Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule

•Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to automatically learn the patterns inherent in the nonlinear process and extract key features.•New monitoring statistics that are HD2 and RD2 ar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of process control Ročník 64; s. 49 - 61
Hlavní autori: Zhang, Zehan, Jiang, Teng, Li, Shuanghong, Yang, Yupu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2018
Predmet:
ISSN:0959-1524, 1873-2771
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to automatically learn the patterns inherent in the nonlinear process and extract key features.•New monitoring statistics that are HD2 and RD2 are constructed based on kNN rule using the extracted key features.•The effectiveness of the proposed method is verified by two case studies including a nonlinear numerical example and TE benchmark process. Modern industrial processes have become increasingly complicated, consequently, the nonlinearity of data collected from these systems continues to increase. However, the feature extraction methods of existing process monitoring are not capable of extracting crucial features from these highly nonlinear data, which affects the performance of monitoring. In this paper, a novel nonlinear process monitoring method based on stacked denoising autoencoder (SDAE) and k-nearest neighbor (kNN) rule is proposed. Specifically, stacked denoising autoencoder is utilized to model the nonlinear process data and automatically extract crucial features. The original nonlinear space is then mapped to the feature space and the residual space via SDAE. Two new statistics in the above spaces are constructed by introducing the kNN rule with their corresponding control limits determined by kernel density estimation. Case studies on a nonlinear numerical system and the Tennessee Eastman benchmark process verify the effectiveness of the proposed method.
AbstractList •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to automatically learn the patterns inherent in the nonlinear process and extract key features.•New monitoring statistics that are HD2 and RD2 are constructed based on kNN rule using the extracted key features.•The effectiveness of the proposed method is verified by two case studies including a nonlinear numerical example and TE benchmark process. Modern industrial processes have become increasingly complicated, consequently, the nonlinearity of data collected from these systems continues to increase. However, the feature extraction methods of existing process monitoring are not capable of extracting crucial features from these highly nonlinear data, which affects the performance of monitoring. In this paper, a novel nonlinear process monitoring method based on stacked denoising autoencoder (SDAE) and k-nearest neighbor (kNN) rule is proposed. Specifically, stacked denoising autoencoder is utilized to model the nonlinear process data and automatically extract crucial features. The original nonlinear space is then mapped to the feature space and the residual space via SDAE. Two new statistics in the above spaces are constructed by introducing the kNN rule with their corresponding control limits determined by kernel density estimation. Case studies on a nonlinear numerical system and the Tennessee Eastman benchmark process verify the effectiveness of the proposed method.
Author Zhang, Zehan
Li, Shuanghong
Jiang, Teng
Yang, Yupu
Author_xml – sequence: 1
  givenname: Zehan
  surname: Zhang
  fullname: Zhang, Zehan
  email: zehanzhang@126.com
– sequence: 2
  givenname: Teng
  surname: Jiang
  fullname: Jiang, Teng
– sequence: 3
  givenname: Shuanghong
  surname: Li
  fullname: Li, Shuanghong
– sequence: 4
  givenname: Yupu
  surname: Yang
  fullname: Yang, Yupu
BookMark eNqFkMtKBDEQRYMoOD5-QfID3Vb6lWlw4SC-QHCj65BJKjMZe5IhyQju3Lv0D_0S0z42btxUwU3uvdQ5ILvOOyTkhEHJgHWnq3K1CV55l8oK2LSEqgRodsiETXldVJyzXTKBvu0L1lbNPjmIcQUANa-6CXmbbZNfy4SaGpRpG5AOKIOzbkGNDzR3DdZlhY4dGCNde2eTD-OHj9d3OnNUbvKbVEu6jaMak1RPOU-j8_ZLkbkDnfIaA5VO06diTMSYqEO7WM5zT9gOeET2jBwiHv_sQ_J4dflwcVPc3V_fXszuClU3fSo4cN7AFBvNWtMoAwa6ea1QSzB5tJ3kvWLVvOGq74Aj9qYGxXQ7WroG6kNy9p2rgo8xoBHKJplsJhikHQQDMYIVK_ELVoxgBVQig8327o99E-xahpf_jeffRszHPVsMIiqbuaC2AVUS2tv_Ij4B9bCfOQ
CitedBy_id crossref_primary_10_1016_j_jprocont_2019_01_008
crossref_primary_10_3390_su16093581
crossref_primary_10_1016_j_jprocont_2020_06_001
crossref_primary_10_3390_app8122630
crossref_primary_10_1109_TIM_2020_3039614
crossref_primary_10_1016_j_jtice_2021_104200
crossref_primary_10_1080_00207543_2021_1968061
crossref_primary_10_1016_j_compchemeng_2022_107884
crossref_primary_10_1109_TCYB_2021_3109618
crossref_primary_10_3390_min11101106
crossref_primary_10_1016_j_scs_2019_101847
crossref_primary_10_1109_TDSC_2025_3561052
crossref_primary_10_1016_j_jii_2022_100410
crossref_primary_10_1016_j_compchemeng_2020_106843
crossref_primary_10_1016_j_jtice_2021_11_007
crossref_primary_10_1007_s10994_022_06153_4
crossref_primary_10_1016_j_conengprac_2022_105304
crossref_primary_10_1016_j_jprocont_2020_08_002
crossref_primary_10_1088_1361_6501_ab48c7
crossref_primary_10_1016_j_chemolab_2020_104219
crossref_primary_10_1016_j_psep_2023_02_078
crossref_primary_10_1016_j_conengprac_2020_104330
crossref_primary_10_1016_j_ins_2020_06_062
crossref_primary_10_1109_TII_2023_3240601
crossref_primary_10_1016_j_asoc_2019_105526
crossref_primary_10_1016_j_engappai_2023_107839
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_1016_j_eswa_2022_117390
crossref_primary_10_1016_j_chemolab_2022_104711
crossref_primary_10_3390_s20226612
crossref_primary_10_1016_j_jprocont_2021_02_002
crossref_primary_10_1080_10589759_2025_2491731
crossref_primary_10_1016_j_isatra_2021_04_042
crossref_primary_10_1007_s11004_025_10223_3
crossref_primary_10_1177_01423312211037621
crossref_primary_10_1016_j_jprocont_2020_05_015
crossref_primary_10_1007_s41748_022_00317_x
crossref_primary_10_1109_TII_2021_3078414
crossref_primary_10_1109_ACCESS_2019_2962775
crossref_primary_10_1016_j_engappai_2024_108051
crossref_primary_10_1016_j_jprocont_2021_09_004
crossref_primary_10_1109_ACCESS_2019_2894764
crossref_primary_10_1080_00224065_2021_1903821
crossref_primary_10_1016_j_dyepig_2021_109985
crossref_primary_10_1002_cem_3168
crossref_primary_10_1007_s00521_021_06575_6
crossref_primary_10_1016_j_asoc_2022_108898
crossref_primary_10_1016_j_ces_2022_117556
crossref_primary_10_1002_cjce_25145
crossref_primary_10_1016_j_asoc_2021_108235
crossref_primary_10_1016_j_compchemeng_2020_106755
crossref_primary_10_3390_act13110440
crossref_primary_10_1109_TNNLS_2021_3086323
crossref_primary_10_1016_j_measurement_2020_108782
crossref_primary_10_1016_j_jwpe_2021_102206
crossref_primary_10_1007_s11432_020_2964_7
crossref_primary_10_1016_j_isatra_2021_04_014
crossref_primary_10_1109_ACCESS_2020_2978112
crossref_primary_10_1002_aic_16452
crossref_primary_10_1007_s00500_020_05384_8
crossref_primary_10_1016_j_asr_2024_09_013
crossref_primary_10_1109_ACCESS_2023_3334012
crossref_primary_10_3390_jtaer18040110
crossref_primary_10_1007_s11814_021_0894_1
crossref_primary_10_1016_j_apenergy_2018_10_113
crossref_primary_10_1016_j_jfranklin_2021_11_016
crossref_primary_10_1007_s00500_020_04717_x
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_1177_01423312231157118
crossref_primary_10_3390_electronics8111267
crossref_primary_10_1002_cjce_23669
crossref_primary_10_1016_j_compchemeng_2022_107853
crossref_primary_10_1002_cjce_24750
crossref_primary_10_1016_j_jprocont_2022_07_012
crossref_primary_10_1016_j_jprocont_2024_103176
crossref_primary_10_1016_j_jtice_2021_06_015
crossref_primary_10_1016_j_engappai_2023_106424
crossref_primary_10_1109_ACCESS_2020_3003095
crossref_primary_10_1007_s00170_024_13932_x
crossref_primary_10_3390_pr10020335
crossref_primary_10_1016_j_cmpb_2018_10_004
crossref_primary_10_1177_15501477211055931
crossref_primary_10_1109_TII_2022_3213819
crossref_primary_10_1002_cjce_24404
crossref_primary_10_3390_s25041256
crossref_primary_10_1109_JIOT_2024_3496927
crossref_primary_10_1016_j_eswa_2022_117919
crossref_primary_10_1088_1361_6501_ac7b6c
crossref_primary_10_3390_pr7070411
crossref_primary_10_1109_TNNLS_2024_3435519
crossref_primary_10_1007_s12555_021_0323_6
crossref_primary_10_1016_j_chemolab_2022_104624
crossref_primary_10_1016_j_isatra_2023_04_035
crossref_primary_10_3390_electronics9060940
crossref_primary_10_1111_exsy_13486
crossref_primary_10_1108_AA_09_2021_0123
crossref_primary_10_1016_j_ces_2022_117637
crossref_primary_10_1016_j_eswa_2023_120097
Cites_doi 10.1016/j.arcontrol.2012.09.004
10.1016/0098-1354(92)80051-A
10.1016/j.ces.2011.07.001
10.1109/ACCESS.2017.2756872
10.1016/j.ces.2009.01.050
10.1021/ie503034j
10.1016/j.jprocont.2012.06.009
10.1016/0098-1354(95)00003-K
10.1016/j.chemolab.2004.05.001
10.1021/ie9019402
10.1016/0098-1354(93)80018-I
10.1214/aoms/1177704472
10.1016/j.ces.2003.09.012
10.1109/TSM.2007.907607
10.1002/cjce.5450690105
10.1016/j.automatica.2007.02.016
10.1016/j.ces.2004.08.007
10.1016/j.jprocont.2016.01.001
10.1016/j.chemolab.2016.03.006
10.1016/j.csda.2003.10.013
10.1002/cem.800
10.1002/aic.14335
10.1021/ie302069q
10.1016/0098-1354(94)00057-U
10.1016/j.jprocont.2010.03.003
10.1021/ie5025358
10.1016/j.ces.2004.07.019
10.1016/j.chemolab.2013.06.013
10.1126/science.1127647
10.1021/acs.iecr.5b02266
10.1016/j.jprocont.2009.07.011
10.21437/Interspeech.2013-130
10.1016/0959-1524(96)00010-8
10.1016/S0169-7439(99)00061-1
10.1016/j.ces.2017.04.048
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2018.02.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 61
ExternalDocumentID 10_1016_j_jprocont_2018_02_004
S095915241830026X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-7077408e4d15f4cf0f06b3ceda0feda56a79c12b47c9607ee9f30c1d58e4d6403
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436213200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-1524
IngestDate Sat Nov 29 07:47:19 EST 2025
Tue Nov 18 21:56:39 EST 2025
Fri Feb 23 02:16:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Nonlinear process monitoring
Stacked denoising autoencoder
Automated feature learning
k-Nearest neighbor rule
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-7077408e4d15f4cf0f06b3ceda0feda56a79c12b47c9607ee9f30c1d58e4d6403
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_jprocont_2018_02_004
crossref_primary_10_1016_j_jprocont_2018_02_004
elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_02_004
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Yang (bib0060) 2016; 153
Yu, Khan (bib0135) 2017
Friedman, Hastie, Tibshirani (bib0180) 2001; vol. 1
Ge, Song, Ding, Huang (bib0045) 2017; 5
Mugdadi, Ahmad (bib0200) 2004; 47
Russell, Chiang, Braatz (bib0040) 2012
Ge (bib0030) 2017
Ge, Song (bib0220) 2010; 49
Lee, Yoo, Choi, Vanrolleghem, Lee (bib0090) 2004; 59
Mahadevan, Shah (bib0055) 2009; 19
Cho, Lee, Choi, Lee, Lee (bib0115) 2005; 60
Glorot, Bordes, Bengio (bib0155) 2011
Ge, Yang, Song (bib0085) 2009; 64
Yin, Ding, Haghani, Hao, Zhang (bib0035) 2012; 22
Martin, Morris (bib0195) 1996; 6
Kruger, Kumar, Littler (bib0080) 2007; 43
Li, Yang (bib0130) 2014; 54
Kresta, MacGregor, Marlin (bib0015) 1991; 69
Dong, McAvoy (bib0100) 1996; 20
Joe Qin (bib0020) 2003; 17
Wang, Shi, Yeung (bib0175) 2015
Luo, Bao, Mao, Tang (bib0140) 2015; 54
Chiang, Russell, Braatz (bib0070) 2000; 50
Hinton, Salakhutdinov (bib0170) 2006; 313
Downs, Vogel (bib0205) 1993; 17
Lu, Tsao, Matsuda, Hori (bib0160) 2013
Huang, Yan (bib0215) 2016; 39
He, Wang (bib0185) 2007; 20
Jiang, Yan (bib0075) 2014; 60
Choi, Lee, Lee, Park, Lee (bib0120) 2005; 75
Choi, Lee (bib0125) 2004; 59
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0145) 2010; 11
Jiang, Yan (bib0065) 2013; 127
Vincent, Larochelle, Bengio, Manzagol (bib0150) 2008
Qin (bib0025) 2012; 36
Parzen (bib0190) 1962; 33
Ge, Gao, Song (bib0110) 2011; 66
Ge, Song, Gao (bib0010) 2013; 52
Lyman, Georgakis (bib0210) 1995; 19
Kramer (bib0095) 1992; 16
Wang, Guo, Zhang, Ororbia, Xing, Liu, Giles (bib0165) 2017
Chiang, Braatz, Russell (bib0005) 2001
Ge, Zhang, Song (bib0105) 2010; 20
Huang, Yan (bib0050) 2015; 54
Choi (10.1016/j.jprocont.2018.02.004_bib0120) 2005; 75
Joe Qin (10.1016/j.jprocont.2018.02.004_bib0020) 2003; 17
Cho (10.1016/j.jprocont.2018.02.004_bib0115) 2005; 60
Ge (10.1016/j.jprocont.2018.02.004_bib0220) 2010; 49
Ge (10.1016/j.jprocont.2018.02.004_bib0085) 2009; 64
Ge (10.1016/j.jprocont.2018.02.004_bib0110) 2011; 66
Russell (10.1016/j.jprocont.2018.02.004_bib0040) 2012
Yu (10.1016/j.jprocont.2018.02.004_bib0135) 2017
Friedman (10.1016/j.jprocont.2018.02.004_bib0180) 2001; vol. 1
Qin (10.1016/j.jprocont.2018.02.004_bib0025) 2012; 36
Li (10.1016/j.jprocont.2018.02.004_bib0060) 2016; 153
Luo (10.1016/j.jprocont.2018.02.004_bib0140) 2015; 54
Mugdadi (10.1016/j.jprocont.2018.02.004_bib0200) 2004; 47
Mahadevan (10.1016/j.jprocont.2018.02.004_bib0055) 2009; 19
Kresta (10.1016/j.jprocont.2018.02.004_bib0015) 1991; 69
Li (10.1016/j.jprocont.2018.02.004_bib0130) 2014; 54
Dong (10.1016/j.jprocont.2018.02.004_bib0100) 1996; 20
Yin (10.1016/j.jprocont.2018.02.004_bib0035) 2012; 22
Hinton (10.1016/j.jprocont.2018.02.004_bib0170) 2006; 313
Ge (10.1016/j.jprocont.2018.02.004_bib0010) 2013; 52
Choi (10.1016/j.jprocont.2018.02.004_bib0125) 2004; 59
Chiang (10.1016/j.jprocont.2018.02.004_bib0005) 2001
Lee (10.1016/j.jprocont.2018.02.004_bib0090) 2004; 59
Wang (10.1016/j.jprocont.2018.02.004_bib0165) 2017
Vincent (10.1016/j.jprocont.2018.02.004_bib0150) 2008
Lu (10.1016/j.jprocont.2018.02.004_bib0160) 2013
Lyman (10.1016/j.jprocont.2018.02.004_bib0210) 1995; 19
Huang (10.1016/j.jprocont.2018.02.004_bib0215) 2016; 39
Ge (10.1016/j.jprocont.2018.02.004_bib0030) 2017
He (10.1016/j.jprocont.2018.02.004_bib0185) 2007; 20
Huang (10.1016/j.jprocont.2018.02.004_bib0050) 2015; 54
Chiang (10.1016/j.jprocont.2018.02.004_bib0070) 2000; 50
Wang (10.1016/j.jprocont.2018.02.004_bib0175) 2015
Kramer (10.1016/j.jprocont.2018.02.004_bib0095) 1992; 16
Parzen (10.1016/j.jprocont.2018.02.004_bib0190) 1962; 33
Jiang (10.1016/j.jprocont.2018.02.004_bib0065) 2013; 127
Downs (10.1016/j.jprocont.2018.02.004_bib0205) 1993; 17
Martin (10.1016/j.jprocont.2018.02.004_bib0195) 1996; 6
Vincent (10.1016/j.jprocont.2018.02.004_bib0145) 2010; 11
Jiang (10.1016/j.jprocont.2018.02.004_bib0075) 2014; 60
Glorot (10.1016/j.jprocont.2018.02.004_bib0155) 2011
Ge (10.1016/j.jprocont.2018.02.004_bib0045) 2017; 5
Ge (10.1016/j.jprocont.2018.02.004_bib0105) 2010; 20
Kruger (10.1016/j.jprocont.2018.02.004_bib0080) 2007; 43
References_xml – start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0150
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 20
  start-page: 65
  year: 1996
  end-page: 78
  ident: bib0100
  article-title: Nonlinear principal component analysis-based on principal curves and neural networks
  publication-title: Comput. Chem. Eng.
– volume: 127
  start-page: 121
  year: 2013
  end-page: 131
  ident: bib0065
  article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 54
  start-page: 318
  year: 2014
  end-page: 329
  ident: bib0130
  article-title: Ensemble kernel principal component analysis for improved nonlinear process monitoring
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: bib0190
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
– volume: 5
  start-page: 20590
  year: 2017
  end-page: 20616
  ident: bib0045
  article-title: Data mining and analytics in the process industry: the role of machine learning
  publication-title: IEEE Access
– volume: 153
  start-page: 126
  year: 2016
  end-page: 139
  ident: bib0060
  article-title: Using semi-nonnegative matrix underapproximation for statistical process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 49
  start-page: 4792
  year: 2010
  end-page: 4799
  ident: bib0220
  article-title: Nonlinear probabilistic monitoring based on the Gaussian process latent variable model
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 1532
  year: 2007
  end-page: 1542
  ident: bib0080
  article-title: Improved principal component monitoring using the local approach?
  publication-title: Automatica
– volume: 6
  start-page: 349
  year: 1996
  end-page: 358
  ident: bib0195
  article-title: Non-parametric confidence bounds for process performance monitoring charts
  publication-title: J. Process Control
– volume: 59
  start-page: 5897
  year: 2004
  end-page: 5908
  ident: bib0125
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
  publication-title: Chem. Eng. Sci.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib0205
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– volume: 47
  start-page: 49
  year: 2004
  end-page: 62
  ident: bib0200
  article-title: A bandwidth selection for kernel density estimation of functions of random variables
  publication-title: Comput. Stat. Data Anal.
– volume: 17
  start-page: 480
  year: 2003
  end-page: 502
  ident: bib0020
  article-title: Statistical process monitoring: basics and beyond
  publication-title: J. Chemom.
– volume: 54
  start-page: 1015
  year: 2015
  end-page: 1027
  ident: bib0050
  article-title: Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 60
  start-page: 949
  year: 2014
  end-page: 965
  ident: bib0075
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE J.
– volume: 64
  start-page: 2245
  year: 2009
  end-page: 2255
  ident: bib0085
  article-title: Improved kernel PCA-based monitoring approach for nonlinear processes
  publication-title: Chem. Eng. Sci.
– year: 2017
  ident: bib0135
  article-title: Improved latent variable models for nonlinear and dynamic process monitoring
  publication-title: Chem. Eng. Sci.
– volume: 19
  start-page: 1627
  year: 2009
  end-page: 1639
  ident: bib0055
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
– volume: 54
  start-page: 11126
  year: 2015
  end-page: 11138
  ident: bib0140
  article-title: Nonlinear process monitoring using data-dependent kernel global-local preserving projections
  publication-title: Ind. Eng. Chem. Res.
– volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: bib0025
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
– volume: 22
  start-page: 1567
  year: 2012
  end-page: 1581
  ident: bib0035
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process Control
– year: 2001
  ident: bib0005
  article-title: Fault Detection and Diagnosis in Industrial Systems
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0145
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: bib0040
  article-title: Data-Driven Methods for Fault Detection and Diagnosis in Chemical Processes
– start-page: 513
  year: 2011
  end-page: 520
  ident: bib0155
  article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach
  publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11)
– start-page: 436
  year: 2013
  end-page: 440
  ident: bib0160
  article-title: Speech Enhancement Based on Deep Denoising Autoencoder
  publication-title: Interspeech
– volume: vol. 1
  year: 2001
  ident: bib0180
  publication-title: The Elements of Statistical Learning
– volume: 75
  start-page: 55
  year: 2005
  end-page: 67
  ident: bib0120
  article-title: Fault detection and identification of nonlinear processes based on kernel PCA
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 59
  start-page: 223
  year: 2004
  end-page: 234
  ident: bib0090
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
– start-page: 1145
  year: 2017
  end-page: 1153
  ident: bib0165
  article-title: Adversary resistant deep neural networks with an application to Malware detection
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 16
  start-page: 313
  year: 1992
  end-page: 328
  ident: bib0095
  article-title: Autoassociative neural networks
  publication-title: Comput. Chem. Eng.
– volume: 20
  start-page: 345
  year: 2007
  end-page: 354
  ident: bib0185
  article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 66
  start-page: 5173
  year: 2011
  end-page: 5183
  ident: bib0110
  article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes
  publication-title: Chem. Eng. Sci.
– volume: 39
  start-page: 88
  year: 2016
  end-page: 99
  ident: bib0215
  article-title: Related and independent variable fault detection based on KPCA and SVDD
  publication-title: J. Process Control
– volume: 20
  start-page: 676
  year: 2010
  end-page: 688
  ident: bib0105
  article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference
  publication-title: J. Process Control
– volume: 52
  start-page: 3543
  year: 2013
  end-page: 3562
  ident: bib0010
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind. Eng. Chem. Res.
– year: 2017
  ident: bib0030
  article-title: Review on Data-Driven Modeling and Monitoring for Plant-Wide Industrial Processes
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0170
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 69
  start-page: 35
  year: 1991
  end-page: 47
  ident: bib0015
  article-title: Multivariate statistical monitoring of process operating performance
  publication-title: Can. J. Chem. Eng.
– volume: 19
  start-page: 321
  year: 1995
  end-page: 331
  ident: bib0210
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Comput. Chem. Eng.
– volume: 50
  start-page: 243
  year: 2000
  end-page: 252
  ident: bib0070
  article-title: Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 60
  start-page: 279
  year: 2005
  end-page: 288
  ident: bib0115
  article-title: Fault identification for process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
– start-page: 3052
  year: 2015
  end-page: 3058
  ident: bib0175
  article-title: Relational stacked denoising autoencoder for tag recommendation
  publication-title: AAAI
– volume: 36
  start-page: 220
  issue: 2
  year: 2012
  ident: 10.1016/j.jprocont.2018.02.004_bib0025
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– volume: 16
  start-page: 313
  issue: 4
  year: 1992
  ident: 10.1016/j.jprocont.2018.02.004_bib0095
  article-title: Autoassociative neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80051-A
– volume: 66
  start-page: 5173
  issue: 21
  year: 2011
  ident: 10.1016/j.jprocont.2018.02.004_bib0110
  article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.07.001
– volume: 5
  start-page: 20590
  year: 2017
  ident: 10.1016/j.jprocont.2018.02.004_bib0045
  article-title: Data mining and analytics in the process industry: the role of machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2756872
– volume: vol. 1
  year: 2001
  ident: 10.1016/j.jprocont.2018.02.004_bib0180
– start-page: 3052
  year: 2015
  ident: 10.1016/j.jprocont.2018.02.004_bib0175
  article-title: Relational stacked denoising autoencoder for tag recommendation
  publication-title: AAAI
– volume: 64
  start-page: 2245
  issue: 9
  year: 2009
  ident: 10.1016/j.jprocont.2018.02.004_bib0085
  article-title: Improved kernel PCA-based monitoring approach for nonlinear processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.01.050
– volume: 54
  start-page: 318
  issue: 1
  year: 2014
  ident: 10.1016/j.jprocont.2018.02.004_bib0130
  article-title: Ensemble kernel principal component analysis for improved nonlinear process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503034j
– start-page: 1145
  year: 2017
  ident: 10.1016/j.jprocont.2018.02.004_bib0165
  article-title: Adversary resistant deep neural networks with an application to Malware detection
– year: 2017
  ident: 10.1016/j.jprocont.2018.02.004_bib0030
– volume: 22
  start-page: 1567
  issue: 9
  year: 2012
  ident: 10.1016/j.jprocont.2018.02.004_bib0035
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.06.009
– volume: 20
  start-page: 65
  issue: 1
  year: 1996
  ident: 10.1016/j.jprocont.2018.02.004_bib0100
  article-title: Nonlinear principal component analysis-based on principal curves and neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)00003-K
– volume: 75
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.jprocont.2018.02.004_bib0120
  article-title: Fault detection and identification of nonlinear processes based on kernel PCA
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.05.001
– volume: 11
  start-page: 3371
  issue: December
  year: 2010
  ident: 10.1016/j.jprocont.2018.02.004_bib0145
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 513
  year: 2011
  ident: 10.1016/j.jprocont.2018.02.004_bib0155
  article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach
  publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11)
– year: 2001
  ident: 10.1016/j.jprocont.2018.02.004_bib0005
– volume: 49
  start-page: 4792
  issue: 10
  year: 2010
  ident: 10.1016/j.jprocont.2018.02.004_bib0220
  article-title: Nonlinear probabilistic monitoring based on the Gaussian process latent variable model
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9019402
– volume: 17
  start-page: 245
  issue: 3
  year: 1993
  ident: 10.1016/j.jprocont.2018.02.004_bib0205
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 10.1016/j.jprocont.2018.02.004_bib0190
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: 59
  start-page: 223
  issue: 1
  year: 2004
  ident: 10.1016/j.jprocont.2018.02.004_bib0090
  article-title: Nonlinear process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.012
– start-page: 1096
  year: 2008
  ident: 10.1016/j.jprocont.2018.02.004_bib0150
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 20
  start-page: 345
  issue: 4
  year: 2007
  ident: 10.1016/j.jprocont.2018.02.004_bib0185
  article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2007.907607
– volume: 69
  start-page: 35
  issue: 1
  year: 1991
  ident: 10.1016/j.jprocont.2018.02.004_bib0015
  article-title: Multivariate statistical monitoring of process operating performance
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450690105
– volume: 43
  start-page: 1532
  issue: 9
  year: 2007
  ident: 10.1016/j.jprocont.2018.02.004_bib0080
  article-title: Improved principal component monitoring using the local approach?
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.02.016
– volume: 60
  start-page: 279
  issue: 1
  year: 2005
  ident: 10.1016/j.jprocont.2018.02.004_bib0115
  article-title: Fault identification for process monitoring using kernel principal component analysis
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.08.007
– volume: 39
  start-page: 88
  year: 2016
  ident: 10.1016/j.jprocont.2018.02.004_bib0215
  article-title: Related and independent variable fault detection based on KPCA and SVDD
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.01.001
– volume: 153
  start-page: 126
  year: 2016
  ident: 10.1016/j.jprocont.2018.02.004_bib0060
  article-title: Using semi-nonnegative matrix underapproximation for statistical process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.03.006
– volume: 47
  start-page: 49
  issue: 1
  year: 2004
  ident: 10.1016/j.jprocont.2018.02.004_bib0200
  article-title: A bandwidth selection for kernel density estimation of functions of random variables
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2003.10.013
– volume: 17
  start-page: 480
  issue: 8–9
  year: 2003
  ident: 10.1016/j.jprocont.2018.02.004_bib0020
  article-title: Statistical process monitoring: basics and beyond
  publication-title: J. Chemom.
  doi: 10.1002/cem.800
– volume: 60
  start-page: 949
  issue: 3
  year: 2014
  ident: 10.1016/j.jprocont.2018.02.004_bib0075
  article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
  publication-title: AIChE J.
  doi: 10.1002/aic.14335
– volume: 52
  start-page: 3543
  issue: 10
  year: 2013
  ident: 10.1016/j.jprocont.2018.02.004_bib0010
  article-title: Review of recent research on data-based process monitoring
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302069q
– volume: 19
  start-page: 321
  issue: 3
  year: 1995
  ident: 10.1016/j.jprocont.2018.02.004_bib0210
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(94)00057-U
– volume: 20
  start-page: 676
  issue: 5
  year: 2010
  ident: 10.1016/j.jprocont.2018.02.004_bib0105
  article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.03.003
– volume: 54
  start-page: 1015
  issue: 3
  year: 2015
  ident: 10.1016/j.jprocont.2018.02.004_bib0050
  article-title: Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5025358
– year: 2012
  ident: 10.1016/j.jprocont.2018.02.004_bib0040
– volume: 59
  start-page: 5897
  issue: 24
  year: 2004
  ident: 10.1016/j.jprocont.2018.02.004_bib0125
  article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.07.019
– volume: 127
  start-page: 121
  year: 2013
  ident: 10.1016/j.jprocont.2018.02.004_bib0065
  article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.06.013
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.jprocont.2018.02.004_bib0170
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 54
  start-page: 11126
  issue: 44
  year: 2015
  ident: 10.1016/j.jprocont.2018.02.004_bib0140
  article-title: Nonlinear process monitoring using data-dependent kernel global-local preserving projections
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b02266
– volume: 19
  start-page: 1627
  issue: 10
  year: 2009
  ident: 10.1016/j.jprocont.2018.02.004_bib0055
  article-title: Fault detection and diagnosis in process data using one-class support vector machines
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.07.011
– start-page: 436
  year: 2013
  ident: 10.1016/j.jprocont.2018.02.004_bib0160
  article-title: Speech Enhancement Based on Deep Denoising Autoencoder
  publication-title: Interspeech
  doi: 10.21437/Interspeech.2013-130
– volume: 6
  start-page: 349
  issue: 6
  year: 1996
  ident: 10.1016/j.jprocont.2018.02.004_bib0195
  article-title: Non-parametric confidence bounds for process performance monitoring charts
  publication-title: J. Process Control
  doi: 10.1016/0959-1524(96)00010-8
– volume: 50
  start-page: 243
  issue: 2
  year: 2000
  ident: 10.1016/j.jprocont.2018.02.004_bib0070
  article-title: Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(99)00061-1
– year: 2017
  ident: 10.1016/j.jprocont.2018.02.004_bib0135
  article-title: Improved latent variable models for nonlinear and dynamic process monitoring
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.04.048
SSID ssj0003726
Score 2.5387554
Snippet •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Automated feature learning
Deep learning
k-Nearest neighbor rule
Nonlinear process monitoring
Stacked denoising autoencoder
Title Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule
URI https://dx.doi.org/10.1016/j.jprocont.2018.02.004
Volume 64
WOSCitedRecordID wos000436213200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLfKxgEO_Bkgxj-9A7cokMROnBwrNAQTmpBWpI5L5DiO2q6kVddMO3LnyAfiu_BJeI7tJGiTBkKoklU5dWz3_fze89PPz4S85JWISpopH32N1EeFl_qaDOWzshC8EEURBe1B4Q_86CidTrOPo9EPdxbmfMnrOr24yNb_VdRYh8LWR2f_QtzdS7ECv6PQsUSxY_lHgh832xW6oehIVqrN2uluhjCMydrkxtAZrs0ZAe9Lu6xbHp6jPlAdLHTpxr3mzAYdcMWXHiqq1bytEdiTzoOp01Ho-Pupr9-LZsardcAV0eVtmuXvXKPe_3XdW7L8pQj2ZzXrkXs4t7UTZU2tJhG1TITjWYPPZqu-_sT-9qRZN8OoRpgOyDBtqM0dt-m5TS5miQ6HiUAoo7FTTv2Im3tcnEpP2EAnm5So1rqbzO-X7IYJYSxeLfTccdqa85eaZK6st5Qdf_FYj0QPBBWi3sVOb5DdiMcZqtXd8fuD6WHnDFDe3vjXjXxwSP3q3q72jwY-z-QeuWOFBWMDsvtkpOo9ctddBALWLuyR24Oslg_Itw6BYBEIDoGACIQOgWAhAD0C4efX7zCuwWEPWuyBxR502IMB9gCxBx32wGEPNPYekk9vDyZv3vn2zg9fUpZtfR7gfiRIFSvDuGKyCqogKahUpQgqLOJE8EyGUcG4xL03VyqraCDDMtZNEhbQR2QHp6EeE5ASzZmMBY0EZYlQBVWZYEIqip9Ehvskdv90Lm1CfH0vyzJ3zMdF7iSUawnlQZSjhPbJ667d2qSEubZF5gSZW8fWOKw54u-atk_-oe1TcqtfW8_IznbTqOfkpjzfzs82LyxUfwEfhNVa
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+feature+learning+for+nonlinear+process+monitoring+%E2%80%93+An+approach+using+stacked+denoising+autoencoder+and+k-nearest+neighbor+rule&rft.jtitle=Journal+of+process+control&rft.au=Zhang%2C+Zehan&rft.au=Jiang%2C+Teng&rft.au=Li%2C+Shuanghong&rft.au=Yang%2C+Yupu&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=64&rft.spage=49&rft.epage=61&rft_id=info:doi/10.1016%2Fj.jprocont.2018.02.004&rft.externalDocID=S095915241830026X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon