinear Contr.
– volume: 38
  start-page: 541
  year: 2017
  end-page: 558
  ident: bib0225
  article-title: Stochastic model predictive control approaches applied to drinking water networks
  publication-title: Optimal Contr. Appl. Methods
– year: 2002
  ident: bib0005
  article-title: Predictive Control with Constraints
– volume: 22
  start-page: 1198
  year: 2014
  end-page: 1205
  ident: bib0205
  article-title: Stochastic model predictive control for building climate control
  publication-title: IEEE Trans. Contr. Syst. Technol.
– volume: 36
  start-page: 789
  year: 2000
  end-page: 814
  ident: bib0240
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
– volume: 55
  start-page: 1171
  year: 2009
  end-page: 1184
  ident: bib0030
  article-title: Distributed model predictive control of nonlinear process systems
  publication-title: AIChE J.
– year: 2005
  ident: bib0040
  article-title: Control of nonlinear and hybrid process systems: Designs for uncertainty, constraints and time-delays; vol. 324
– start-page: 6359
  year: 2009
  end-page: 6364
  ident: bib0150
  article-title: On stochastic receding horizon control with bounded control inputs.
  publication-title: In: Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009
– volume: 99
  start-page: 351
  year: 2004
  end-page: 376
  ident: bib0145
  article-title: Adjustable robust solutions of uncertain linear programs
  publication-title: Math. Program.
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib0275
  article-title: Theory and applications of hvac control systems-a review of model predictive control (mpc)
  publication-title: Build. Environ.
– volume: 102
  start-page: 25
  year: 2005
  end-page: 46
  ident: bib0105
  article-title: Uncertain convex programs: Randomized solutions and confidence levels
  publication-title: Math. Program.
– volume: 82
  start-page: 143
  year: 1999
  end-page: 155
  ident: bib0255
  article-title: Moment conditions for a sequence with negative drift to be uniformly bounded in
  publication-title: Stochastic Processes and their Applications
– volume: 58
  start-page: 219
  year: 2013
  end-page: 224
  ident: bib0160
  article-title: Robust model predictive control via scenario optimization
  publication-title: IEEE Trans. Automatic Contr.
– volume: 52
  start-page: 35
  year: 2004
  end-page: 53
  ident: bib0200
  article-title: The price of robustness
  publication-title: Oper. Res.
– volume: 56
  start-page: 2704
  year: 2011
  end-page: 2710
  ident: bib0245
  article-title: Stochastic receding horizon control with bounded control inputs: A vector space approach
  publication-title: IEEE Trans. Automatic Contr.
– volume: 83
  start-page: 2
  year: 2015
  end-page: 20
  ident: bib0020
  article-title: Model-based integration of control and operations: Overview, challenges, advances, and opportunities
  publication-title: Comput. Chem. Eng.
– volume: 39
  start-page: 111
  year: 2016
  end-page: 122
  ident: bib0060
  article-title: Robust discrete-time set-based adaptive predictive control for nonlinear systems
  publication-title: J. Process Contr.
– volume: 42
  start-page: 523
  year: 2006
  end-page: 533
  ident: bib0140
  article-title: Optimization over state feedback policies for robust control with constraints
  publication-title: Automatica
– volume: 44
  start-page: 150
  year: 2011
  end-page: 155
  ident: bib0250
  article-title: Stochastic receding horizon control: Stability results
  publication-title: IFAC Proceedings Volumes
– start-page: 1063
  year: 2014
  end-page: 1069
  ident: bib0280
  article-title: Brcm matlab toolbox: Model generation for model predictive building control
  publication-title: American Control Conference (ACC)
– volume: 44
  start-page: 53
  year: 2016
  end-page: 67
  ident: bib0070
  article-title: Stochastic linear model predictive control with chance constraints-a review
  publication-title: J. Process Contr.
– volume: 106
  start-page: 464
  year: 2017
  end-page: 479
  ident: bib0125
  article-title: Data-driven robust optimization based on kernel learning
  publication-title: Comput. Chem. Eng.
– volume: 56
  start-page: 9593
  year: 2017
  end-page: 9605
  ident: bib0210
  article-title: Input design for online fault diagnosis of nonlinear systems with stochastic uncertainty
  publication-title: Ind. Eng. Chem. Res.
– volume: 2
  start-page: 125
  year: 2001
  end-page: 137
  ident: bib0180
  article-title: Support vector clustering
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1018
  year: 2014
  end-page: 1031
  ident: bib0095
  article-title: Stochastic mpc with learning for driver-predictive vehicle control and its application to hev energy management
  publication-title: IEEE Trans. Contr. Syst. Technol.
– volume: 11
  start-page: 733
  year: 2003
  end-page: 764
  ident: bib0010
  article-title: A survey of industrial model predictive control technology
  publication-title: Contr. Eng. Pract.
– start-page: 7740
  year: 2013
  end-page: 7745
  ident: bib0165
  article-title: Stochastic model predictive control using a combination of randomized and robust optimization.
  publication-title: In: IEEE 52nd Annual Conference on Decision and Control (CDC)
– year: 2008
  ident: bib0265
  article-title: Cvx: Matlab software for disciplined convex programming
– volume: 61
  start-page: 77
  year: 2018
  end-page: 102
  ident: bib0065
  article-title: An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects
  publication-title: J. Process Contr.
– volume: 152
  start-page: 301
  year: 2015
  end-page: 338
  ident: bib0195
  article-title: Generalized decision rule approximations for stochastic programming via liftings
  publication-title: Math. Program.
– year: 2009
  ident: bib0015
  article-title: Model Predictive Control: Theory and Design
– volume: 56
  start-page: 9606
  year: 2017
  end-page: 9616
  ident: bib0035
  article-title: Impact of decomposition on distributed model predictive control: A process network case study
  publication-title: Ind. Eng. Chem. Res.
– year: 2018
  ident: bib0230
  article-title: Scenario-based uncertainty set for two-stage robust energy and reserve scheduling: A data-driven approach arXiv
– volume: 13
  start-page: 693
  year: 2003
  end-page: 701
  ident: bib0050
  article-title: Robust disturbance modeling for model predictive control with application to multivariable ill-conditioned processes
  publication-title: J. Process Contr.
– year: 2018
  ident: bib0170
  article-title: Improving scenario decomposition for multistage mpc using a sensitivity-based path-following algorithm.
  publication-title: IEEE Control Systems Letters
– start-page: 392
  year: 2009
  end-page: 397
  ident: bib0270
  article-title: Model predictive control of thermal energy storage in building cooling systems.
  publication-title: In: Proceedings of the 48th IEEE Conference on Decision and Control
– volume: 19
  start-page: 1211
  year: 2008
  end-page: 1230
  ident: bib0080
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM J. Optimiz.
– volume: 50
  start-page: 3009
  year: 2014
  end-page: 3018
  ident: bib0220
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
– volume: 108
  start-page: 425
  year: 2018
  end-page: 447
  ident: bib0115
  article-title: Adaptive robust optimization with minimax regret criterion: Multiobjective optimization framework and computational algorithm for planning and scheduling under uncertainty
  publication-title: Comput. Chem. Eng.
– reference: You K., Tempo R., Xie P., Distributed algorithms for robust convex optimization via the scenario approach. IEEE Trans. Automatic Contr., in press.
– volume: 110
  start-page: 53
  year: 2018
  end-page: 68
  ident: bib0120
  article-title: Distributionally robust optimization for planning and scheduling under uncertainty
  publication-title: Comput. Chem. Eng.
– volume: 32
  start-page: 1361
  year: 1996
  end-page: 1379
  ident: bib0260
  article-title: Robust constrained model predictive control using linear matrix inequalities
  publication-title: Automatica
– volume: 23
  start-page: 667
  issue: 4-5
  year: 1999
  ident: 10.1016/j.jprocont.2018.12.013_bib0025
  article-title: Model predictive control: past, present and future
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00301-9
– year: 2008
  ident: 10.1016/j.jprocont.2018.12.013_bib0265
– volume: 56
  start-page: 9606
  issue: 34
  year: 2017
  ident: 10.1016/j.jprocont.2018.12.013_bib0035
  article-title: Impact of decomposition on distributed model predictive control: A process network case study
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00644
– volume: 106
  start-page: 464
  year: 2017
  ident: 10.1016/j.jprocont.2018.12.013_bib0125
  article-title: Data-driven robust optimization based on kernel learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.07.004
– volume: 11
  start-page: 733
  issue: 7
  year: 2003
  ident: 10.1016/j.jprocont.2018.12.013_bib0010
  article-title: A survey of industrial model predictive control technology
  publication-title: Contr. Eng. Pract.
  doi: 10.1016/S0967-0661(02)00186-7
– volume: 32
  start-page: 1361
  issue: 10
  year: 1996
  ident: 10.1016/j.jprocont.2018.12.013_bib0260
  article-title: Robust constrained model predictive control using linear matrix inequalities
  publication-title: Automatica
  doi: 10.1016/0005-1098(96)00063-5
– volume: 17
  start-page: 389
  issue: 5
  year: 2007
  ident: 10.1016/j.jprocont.2018.12.013_bib0045
  article-title: Dynamic optimization in the presence of uncertainty: From off-line nominal solution to measurement-based implementation
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2006.06.006
– volume: 152
  start-page: 301
  issue: 1-2
  year: 2015
  ident: 10.1016/j.jprocont.2018.12.013_bib0195
  article-title: Generalized decision rule approximations for stochastic programming via liftings
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0789-6
– volume: 20
  start-page: 3427
  issue: 6
  year: 2010
  ident: 10.1016/j.jprocont.2018.12.013_bib0085
  article-title: Random convex programs
  publication-title: SIAM J. Optimization
  doi: 10.1137/090773490
– volume: 2
  start-page: 125
  issue: Dec
  year: 2001
  ident: 10.1016/j.jprocont.2018.12.013_bib0180
  article-title: Support vector clustering
  publication-title: J. Mach. Learn. Res.
– start-page: 1063
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0280
  article-title: Brcm matlab toolbox: Model generation for model predictive building control
– volume: 61
  start-page: 77
  year: 2018
  ident: 10.1016/j.jprocont.2018.12.013_bib0065
  article-title: An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2017.10.006
– year: 2017
  ident: 10.1016/j.jprocont.2018.12.013_bib0215
  article-title: An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems
  publication-title: Int. J. Robust Nonlinear Contr.
– year: 2002
  ident: 10.1016/j.jprocont.2018.12.013_bib0005
– year: 2012
  ident: 10.1016/j.jprocont.2018.12.013_bib0190
– volume: 78
  start-page: 40
  year: 2016
  ident: 10.1016/j.jprocont.2018.12.013_bib0235
  article-title: Irrigation control based on model predictive control (mpc): Formulation of theory and validation using weather forecast data and aquacrop model
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.12.012
– volume: 44
  start-page: 53
  year: 2016
  ident: 10.1016/j.jprocont.2018.12.013_bib0070
  article-title: Stochastic linear model predictive control with chance constraints-a review
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2016.03.005
– volume: 41
  start-page: 219
  issue: 2
  year: 2005
  ident: 10.1016/j.jprocont.2018.12.013_bib0135
  article-title: Robust model predictive control of constrained linear systems with bounded disturbances
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.08.019
– start-page: 6359
  year: 2009
  ident: 10.1016/j.jprocont.2018.12.013_bib0150
  article-title: On stochastic receding horizon control with bounded control inputs.
– volume: 39
  start-page: 111
  year: 2016
  ident: 10.1016/j.jprocont.2018.12.013_bib0060
  article-title: Robust discrete-time set-based adaptive predictive control for nonlinear systems
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2015.12.006
– volume: 41
  start-page: 184
  year: 2016
  ident: 10.1016/j.jprocont.2018.12.013_bib0130
  article-title: Robust and stochastic model predictive control: Are we going in the right direction
  publication-title: Annu. Rev. Contr.
  doi: 10.1016/j.arcontrol.2016.04.006
– volume: 55
  start-page: 1171
  issue: 5
  year: 2009
  ident: 10.1016/j.jprocont.2018.12.013_bib0030
  article-title: Distributed model predictive control of nonlinear process systems
  publication-title: AIChE J.
  doi: 10.1002/aic.11801
– volume: 22
  start-page: 1198
  issue: 3
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0205
  article-title: Stochastic model predictive control for building climate control
  publication-title: IEEE Trans. Contr. Syst. Technol.
  doi: 10.1109/TCST.2013.2272178
– ident: 10.1016/j.jprocont.2018.12.013_bib0175
– volume: 108
  start-page: 425
  year: 2018
  ident: 10.1016/j.jprocont.2018.12.013_bib0115
  article-title: Adaptive robust optimization with minimax regret criterion: Multiobjective optimization framework and computational algorithm for planning and scheduling under uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.026
– volume: 110
  start-page: 53
  year: 2018
  ident: 10.1016/j.jprocont.2018.12.013_bib0120
  article-title: Distributionally robust optimization for planning and scheduling under uncertainty
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.12.002
– volume: 102
  start-page: 25
  issue: 1
  year: 2005
  ident: 10.1016/j.jprocont.2018.12.013_bib0105
  article-title: Uncertain convex programs: Randomized solutions and confidence levels
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0499-y
– volume: 58
  start-page: 219
  issue: 1
  year: 2013
  ident: 10.1016/j.jprocont.2018.12.013_bib0160
  article-title: Robust model predictive control via scenario optimization
  publication-title: IEEE Trans. Automatic Contr.
  doi: 10.1109/TAC.2012.2203054
– volume: 99
  start-page: 351
  issue: 2
  year: 2004
  ident: 10.1016/j.jprocont.2018.12.013_bib0145
  article-title: Adjustable robust solutions of uncertain linear programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0454-y
– start-page: 7740
  year: 2013
  ident: 10.1016/j.jprocont.2018.12.013_bib0165
  article-title: Stochastic model predictive control using a combination of randomized and robust optimization.
– volume: 56
  start-page: 9593
  issue: 34
  year: 2017
  ident: 10.1016/j.jprocont.2018.12.013_bib0210
  article-title: Input design for online fault diagnosis of nonlinear systems with stochastic uncertainty
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b00602
– volume: 51
  start-page: 742
  issue: 5
  year: 2006
  ident: 10.1016/j.jprocont.2018.12.013_bib0075
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. Automatic Contr.
  doi: 10.1109/TAC.2006.875041
– start-page: 392
  year: 2009
  ident: 10.1016/j.jprocont.2018.12.013_bib0270
  article-title: Model predictive control of thermal energy storage in building cooling systems.
– year: 2005
  ident: 10.1016/j.jprocont.2018.12.013_bib0040
– volume: 52
  start-page: 35
  issue: 1
  year: 2004
  ident: 10.1016/j.jprocont.2018.12.013_bib0200
  article-title: The price of robustness
  publication-title: Oper. Res.
  doi: 10.1287/opre.1030.0065
– volume: 42
  start-page: 523
  issue: 4
  year: 2006
  ident: 10.1016/j.jprocont.2018.12.013_bib0140
  article-title: Optimization over state feedback policies for robust control with constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.08.023
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  ident: 10.1016/j.jprocont.2018.12.013_bib0240
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– year: 2009
  ident: 10.1016/j.jprocont.2018.12.013_bib0015
– ident: 10.1016/j.jprocont.2018.12.013_bib0155
– start-page: 389
  year: 2016
  ident: 10.1016/j.jprocont.2018.12.013_bib0185
  article-title: Approximating data-driven joint chance-constrained programs via uncertainty set construction
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0275
  article-title: Theory and applications of hvac control systems-a review of model predictive control (mpc)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.016
– volume: 13
  start-page: 693
  issue: 8
  year: 2003
  ident: 10.1016/j.jprocont.2018.12.013_bib0050
  article-title: Robust disturbance modeling for model predictive control with application to multivariable ill-conditioned processes
  publication-title: J. Process Contr.
  doi: 10.1016/S0959-1524(02)00134-8
– volume: 82
  start-page: 143
  issue: 1
  year: 1999
  ident: 10.1016/j.jprocont.2018.12.013_bib0255
  article-title: Moment conditions for a sequence with negative drift to be uniformly bounded in lr
  publication-title: Stochastic Processes and their Applications
  doi: 10.1016/S0304-4149(99)00012-5
– volume: 5
  start-page: 2044
  issue: 4
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0090
  article-title: Decomposed stochastic model predictive control for optimal dispatch of storage and generation
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2321762
– volume: 22
  start-page: 1018
  issue: 3
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0095
  article-title: Stochastic mpc with learning for driver-predictive vehicle control and its application to hev energy management
  publication-title: IEEE Trans. Contr. Syst. Technol.
  doi: 10.1109/TCST.2013.2272179
– volume: 38
  start-page: 541
  issue: 4
  year: 2017
  ident: 10.1016/j.jprocont.2018.12.013_bib0225
  article-title: Stochastic model predictive control approaches applied to drinking water networks
  publication-title: Optimal Contr. Appl. Methods
  doi: 10.1002/oca.2269
– start-page: 183
  year: 1993
  ident: 10.1016/j.jprocont.2018.12.013_bib0285
  article-title: A daily soil temperature model based on air temperature and precipitation for continental applications
  publication-title: Clim. Res.
  doi: 10.3354/cr002183
– volume: 50
  start-page: 1315
  issue: 5
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0055
  article-title: Robust control of uncertain systems: classical results and recent developments
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.02.042
– volume: 50
  start-page: 3009
  issue: 12
  year: 2014
  ident: 10.1016/j.jprocont.2018.12.013_bib0220
  article-title: The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.035
– volume: 44
  start-page: 150
  issue: 1
  year: 2011
  ident: 10.1016/j.jprocont.2018.12.013_bib0250
  article-title: Stochastic receding horizon control: Stability results
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20110828-6-IT-1002.01426
– volume: 83
  start-page: 2
  year: 2015
  ident: 10.1016/j.jprocont.2018.12.013_bib0020
  article-title: Model-based integration of control and operations: Overview, challenges, advances, and opportunities
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.04.011
– volume: 63
  start-page: 3790
  issue: 9
  year: 2017
  ident: 10.1016/j.jprocont.2018.12.013_bib0110
  article-title: Data-driven adaptive nested robust optimization: General modeling framework and efficient computational algorithm for decision making under uncertainty
  publication-title: AIChE J.
  doi: 10.1002/aic.15717
– volume: 56
  start-page: 2704
  issue: 11
  year: 2011
  ident: 10.1016/j.jprocont.2018.12.013_bib0245
  article-title: Stochastic receding horizon control with bounded control inputs: A vector space approach
  publication-title: IEEE Trans. Automatic Contr.
  doi: 10.1109/TAC.2011.2159422
– volume: 19
  start-page: 1211
  issue: 3
  year: 2008
  ident: 10.1016/j.jprocont.2018.12.013_bib0080
  article-title: The exact feasibility of randomized solutions of uncertain convex programs
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/07069821X
– year: 2018
  ident: 10.1016/j.jprocont.2018.12.013_bib0230
– volume: 26
  start-page: 114
  issue: 1
  year: 2018
  ident: 10.1016/j.jprocont.2018.12.013_bib0100
  article-title: Flexible spacing adaptive cruise control using stochastic model predictive control
  publication-title: IEEE Trans. Contr. Syst. Technol.
  doi: 10.1109/TCST.2017.2658193
– year: 2018
  ident: 10.1016/j.jprocont.2018.12.013_bib0170
  article-title: Improving scenario decomposition for multistage mpc using a sensitivity-based path-following algorithm.
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2018.2845108
SSID ssj0003726
Score 2.5859878
Snippet •A novel data-driven approach is proposed for stochastic model predictive control.•Support vector clustering is adopted to learn an uncertainty set from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Chance constraints
Machine learning
Robust model predictive control
Scenario programs
Stochastic model predictive control
Title A data-driven robust optimization approach to scenario-based stochastic model predictive control
URI https://dx.doi.org/10.1016/j.jprocont.2018.12.013
Volume 75
WOSCitedRecordID wos000463983000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wAHGAPEgE0-cKsCcRzH8bGahmCHCYkh9RYc_2CtICltNu3P33PspB4MDYS4WFVUp47fl89fn94PhF6DAshTIF94kXKV5Flqk7Iu04RZrQpXLpwR2zeb4Ccn5WwmPoZw23XfToA3TXl5KZb_1dRwDYztUmf_wtzjTeECfAajwwhmh_GPDD-duKjPRK8cj01WbX2-7iYtMMP3kHI51hF3utMVc4K_y23ijjM9ASmozqSr3ex75LgaAnrec-IQ1f4bObv0GQfXvtWXfgwO6cMz2UYU04tm03z9MY_9Di7VicZ-hzEhZhN9NHgVQRJ4H4HxnFpymmTcd1oZSJezmDXz6Pz1tY1-YXbvZFi8WbjHgSdxUXll78n1uaw_Vc3-5FbiFgKUBRqvoHfRdsaZAOLbnn44mh2PxzXlfU--ceVRGvnNv3azgolUyekOehj2H089DB6jO6bZRY-GVh04MPcuehDVnXyCvkxxhBHsMYJjjOABI7hr8XWM4A1GcI8RvMEIDtZ_ij6_Ozo9fJ-EVhuJornoElAoGdfcFpxbaUsjhc6p1Rwo3TIjMwJjQa0Ega9KK7RQpC5qkhpSG2kFo8_QVtM25jnCLKeSpXATbWiuJJXE1jJPMyADTYjle4gN21epUIfetUP5Vg0Bh4tq2PbKbXtFsgq2fQ-9HectfSWWW2eIwTpV0JNeJ1YAqlvmvviHuS_R_c0L8wptdatzs4_uqYtuvl4dBPxdAYMuo4A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+robust+optimization+approach+to+scenario-based+stochastic+model+predictive+control&rft.jtitle=Journal+of+process+control&rft.au=Shang%2C+Chao&rft.au=You%2C+Fengqi&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=75&rft.spage=24&rft.epage=39&rft_id=info:doi/10.1016%2Fj.jprocont.2018.12.013&rft.externalDocID=S0959152418305663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon