Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule
•Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to automatically learn the patterns inherent in the nonlinear process and extract key features.•New monitoring statistics that are HD2 and RD2 ar...
Uložené v:
| Vydané v: | Journal of process control Ročník 64; s. 49 - 61 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.04.2018
|
| Predmet: | |
| ISSN: | 0959-1524, 1873-2771 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to automatically learn the patterns inherent in the nonlinear process and extract key features.•New monitoring statistics that are HD2 and RD2 are constructed based on kNN rule using the extracted key features.•The effectiveness of the proposed method is verified by two case studies including a nonlinear numerical example and TE benchmark process.
Modern industrial processes have become increasingly complicated, consequently, the nonlinearity of data collected from these systems continues to increase. However, the feature extraction methods of existing process monitoring are not capable of extracting crucial features from these highly nonlinear data, which affects the performance of monitoring. In this paper, a novel nonlinear process monitoring method based on stacked denoising autoencoder (SDAE) and k-nearest neighbor (kNN) rule is proposed. Specifically, stacked denoising autoencoder is utilized to model the nonlinear process data and automatically extract crucial features. The original nonlinear space is then mapped to the feature space and the residual space via SDAE. Two new statistics in the above spaces are constructed by introducing the kNN rule with their corresponding control limits determined by kernel density estimation. Case studies on a nonlinear numerical system and the Tennessee Eastman benchmark process verify the effectiveness of the proposed method. |
|---|---|
| AbstractList | •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to automatically learn the patterns inherent in the nonlinear process and extract key features.•New monitoring statistics that are HD2 and RD2 are constructed based on kNN rule using the extracted key features.•The effectiveness of the proposed method is verified by two case studies including a nonlinear numerical example and TE benchmark process.
Modern industrial processes have become increasingly complicated, consequently, the nonlinearity of data collected from these systems continues to increase. However, the feature extraction methods of existing process monitoring are not capable of extracting crucial features from these highly nonlinear data, which affects the performance of monitoring. In this paper, a novel nonlinear process monitoring method based on stacked denoising autoencoder (SDAE) and k-nearest neighbor (kNN) rule is proposed. Specifically, stacked denoising autoencoder is utilized to model the nonlinear process data and automatically extract crucial features. The original nonlinear space is then mapped to the feature space and the residual space via SDAE. Two new statistics in the above spaces are constructed by introducing the kNN rule with their corresponding control limits determined by kernel density estimation. Case studies on a nonlinear numerical system and the Tennessee Eastman benchmark process verify the effectiveness of the proposed method. |
| Author | Zhang, Zehan Li, Shuanghong Jiang, Teng Yang, Yupu |
| Author_xml | – sequence: 1 givenname: Zehan surname: Zhang fullname: Zhang, Zehan email: zehanzhang@126.com – sequence: 2 givenname: Teng surname: Jiang fullname: Jiang, Teng – sequence: 3 givenname: Shuanghong surname: Li fullname: Li, Shuanghong – sequence: 4 givenname: Yupu surname: Yang fullname: Yang, Yupu |
| BookMark | eNqFkMtKBDEQRYMoOD5-QfID3Vb6lWlw4SC-QHCj65BJKjMZe5IhyQju3Lv0D_0S0z42btxUwU3uvdQ5ILvOOyTkhEHJgHWnq3K1CV55l8oK2LSEqgRodsiETXldVJyzXTKBvu0L1lbNPjmIcQUANa-6CXmbbZNfy4SaGpRpG5AOKIOzbkGNDzR3DdZlhY4dGCNde2eTD-OHj9d3OnNUbvKbVEu6jaMak1RPOU-j8_ZLkbkDnfIaA5VO06diTMSYqEO7WM5zT9gOeET2jBwiHv_sQ_J4dflwcVPc3V_fXszuClU3fSo4cN7AFBvNWtMoAwa6ea1QSzB5tJ3kvWLVvOGq74Aj9qYGxXQ7WroG6kNy9p2rgo8xoBHKJplsJhikHQQDMYIVK_ELVoxgBVQig8327o99E-xahpf_jeffRszHPVsMIiqbuaC2AVUS2tv_Ij4B9bCfOQ |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2019_01_008 crossref_primary_10_3390_su16093581 crossref_primary_10_1016_j_jprocont_2020_06_001 crossref_primary_10_3390_app8122630 crossref_primary_10_1109_TIM_2020_3039614 crossref_primary_10_1016_j_jtice_2021_104200 crossref_primary_10_1080_00207543_2021_1968061 crossref_primary_10_1016_j_compchemeng_2022_107884 crossref_primary_10_1109_TCYB_2021_3109618 crossref_primary_10_3390_min11101106 crossref_primary_10_1016_j_scs_2019_101847 crossref_primary_10_1109_TDSC_2025_3561052 crossref_primary_10_1016_j_jii_2022_100410 crossref_primary_10_1016_j_compchemeng_2020_106843 crossref_primary_10_1016_j_jtice_2021_11_007 crossref_primary_10_1007_s10994_022_06153_4 crossref_primary_10_1016_j_conengprac_2022_105304 crossref_primary_10_1016_j_jprocont_2020_08_002 crossref_primary_10_1088_1361_6501_ab48c7 crossref_primary_10_1016_j_chemolab_2020_104219 crossref_primary_10_1016_j_psep_2023_02_078 crossref_primary_10_1016_j_conengprac_2020_104330 crossref_primary_10_1016_j_ins_2020_06_062 crossref_primary_10_1109_TII_2023_3240601 crossref_primary_10_1016_j_asoc_2019_105526 crossref_primary_10_1016_j_engappai_2023_107839 crossref_primary_10_1016_j_compind_2024_104131 crossref_primary_10_1016_j_eswa_2022_117390 crossref_primary_10_1016_j_chemolab_2022_104711 crossref_primary_10_3390_s20226612 crossref_primary_10_1016_j_jprocont_2021_02_002 crossref_primary_10_1080_10589759_2025_2491731 crossref_primary_10_1016_j_isatra_2021_04_042 crossref_primary_10_1007_s11004_025_10223_3 crossref_primary_10_1177_01423312211037621 crossref_primary_10_1016_j_jprocont_2020_05_015 crossref_primary_10_1007_s41748_022_00317_x crossref_primary_10_1109_TII_2021_3078414 crossref_primary_10_1109_ACCESS_2019_2962775 crossref_primary_10_1016_j_engappai_2024_108051 crossref_primary_10_1016_j_jprocont_2021_09_004 crossref_primary_10_1109_ACCESS_2019_2894764 crossref_primary_10_1080_00224065_2021_1903821 crossref_primary_10_1016_j_dyepig_2021_109985 crossref_primary_10_1002_cem_3168 crossref_primary_10_1007_s00521_021_06575_6 crossref_primary_10_1016_j_asoc_2022_108898 crossref_primary_10_1016_j_ces_2022_117556 crossref_primary_10_1002_cjce_25145 crossref_primary_10_1016_j_asoc_2021_108235 crossref_primary_10_1016_j_compchemeng_2020_106755 crossref_primary_10_3390_act13110440 crossref_primary_10_1109_TNNLS_2021_3086323 crossref_primary_10_1016_j_measurement_2020_108782 crossref_primary_10_1016_j_jwpe_2021_102206 crossref_primary_10_1007_s11432_020_2964_7 crossref_primary_10_1016_j_isatra_2021_04_014 crossref_primary_10_1109_ACCESS_2020_2978112 crossref_primary_10_1002_aic_16452 crossref_primary_10_1007_s00500_020_05384_8 crossref_primary_10_1016_j_asr_2024_09_013 crossref_primary_10_1109_ACCESS_2023_3334012 crossref_primary_10_3390_jtaer18040110 crossref_primary_10_1007_s11814_021_0894_1 crossref_primary_10_1016_j_apenergy_2018_10_113 crossref_primary_10_1016_j_jfranklin_2021_11_016 crossref_primary_10_1007_s00500_020_04717_x crossref_primary_10_1109_TR_2022_3190639 crossref_primary_10_1177_01423312231157118 crossref_primary_10_3390_electronics8111267 crossref_primary_10_1002_cjce_23669 crossref_primary_10_1016_j_compchemeng_2022_107853 crossref_primary_10_1002_cjce_24750 crossref_primary_10_1016_j_jprocont_2022_07_012 crossref_primary_10_1016_j_jprocont_2024_103176 crossref_primary_10_1016_j_jtice_2021_06_015 crossref_primary_10_1016_j_engappai_2023_106424 crossref_primary_10_1109_ACCESS_2020_3003095 crossref_primary_10_1007_s00170_024_13932_x crossref_primary_10_3390_pr10020335 crossref_primary_10_1016_j_cmpb_2018_10_004 crossref_primary_10_1177_15501477211055931 crossref_primary_10_1109_TII_2022_3213819 crossref_primary_10_1002_cjce_24404 crossref_primary_10_3390_s25041256 crossref_primary_10_1109_JIOT_2024_3496927 crossref_primary_10_1016_j_eswa_2022_117919 crossref_primary_10_1088_1361_6501_ac7b6c crossref_primary_10_3390_pr7070411 crossref_primary_10_1109_TNNLS_2024_3435519 crossref_primary_10_1007_s12555_021_0323_6 crossref_primary_10_1016_j_chemolab_2022_104624 crossref_primary_10_1016_j_isatra_2023_04_035 crossref_primary_10_3390_electronics9060940 crossref_primary_10_1111_exsy_13486 crossref_primary_10_1108_AA_09_2021_0123 crossref_primary_10_1016_j_ces_2022_117637 crossref_primary_10_1016_j_eswa_2023_120097 |
| Cites_doi | 10.1016/j.arcontrol.2012.09.004 10.1016/0098-1354(92)80051-A 10.1016/j.ces.2011.07.001 10.1109/ACCESS.2017.2756872 10.1016/j.ces.2009.01.050 10.1021/ie503034j 10.1016/j.jprocont.2012.06.009 10.1016/0098-1354(95)00003-K 10.1016/j.chemolab.2004.05.001 10.1021/ie9019402 10.1016/0098-1354(93)80018-I 10.1214/aoms/1177704472 10.1016/j.ces.2003.09.012 10.1109/TSM.2007.907607 10.1002/cjce.5450690105 10.1016/j.automatica.2007.02.016 10.1016/j.ces.2004.08.007 10.1016/j.jprocont.2016.01.001 10.1016/j.chemolab.2016.03.006 10.1016/j.csda.2003.10.013 10.1002/cem.800 10.1002/aic.14335 10.1021/ie302069q 10.1016/0098-1354(94)00057-U 10.1016/j.jprocont.2010.03.003 10.1021/ie5025358 10.1016/j.ces.2004.07.019 10.1016/j.chemolab.2013.06.013 10.1126/science.1127647 10.1021/acs.iecr.5b02266 10.1016/j.jprocont.2009.07.011 10.21437/Interspeech.2013-130 10.1016/0959-1524(96)00010-8 10.1016/S0169-7439(99)00061-1 10.1016/j.ces.2017.04.048 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jprocont.2018.02.004 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-2771 |
| EndPage | 61 |
| ExternalDocumentID | 10_1016_j_jprocont_2018_02_004 S095915241830026X |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ XFK ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c349t-7077408e4d15f4cf0f06b3ceda0feda56a79c12b47c9607ee9f30c1d58e4d6403 |
| ISICitedReferencesCount | 117 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436213200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-1524 |
| IngestDate | Sat Nov 29 07:47:19 EST 2025 Tue Nov 18 21:56:39 EST 2025 Fri Feb 23 02:16:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Nonlinear process monitoring Stacked denoising autoencoder Automated feature learning k-Nearest neighbor rule |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-7077408e4d15f4cf0f06b3ceda0feda56a79c12b47c9607ee9f30c1d58e4d6403 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jprocont_2018_02_004 crossref_primary_10_1016_j_jprocont_2018_02_004 elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_02_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of process control |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Yang (bib0060) 2016; 153 Yu, Khan (bib0135) 2017 Friedman, Hastie, Tibshirani (bib0180) 2001; vol. 1 Ge, Song, Ding, Huang (bib0045) 2017; 5 Mugdadi, Ahmad (bib0200) 2004; 47 Russell, Chiang, Braatz (bib0040) 2012 Ge (bib0030) 2017 Ge, Song (bib0220) 2010; 49 Lee, Yoo, Choi, Vanrolleghem, Lee (bib0090) 2004; 59 Mahadevan, Shah (bib0055) 2009; 19 Cho, Lee, Choi, Lee, Lee (bib0115) 2005; 60 Glorot, Bordes, Bengio (bib0155) 2011 Ge, Yang, Song (bib0085) 2009; 64 Yin, Ding, Haghani, Hao, Zhang (bib0035) 2012; 22 Martin, Morris (bib0195) 1996; 6 Kruger, Kumar, Littler (bib0080) 2007; 43 Li, Yang (bib0130) 2014; 54 Kresta, MacGregor, Marlin (bib0015) 1991; 69 Dong, McAvoy (bib0100) 1996; 20 Joe Qin (bib0020) 2003; 17 Wang, Shi, Yeung (bib0175) 2015 Luo, Bao, Mao, Tang (bib0140) 2015; 54 Chiang, Russell, Braatz (bib0070) 2000; 50 Hinton, Salakhutdinov (bib0170) 2006; 313 Downs, Vogel (bib0205) 1993; 17 Lu, Tsao, Matsuda, Hori (bib0160) 2013 Huang, Yan (bib0215) 2016; 39 He, Wang (bib0185) 2007; 20 Jiang, Yan (bib0075) 2014; 60 Choi, Lee, Lee, Park, Lee (bib0120) 2005; 75 Choi, Lee (bib0125) 2004; 59 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0145) 2010; 11 Jiang, Yan (bib0065) 2013; 127 Vincent, Larochelle, Bengio, Manzagol (bib0150) 2008 Qin (bib0025) 2012; 36 Parzen (bib0190) 1962; 33 Ge, Gao, Song (bib0110) 2011; 66 Ge, Song, Gao (bib0010) 2013; 52 Lyman, Georgakis (bib0210) 1995; 19 Kramer (bib0095) 1992; 16 Wang, Guo, Zhang, Ororbia, Xing, Liu, Giles (bib0165) 2017 Chiang, Braatz, Russell (bib0005) 2001 Ge, Zhang, Song (bib0105) 2010; 20 Huang, Yan (bib0050) 2015; 54 Choi (10.1016/j.jprocont.2018.02.004_bib0120) 2005; 75 Joe Qin (10.1016/j.jprocont.2018.02.004_bib0020) 2003; 17 Cho (10.1016/j.jprocont.2018.02.004_bib0115) 2005; 60 Ge (10.1016/j.jprocont.2018.02.004_bib0220) 2010; 49 Ge (10.1016/j.jprocont.2018.02.004_bib0085) 2009; 64 Ge (10.1016/j.jprocont.2018.02.004_bib0110) 2011; 66 Russell (10.1016/j.jprocont.2018.02.004_bib0040) 2012 Yu (10.1016/j.jprocont.2018.02.004_bib0135) 2017 Friedman (10.1016/j.jprocont.2018.02.004_bib0180) 2001; vol. 1 Qin (10.1016/j.jprocont.2018.02.004_bib0025) 2012; 36 Li (10.1016/j.jprocont.2018.02.004_bib0060) 2016; 153 Luo (10.1016/j.jprocont.2018.02.004_bib0140) 2015; 54 Mugdadi (10.1016/j.jprocont.2018.02.004_bib0200) 2004; 47 Mahadevan (10.1016/j.jprocont.2018.02.004_bib0055) 2009; 19 Kresta (10.1016/j.jprocont.2018.02.004_bib0015) 1991; 69 Li (10.1016/j.jprocont.2018.02.004_bib0130) 2014; 54 Dong (10.1016/j.jprocont.2018.02.004_bib0100) 1996; 20 Yin (10.1016/j.jprocont.2018.02.004_bib0035) 2012; 22 Hinton (10.1016/j.jprocont.2018.02.004_bib0170) 2006; 313 Ge (10.1016/j.jprocont.2018.02.004_bib0010) 2013; 52 Choi (10.1016/j.jprocont.2018.02.004_bib0125) 2004; 59 Chiang (10.1016/j.jprocont.2018.02.004_bib0005) 2001 Lee (10.1016/j.jprocont.2018.02.004_bib0090) 2004; 59 Wang (10.1016/j.jprocont.2018.02.004_bib0165) 2017 Vincent (10.1016/j.jprocont.2018.02.004_bib0150) 2008 Lu (10.1016/j.jprocont.2018.02.004_bib0160) 2013 Lyman (10.1016/j.jprocont.2018.02.004_bib0210) 1995; 19 Huang (10.1016/j.jprocont.2018.02.004_bib0215) 2016; 39 Ge (10.1016/j.jprocont.2018.02.004_bib0030) 2017 He (10.1016/j.jprocont.2018.02.004_bib0185) 2007; 20 Huang (10.1016/j.jprocont.2018.02.004_bib0050) 2015; 54 Chiang (10.1016/j.jprocont.2018.02.004_bib0070) 2000; 50 Wang (10.1016/j.jprocont.2018.02.004_bib0175) 2015 Kramer (10.1016/j.jprocont.2018.02.004_bib0095) 1992; 16 Parzen (10.1016/j.jprocont.2018.02.004_bib0190) 1962; 33 Jiang (10.1016/j.jprocont.2018.02.004_bib0065) 2013; 127 Downs (10.1016/j.jprocont.2018.02.004_bib0205) 1993; 17 Martin (10.1016/j.jprocont.2018.02.004_bib0195) 1996; 6 Vincent (10.1016/j.jprocont.2018.02.004_bib0145) 2010; 11 Jiang (10.1016/j.jprocont.2018.02.004_bib0075) 2014; 60 Glorot (10.1016/j.jprocont.2018.02.004_bib0155) 2011 Ge (10.1016/j.jprocont.2018.02.004_bib0045) 2017; 5 Ge (10.1016/j.jprocont.2018.02.004_bib0105) 2010; 20 Kruger (10.1016/j.jprocont.2018.02.004_bib0080) 2007; 43 |
| References_xml | – start-page: 1096 year: 2008 end-page: 1103 ident: bib0150 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – volume: 20 start-page: 65 year: 1996 end-page: 78 ident: bib0100 article-title: Nonlinear principal component analysis-based on principal curves and neural networks publication-title: Comput. Chem. Eng. – volume: 127 start-page: 121 year: 2013 end-page: 131 ident: bib0065 article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring publication-title: Chemom. Intell. Lab. Syst. – volume: 54 start-page: 318 year: 2014 end-page: 329 ident: bib0130 article-title: Ensemble kernel principal component analysis for improved nonlinear process monitoring publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: bib0190 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. – volume: 5 start-page: 20590 year: 2017 end-page: 20616 ident: bib0045 article-title: Data mining and analytics in the process industry: the role of machine learning publication-title: IEEE Access – volume: 153 start-page: 126 year: 2016 end-page: 139 ident: bib0060 article-title: Using semi-nonnegative matrix underapproximation for statistical process monitoring publication-title: Chemom. Intell. Lab. Syst. – volume: 49 start-page: 4792 year: 2010 end-page: 4799 ident: bib0220 article-title: Nonlinear probabilistic monitoring based on the Gaussian process latent variable model publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 1532 year: 2007 end-page: 1542 ident: bib0080 article-title: Improved principal component monitoring using the local approach? publication-title: Automatica – volume: 6 start-page: 349 year: 1996 end-page: 358 ident: bib0195 article-title: Non-parametric confidence bounds for process performance monitoring charts publication-title: J. Process Control – volume: 59 start-page: 5897 year: 2004 end-page: 5908 ident: bib0125 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chem. Eng. Sci. – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: bib0205 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. – volume: 47 start-page: 49 year: 2004 end-page: 62 ident: bib0200 article-title: A bandwidth selection for kernel density estimation of functions of random variables publication-title: Comput. Stat. Data Anal. – volume: 17 start-page: 480 year: 2003 end-page: 502 ident: bib0020 article-title: Statistical process monitoring: basics and beyond publication-title: J. Chemom. – volume: 54 start-page: 1015 year: 2015 end-page: 1027 ident: bib0050 article-title: Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis publication-title: Ind. Eng. Chem. Res. – volume: 60 start-page: 949 year: 2014 end-page: 965 ident: bib0075 article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring publication-title: AIChE J. – volume: 64 start-page: 2245 year: 2009 end-page: 2255 ident: bib0085 article-title: Improved kernel PCA-based monitoring approach for nonlinear processes publication-title: Chem. Eng. Sci. – year: 2017 ident: bib0135 article-title: Improved latent variable models for nonlinear and dynamic process monitoring publication-title: Chem. Eng. Sci. – volume: 19 start-page: 1627 year: 2009 end-page: 1639 ident: bib0055 article-title: Fault detection and diagnosis in process data using one-class support vector machines publication-title: J. Process Control – volume: 54 start-page: 11126 year: 2015 end-page: 11138 ident: bib0140 article-title: Nonlinear process monitoring using data-dependent kernel global-local preserving projections publication-title: Ind. Eng. Chem. Res. – volume: 36 start-page: 220 year: 2012 end-page: 234 ident: bib0025 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control – volume: 22 start-page: 1567 year: 2012 end-page: 1581 ident: bib0035 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process Control – year: 2001 ident: bib0005 article-title: Fault Detection and Diagnosis in Industrial Systems – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib0145 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – year: 2012 ident: bib0040 article-title: Data-Driven Methods for Fault Detection and Diagnosis in Chemical Processes – start-page: 513 year: 2011 end-page: 520 ident: bib0155 article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11) – start-page: 436 year: 2013 end-page: 440 ident: bib0160 article-title: Speech Enhancement Based on Deep Denoising Autoencoder publication-title: Interspeech – volume: vol. 1 year: 2001 ident: bib0180 publication-title: The Elements of Statistical Learning – volume: 75 start-page: 55 year: 2005 end-page: 67 ident: bib0120 article-title: Fault detection and identification of nonlinear processes based on kernel PCA publication-title: Chemom. Intell. Lab. Syst. – volume: 59 start-page: 223 year: 2004 end-page: 234 ident: bib0090 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. – start-page: 1145 year: 2017 end-page: 1153 ident: bib0165 article-title: Adversary resistant deep neural networks with an application to Malware detection publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 16 start-page: 313 year: 1992 end-page: 328 ident: bib0095 article-title: Autoassociative neural networks publication-title: Comput. Chem. Eng. – volume: 20 start-page: 345 year: 2007 end-page: 354 ident: bib0185 article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. – volume: 66 start-page: 5173 year: 2011 end-page: 5183 ident: bib0110 article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes publication-title: Chem. Eng. Sci. – volume: 39 start-page: 88 year: 2016 end-page: 99 ident: bib0215 article-title: Related and independent variable fault detection based on KPCA and SVDD publication-title: J. Process Control – volume: 20 start-page: 676 year: 2010 end-page: 688 ident: bib0105 article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference publication-title: J. Process Control – volume: 52 start-page: 3543 year: 2013 end-page: 3562 ident: bib0010 article-title: Review of recent research on data-based process monitoring publication-title: Ind. Eng. Chem. Res. – year: 2017 ident: bib0030 article-title: Review on Data-Driven Modeling and Monitoring for Plant-Wide Industrial Processes – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0170 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 69 start-page: 35 year: 1991 end-page: 47 ident: bib0015 article-title: Multivariate statistical monitoring of process operating performance publication-title: Can. J. Chem. Eng. – volume: 19 start-page: 321 year: 1995 end-page: 331 ident: bib0210 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Comput. Chem. Eng. – volume: 50 start-page: 243 year: 2000 end-page: 252 ident: bib0070 article-title: Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis publication-title: Chemom. Intell. Lab. Syst. – volume: 60 start-page: 279 year: 2005 end-page: 288 ident: bib0115 article-title: Fault identification for process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. – start-page: 3052 year: 2015 end-page: 3058 ident: bib0175 article-title: Relational stacked denoising autoencoder for tag recommendation publication-title: AAAI – volume: 36 start-page: 220 issue: 2 year: 2012 ident: 10.1016/j.jprocont.2018.02.004_bib0025 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.004 – volume: 16 start-page: 313 issue: 4 year: 1992 ident: 10.1016/j.jprocont.2018.02.004_bib0095 article-title: Autoassociative neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(92)80051-A – volume: 66 start-page: 5173 issue: 21 year: 2011 ident: 10.1016/j.jprocont.2018.02.004_bib0110 article-title: Two-dimensional Bayesian monitoring method for nonlinear multimode processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.07.001 – volume: 5 start-page: 20590 year: 2017 ident: 10.1016/j.jprocont.2018.02.004_bib0045 article-title: Data mining and analytics in the process industry: the role of machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2756872 – volume: vol. 1 year: 2001 ident: 10.1016/j.jprocont.2018.02.004_bib0180 – start-page: 3052 year: 2015 ident: 10.1016/j.jprocont.2018.02.004_bib0175 article-title: Relational stacked denoising autoencoder for tag recommendation publication-title: AAAI – volume: 64 start-page: 2245 issue: 9 year: 2009 ident: 10.1016/j.jprocont.2018.02.004_bib0085 article-title: Improved kernel PCA-based monitoring approach for nonlinear processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.01.050 – volume: 54 start-page: 318 issue: 1 year: 2014 ident: 10.1016/j.jprocont.2018.02.004_bib0130 article-title: Ensemble kernel principal component analysis for improved nonlinear process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503034j – start-page: 1145 year: 2017 ident: 10.1016/j.jprocont.2018.02.004_bib0165 article-title: Adversary resistant deep neural networks with an application to Malware detection – year: 2017 ident: 10.1016/j.jprocont.2018.02.004_bib0030 – volume: 22 start-page: 1567 issue: 9 year: 2012 ident: 10.1016/j.jprocont.2018.02.004_bib0035 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.06.009 – volume: 20 start-page: 65 issue: 1 year: 1996 ident: 10.1016/j.jprocont.2018.02.004_bib0100 article-title: Nonlinear principal component analysis-based on principal curves and neural networks publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(95)00003-K – volume: 75 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.jprocont.2018.02.004_bib0120 article-title: Fault detection and identification of nonlinear processes based on kernel PCA publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.05.001 – volume: 11 start-page: 3371 issue: December year: 2010 ident: 10.1016/j.jprocont.2018.02.004_bib0145 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – start-page: 513 year: 2011 ident: 10.1016/j.jprocont.2018.02.004_bib0155 article-title: Domain adaptation for large-scale sentiment classification: a deep learning approach publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11) – year: 2001 ident: 10.1016/j.jprocont.2018.02.004_bib0005 – volume: 49 start-page: 4792 issue: 10 year: 2010 ident: 10.1016/j.jprocont.2018.02.004_bib0220 article-title: Nonlinear probabilistic monitoring based on the Gaussian process latent variable model publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9019402 – volume: 17 start-page: 245 issue: 3 year: 1993 ident: 10.1016/j.jprocont.2018.02.004_bib0205 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 10.1016/j.jprocont.2018.02.004_bib0190 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 59 start-page: 223 issue: 1 year: 2004 ident: 10.1016/j.jprocont.2018.02.004_bib0090 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.012 – start-page: 1096 year: 2008 ident: 10.1016/j.jprocont.2018.02.004_bib0150 article-title: Extracting and composing robust features with denoising autoencoders – volume: 20 start-page: 345 issue: 4 year: 2007 ident: 10.1016/j.jprocont.2018.02.004_bib0185 article-title: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2007.907607 – volume: 69 start-page: 35 issue: 1 year: 1991 ident: 10.1016/j.jprocont.2018.02.004_bib0015 article-title: Multivariate statistical monitoring of process operating performance publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450690105 – volume: 43 start-page: 1532 issue: 9 year: 2007 ident: 10.1016/j.jprocont.2018.02.004_bib0080 article-title: Improved principal component monitoring using the local approach? publication-title: Automatica doi: 10.1016/j.automatica.2007.02.016 – volume: 60 start-page: 279 issue: 1 year: 2005 ident: 10.1016/j.jprocont.2018.02.004_bib0115 article-title: Fault identification for process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.08.007 – volume: 39 start-page: 88 year: 2016 ident: 10.1016/j.jprocont.2018.02.004_bib0215 article-title: Related and independent variable fault detection based on KPCA and SVDD publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.01.001 – volume: 153 start-page: 126 year: 2016 ident: 10.1016/j.jprocont.2018.02.004_bib0060 article-title: Using semi-nonnegative matrix underapproximation for statistical process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.03.006 – volume: 47 start-page: 49 issue: 1 year: 2004 ident: 10.1016/j.jprocont.2018.02.004_bib0200 article-title: A bandwidth selection for kernel density estimation of functions of random variables publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2003.10.013 – volume: 17 start-page: 480 issue: 8–9 year: 2003 ident: 10.1016/j.jprocont.2018.02.004_bib0020 article-title: Statistical process monitoring: basics and beyond publication-title: J. Chemom. doi: 10.1002/cem.800 – volume: 60 start-page: 949 issue: 3 year: 2014 ident: 10.1016/j.jprocont.2018.02.004_bib0075 article-title: Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring publication-title: AIChE J. doi: 10.1002/aic.14335 – volume: 52 start-page: 3543 issue: 10 year: 2013 ident: 10.1016/j.jprocont.2018.02.004_bib0010 article-title: Review of recent research on data-based process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302069q – volume: 19 start-page: 321 issue: 3 year: 1995 ident: 10.1016/j.jprocont.2018.02.004_bib0210 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(94)00057-U – volume: 20 start-page: 676 issue: 5 year: 2010 ident: 10.1016/j.jprocont.2018.02.004_bib0105 article-title: Nonlinear process monitoring based on linear subspace and Bayesian inference publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.03.003 – volume: 54 start-page: 1015 issue: 3 year: 2015 ident: 10.1016/j.jprocont.2018.02.004_bib0050 article-title: Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5025358 – year: 2012 ident: 10.1016/j.jprocont.2018.02.004_bib0040 – volume: 59 start-page: 5897 issue: 24 year: 2004 ident: 10.1016/j.jprocont.2018.02.004_bib0125 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.07.019 – volume: 127 start-page: 121 year: 2013 ident: 10.1016/j.jprocont.2018.02.004_bib0065 article-title: Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.06.013 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.jprocont.2018.02.004_bib0170 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 54 start-page: 11126 issue: 44 year: 2015 ident: 10.1016/j.jprocont.2018.02.004_bib0140 article-title: Nonlinear process monitoring using data-dependent kernel global-local preserving projections publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b02266 – volume: 19 start-page: 1627 issue: 10 year: 2009 ident: 10.1016/j.jprocont.2018.02.004_bib0055 article-title: Fault detection and diagnosis in process data using one-class support vector machines publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.07.011 – start-page: 436 year: 2013 ident: 10.1016/j.jprocont.2018.02.004_bib0160 article-title: Speech Enhancement Based on Deep Denoising Autoencoder publication-title: Interspeech doi: 10.21437/Interspeech.2013-130 – volume: 6 start-page: 349 issue: 6 year: 1996 ident: 10.1016/j.jprocont.2018.02.004_bib0195 article-title: Non-parametric confidence bounds for process performance monitoring charts publication-title: J. Process Control doi: 10.1016/0959-1524(96)00010-8 – volume: 50 start-page: 243 issue: 2 year: 2000 ident: 10.1016/j.jprocont.2018.02.004_bib0070 article-title: Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00061-1 – year: 2017 ident: 10.1016/j.jprocont.2018.02.004_bib0135 article-title: Improved latent variable models for nonlinear and dynamic process monitoring publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.04.048 |
| SSID | ssj0003726 |
| Score | 2.5387554 |
| Snippet | •Automated feature learning based on stacked denoising autoencoder (SDAE) and k-nearest neighbor rule (kNN) for nonlinear process monitoring.•SDAE is used to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | Automated feature learning Deep learning k-Nearest neighbor rule Nonlinear process monitoring Stacked denoising autoencoder |
| Title | Automated feature learning for nonlinear process monitoring – An approach using stacked denoising autoencoder and k-nearest neighbor rule |
| URI | https://dx.doi.org/10.1016/j.jprocont.2018.02.004 |
| Volume | 64 |
| WOSCitedRecordID | wos000436213200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwFLfKxgEO_Bkgxj_5wC0KJLET28cKDcEOE9KK1HGJEsdWW0padc20I_cd94H4LnwSnmM7CdqkgRAXq3Lr2O775b3np-ffQ-g1iJWkUsmQqEyGlPAs5GkZGdpKRmIlKK94W2yCHR3x6VR8Go1--LswZ0tW1_z8XKz_q6ihD4Rtrs7-hbi7h0IHfAahQwtih_aPBD9utitwQ8GR1Kpl7fSVIWzGZG25MQzDtb0jEHxrX-s2D8-nPhATLPR040Fz6oIO8MZXASiq1bztKWAmw4Np6ChM_P1raJ4LZiaoTcAV0BVsmuXvuUa9_-und8nyVyLYX9SsR-7h3PVOlDO1JomozUQ4njXw3WzV95-4354062YY1Yj5IBmmDbX56zZ9bpOPWYLDYSMQympswFSYMFvHxav0jA50sqVEddbdMr9fsRs2hLF4szB7h22bnD9uyVxpbym7_MVjsxKzEFCI5hQ7vYV2E5YKUKu7448H08POGSCsrfjXrXxwSf362a73jwY-z-QBuueEhccWZA_RSNV76L4vBIKdXdhDdweslo_QRYdA7BCIPQIxIBB3CMQOArhHIP75_RKPa-yxh1vsYYc93GEPD7CHAXu4wx722MMGe4_R5_cHk3cfQlfzI5SEim3IIjiPRFzRKk41lTrSUVYSqaoi0tCkWcGEjJOSMglnb6aU0CSScZWaIRmNyBO0A9tQTxEG17cUWoGDrwWlXBealDEc4JOC8oSmbB-l_p_OpSPEN3VZlrnPfFzkXkK5kVAeJTlIaB-97catLSXMjSOEF2TuHFvrsOaAvxvGPvuHsc_Rnf7deoF2tptGvUS35dl2frp55aD6Cwn_04E |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+feature+learning+for+nonlinear+process+monitoring+%E2%80%93+An+approach+using+stacked+denoising+autoencoder+and+k-nearest+neighbor+rule&rft.jtitle=Journal+of+process+control&rft.au=Zhang%2C+Zehan&rft.au=Jiang%2C+Teng&rft.au=Li%2C+Shuanghong&rft.au=Yang%2C+Yupu&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.eissn=1873-2771&rft.volume=64&rft.spage=49&rft.epage=61&rft_id=info:doi/10.1016%2Fj.jprocont.2018.02.004&rft.externalDocID=S095915241830026X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |