Shape sensing of variable cross-section beam using the inverse finite element method and isogeometric analysis

•This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new constitutive equations are established.•This paper presents a new approach to approximate and instead of the original displacement field func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 158; S. 107656
Hauptverfasser: Zhao, Feifei, Xu, Libo, Bao, Hong, Du, Jingli
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Elsevier Ltd 01.07.2020
Elsevier Science Ltd
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new constitutive equations are established.•This paper presents a new approach to approximate and instead of the original displacement field functions. The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem.
AbstractList The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem.
•This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new constitutive equations are established.•This paper presents a new approach to approximate and instead of the original displacement field functions. The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem.
ArticleNumber 107656
Author Bao, Hong
Zhao, Feifei
Xu, Libo
Du, Jingli
Author_xml – sequence: 1
  givenname: Feifei
  orcidid: 0000-0002-7251-6802
  surname: Zhao
  fullname: Zhao, Feifei
  email: ffzhao@stu.xidian.edu.cn
  organization: Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, Xi’an, China
– sequence: 2
  givenname: Libo
  surname: Xu
  fullname: Xu, Libo
  organization: Shaanxi Key Laboratory of Space Solar Power Station System, Xidian University, Xi’an, China
– sequence: 3
  givenname: Hong
  surname: Bao
  fullname: Bao, Hong
  email: hbao@xidian.edu.cn
  organization: Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, Xi’an, China
– sequence: 4
  givenname: Jingli
  surname: Du
  fullname: Du, Jingli
  email: jldu@mail.xidian.edu.cn
  organization: Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, Xi’an, China
BookMark eNqNkE9LAzEUxIMo2Fa_Q8Tz1iSbpslJpPgPCh5U8Bay2bdtym5Sk7TQb--29SCeenowzAzzfkN07oMHhG4oGVNCxd1q3IFJmwgd-DxmhO31qZiIMzSgcloWnLKvczQgTJQFY5xeomFKK0KIKJUYIP--NGvACXxyfoFDg7cmOlO1gG0MKRUJbHbB4wpMhzcHU14Cdn4LMQFunHcZMLSHAbiDvAw1Nr7GLoUFhF6IzvaCaXfJpSt00Zg2wfXvHaHPp8eP2Usxf3t-nT3MC1tylQthaxAADNhEGc4ULRvFrRSVsraBkkwEyLoSIGTdVFJJojiXE8ZrSafTRvJyhG6PvesYvjeQsl6FTexHJM04p1JKTsvedX90HV6N0Gjrstm_m6NxraZE7yHrlf4DWe8h6yPkvkH9a1hH15m4Oyk7O2ahB7F1EHWyDryF2sUeuq6DO6HlBzsUo0U
CitedBy_id crossref_primary_10_3390_s24020608
crossref_primary_10_1177_10812865231224384
crossref_primary_10_3390_s25010059
crossref_primary_10_3390_s23073406
crossref_primary_10_1016_j_compstruct_2020_113321
crossref_primary_10_1016_j_tws_2024_111907
crossref_primary_10_1016_j_ymssp_2021_107875
crossref_primary_10_1016_j_tws_2025_113935
crossref_primary_10_1016_j_tws_2024_112127
crossref_primary_10_1016_j_ymssp_2025_112700
crossref_primary_10_1016_j_compstruc_2024_107520
crossref_primary_10_1007_s11012_024_01925_9
crossref_primary_10_1016_j_ast_2024_109665
crossref_primary_10_1016_j_ast_2023_108314
crossref_primary_10_1016_j_oceaneng_2022_110763
crossref_primary_10_1016_j_ast_2025_110917
crossref_primary_10_1016_j_measurement_2023_113945
crossref_primary_10_1016_j_oceaneng_2023_116287
crossref_primary_10_1088_1361_665X_ad2c70
crossref_primary_10_1016_j_istruc_2024_105941
crossref_primary_10_1016_j_measurement_2022_111708
crossref_primary_10_3390_s22031064
crossref_primary_10_1061_JENMDT_EMENG_6901
crossref_primary_10_1016_j_apm_2023_04_013
crossref_primary_10_1007_s40430_024_04964_1
crossref_primary_10_1016_j_ast_2020_106484
crossref_primary_10_1016_j_ijnonlinmec_2022_104229
crossref_primary_10_3390_s22239252
crossref_primary_10_1016_j_oceaneng_2024_119848
crossref_primary_10_1088_1361_665X_ac1086
crossref_primary_10_1016_j_ijmecsci_2024_109859
crossref_primary_10_1016_j_measurement_2021_109575
crossref_primary_10_1016_j_measurement_2020_108282
crossref_primary_10_1016_j_tws_2022_109485
crossref_primary_10_1016_j_oceaneng_2024_119253
crossref_primary_10_1109_TIM_2025_3547086
crossref_primary_10_1109_TIM_2025_3576002
crossref_primary_10_3390_s23135793
crossref_primary_10_1016_j_measurement_2021_110676
crossref_primary_10_1088_1361_6501_abe286
crossref_primary_10_3390_s23249809
crossref_primary_10_1016_j_measurement_2020_108434
crossref_primary_10_1016_j_oceaneng_2024_118369
crossref_primary_10_1016_j_tws_2023_110884
crossref_primary_10_1016_j_cma_2021_114520
crossref_primary_10_1016_j_ast_2025_110960
crossref_primary_10_1016_j_measurement_2021_110031
crossref_primary_10_1109_TIM_2022_3169529
crossref_primary_10_1177_13694332231187437
crossref_primary_10_1016_j_finel_2020_103440
crossref_primary_10_1016_j_oceaneng_2024_118028
crossref_primary_10_1016_j_measurement_2022_111688
crossref_primary_10_3390_s21020528
crossref_primary_10_1007_s10409_023_23039_x
crossref_primary_10_1016_j_oceaneng_2024_119145
crossref_primary_10_3390_s23135962
crossref_primary_10_1016_j_measurement_2021_109958
crossref_primary_10_1016_j_measurement_2023_113492
crossref_primary_10_1109_TIM_2021_3086889
Cites_doi 10.1016/j.compstruct.2017.07.078
10.1007/s11340-011-9523-y
10.1088/0964-1726/10/2/311
10.1016/j.ijsolstr.2012.06.009
10.1016/j.measurement.2018.12.062
10.1016/j.measurement.2016.05.028
10.1016/j.sna.2007.06.026
10.2514/1.J055123
10.1016/j.measurement.2019.106899
10.1088/0964-1726/18/2/025006
10.1016/j.measurement.2019.107000
10.1177/0954408915576698
10.1016/j.jsv.2007.04.037
10.1016/j.measurement.2016.12.002
10.1088/0964-1726/3/2/002
10.1016/j.compstruct.2015.02.081
10.3390/s19061306
10.2140/jomms.2010.5.341
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Jul 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jul 1, 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.107656
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_107656
S0263224120301949
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c349t-6cde6ee2e259a42913f94c86b9ccfe3056e8db6e68dfb89809448524d8177f843
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524745700053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Mon Nov 10 03:04:04 EST 2025
Sat Nov 29 07:24:36 EST 2025
Tue Nov 18 21:56:41 EST 2025
Fri Feb 23 02:49:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Isogeometric analysis
Smart structure
Variable cross-section
Constitutive relation
Inverse finite element method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-6cde6ee2e259a42913f94c86b9ccfe3056e8db6e68dfb89809448524d8177f843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7251-6802
PQID 2441888413
PQPubID 2047460
ParticipantIDs proquest_journals_2441888413
crossref_citationtrail_10_1016_j_measurement_2020_107656
crossref_primary_10_1016_j_measurement_2020_107656
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107656
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Zhao, Du, Bao (b0120) 2018; 18
Smoker, Baz (b0080) 2008
Gok, Sari, Gok (b0165) 2017; 231
Cheng, Sun, Li, Li (b0140) 2019; 44
W.L. Ko, W.L. Richards, V.T. Fleischer, Displacement theories for in-flight deformed shape predictions of aerospace structures, 2007. NASA/TP-2007–214612.
Bruno, Toomarian, Salama (b0050) 1994; 3
Zhao, Du, Bao (b0125) 2018; 6121293
Gok (b0160) 2017; 51
Zhao, Bao, Xue (b0130) 2019; 19
Lively, Atalla, Hagood (b0030) 2001; 10
W.L. Ko, V.T. Fleischer, Further development of Ko displacement theory for deformed shape predictions of nonuniform aerospace structures, 2009. NASA/TP-2009–214643.
Kang, Kim, Han (b0020) 2007; 305
Francisco, Fernando, Patricio (b0150) 2017; 98
Kefal, Tessler, Oterkus (b0110) 2017; 179
Cerracchio, Gherlone, Sciuva, Tessler (b0105) 2015; 127
Mao, Todd (b0055) 2008
Gherlone, Cerracchio, Mattone, Tessler (b0095) 2011; 49
Tessle, Sciuva, Gherlone (b0100) 2010; 5
A. Tessler, J.L. Spangler, A variational principal for reconstruction of elastic deformation of shear deformable plates and shells, 2003. NASA/TM-2003–212445.
Wang, Lu, Zhao (b0015) 2020; 149
Deng, Wang, Zhang (b0005) 2019; 136
Rapp, Kang, Han (b0035) 2009; 18
Alioli, Masarati, Morandini, Carpenter (b0115) 2017; 55
Kršák, Blištˇan, Pauliková (b0155) 2016; 91
Kang, Kim, Han (b0025) 2011; 20
Chuan, Chen, Tong (b0135) 2014; 31
Kunsoo, Stein (b0145) 1993
Akl, Poh, Baz (b0065) 2007; 140
C.V. Jutte, W.L. Ko, C.A. Stephens, Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test, 2011. NASA/TP-2011–215975.
Wang, Bi, Lu (b0010) 2019; 148
Lively, Atalla, Hagood (b0040) 2011; 10
Glaser, Caccese, Shahinpoor (b0045) 2012; 52
Tessler, Spangler (b0090) 2004
10.1016/j.measurement.2020.107656_b0070
Mao (10.1016/j.measurement.2020.107656_b0055) 2008
Lively (10.1016/j.measurement.2020.107656_b0030) 2001; 10
Wang (10.1016/j.measurement.2020.107656_b0010) 2019; 148
Gok (10.1016/j.measurement.2020.107656_b0160) 2017; 51
Tessler (10.1016/j.measurement.2020.107656_b0090) 2004
Gherlone (10.1016/j.measurement.2020.107656_b0095) 2011; 49
Francisco (10.1016/j.measurement.2020.107656_b0150) 2017; 98
Zhao (10.1016/j.measurement.2020.107656_b0120) 2018; 18
Lively (10.1016/j.measurement.2020.107656_b0040) 2011; 10
Cerracchio (10.1016/j.measurement.2020.107656_b0105) 2015; 127
Smoker (10.1016/j.measurement.2020.107656_b0080) 2008
Kang (10.1016/j.measurement.2020.107656_b0020) 2007; 305
Kefal (10.1016/j.measurement.2020.107656_b0110) 2017; 179
Alioli (10.1016/j.measurement.2020.107656_b0115) 2017; 55
Deng (10.1016/j.measurement.2020.107656_b0005) 2019; 136
Bruno (10.1016/j.measurement.2020.107656_b0050) 1994; 3
10.1016/j.measurement.2020.107656_b0060
Kang (10.1016/j.measurement.2020.107656_b0025) 2011; 20
Zhao (10.1016/j.measurement.2020.107656_b0125) 2018; 6121293
10.1016/j.measurement.2020.107656_b0085
Chuan (10.1016/j.measurement.2020.107656_b0135) 2014; 31
Akl (10.1016/j.measurement.2020.107656_b0065) 2007; 140
Zhao (10.1016/j.measurement.2020.107656_b0130) 2019; 19
Kunsoo (10.1016/j.measurement.2020.107656_b0145) 1993
Kršák (10.1016/j.measurement.2020.107656_b0155) 2016; 91
Tessle (10.1016/j.measurement.2020.107656_b0100) 2010; 5
Cheng (10.1016/j.measurement.2020.107656_b0140) 2019; 44
Wang (10.1016/j.measurement.2020.107656_b0015) 2020; 149
Gok (10.1016/j.measurement.2020.107656_b0165) 2017; 231
Glaser (10.1016/j.measurement.2020.107656_b0045) 2012; 52
Rapp (10.1016/j.measurement.2020.107656_b0035) 2009; 18
10.1016/j.measurement.2020.107656_b0075
References_xml – volume: 5
  start-page: 341
  year: 2010
  end-page: 367
  ident: b0100
  article-title: A consistent refinement of first-order sheardeformation theory for laminated composite and sandwich plates using improvedzigzag kinematics
  publication-title: J. Mech. Mater. Struct.
– volume: 20
  start-page: 1
  year: 2011
  end-page: 11
  ident: b0025
  article-title: Shape estimation with distributed fiber Bragg grating sensors for rotating structures
  publication-title: Smart Mater. Struct.
– volume: 231
  start-page: 83
  year: 2017
  end-page: 88
  ident: b0165
  article-title: Three-dimesional finite element modeling of effect on the cutting forces of rake angle and approach angle in milling
  publication-title: Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng.
– reference: W.L. Ko, W.L. Richards, V.T. Fleischer, Displacement theories for in-flight deformed shape predictions of aerospace structures, 2007. NASA/TP-2007–214612.
– year: 2008
  ident: b0080
  article-title: Monitoring the bending and twist of morphing structures
  publication-title: Proceedings of the SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System (San Diego, 2008)
– year: 2008
  ident: b0055
  article-title: Comparison of shape reconstruction strategies in a complex flexible structure
  publication-title: Proceedings of the SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System, (San Diego, 2008)
– volume: 18
  start-page: 1
  year: 2018
  end-page: 21
  ident: b0120
  article-title: Optimal sensor placement based on eigenvalues analysis for sensing deformation of wing frame using iFEM
  publication-title: Sensors
– volume: 3
  start-page: 92
  year: 1994
  end-page: 97
  ident: b0050
  article-title: Shape estimation from incomplete measurements: a neural-net approach
  publication-title: Smart Mater. Struct.
– volume: 148
  year: 2019
  ident: b0010
  article-title: Deformation measurement of high-speed rotating drone blades based on digital image correlation combined with ring projection transform and orientation codes
  publication-title: Measurement
– volume: 52
  start-page: 591
  year: 2012
  end-page: 606
  ident: b0045
  article-title: Shape monitoring of a beam structure from measured strain or curvature
  publication-title: Exp. Mech.
– year: 2004
  ident: b0090
  article-title: Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells
  publication-title: Proceedings of the 2nd European Workshop on Structural Health Monitoring (Munich, Germany, 2004)
– volume: 91
  start-page: 276
  year: 2016
  end-page: 287
  ident: b0155
  article-title: Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study
  publication-title: Measurement
– volume: 31
  start-page: 265
  year: 2014
  end-page: 272
  ident: b0135
  article-title: Element stiffness matrix for timoshenko beam with variable section
  publication-title: Chinese J. Comput. Mech.
– volume: 6121293
  year: 2018
  ident: b0125
  article-title: Optimal sensor placement for inverse finite element reconstruction of three-dimensional frame deformation
  publication-title: Int. J. Aerospace Eng.
– volume: 44
  start-page: 885
  year: 2019
  end-page: 890
  ident: b0140
  article-title: Generalized hausdorff distance of multi-scale point group and its application in similarity measurement
  publication-title: Geomatics Inform. Sci. Wuhan Univ..
– reference: W.L. Ko, V.T. Fleischer, Further development of Ko displacement theory for deformed shape predictions of nonuniform aerospace structures, 2009. NASA/TP-2009–214643.
– start-page: 1959
  year: 1993
  end-page: 1965
  ident: b0145
  article-title: Well-conditioned observer design for observer-based monitoring systems
  publication-title: American Control Conference
– volume: 98
  start-page: 221
  year: 2017
  end-page: 227
  ident: b0150
  article-title: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle
  publication-title: Measurement
– volume: 127
  start-page: 69
  year: 2015
  end-page: 76
  ident: b0105
  article-title: A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite element method
  publication-title: Compos. Struct.
– volume: 136
  start-page: 387
  year: 2019
  end-page: 394
  ident: b0005
  article-title: A stereovision measurement for large deformation of light structures
  publication-title: Measurement
– volume: 18
  start-page: 025006
  year: 2009
  ident: b0035
  article-title: Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors
  publication-title: Smart Mater. Struct.
– reference: A. Tessler, J.L. Spangler, A variational principal for reconstruction of elastic deformation of shear deformable plates and shells, 2003. NASA/TM-2003–212445.
– volume: 140
  start-page: 94
  year: 2007
  end-page: 102
  ident: b0065
  article-title: Wireless and distributed sensing of the shape of morphing structures Sensor
  publication-title: Actuator
– volume: 179
  start-page: 514
  year: 2017
  end-page: 540
  ident: b0110
  article-title: An enhanced inverse Finite element method for displacement and stress monitoring of multilayered composite and sandwich structures
  publication-title: Compos. Struct.
– volume: 149
  year: 2020
  ident: b0015
  article-title: Research on large deflection deformation reconstruction of elastic thin plate based on strain monitoring
  publication-title: Measurement
– volume: 10
  start-page: 264
  year: 2011
  end-page: 272
  ident: b0040
  article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem
  publication-title: Smart Mater. Struct.
– volume: 55
  start-page: 297
  year: 2017
  end-page: 308
  ident: b0115
  article-title: Membrane shape and load reconstruction from measurements using inverse Finite Element analysis
  publication-title: AIAA J.
– volume: 10
  start-page: 264
  year: 2001
  end-page: 272
  ident: b0030
  article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem
  publication-title: Smart Mater. Struct.
– reference: C.V. Jutte, W.L. Ko, C.A. Stephens, Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test, 2011. NASA/TP-2011–215975.
– volume: 49
  start-page: 3100
  year: 2011
  end-page: 3112
  ident: b0095
  article-title: Shape sensing of 3D frame structures using an inverse finite element method
  publication-title: Int. J. Solids Struct.
– volume: 51
  start-page: 953
  year: 2017
  end-page: 956
  ident: b0160
  article-title: 2D numeric simulation of serrated chip formation in orthogonal cutting of AISI316h stainless steel
  publication-title: Mater. Technol.
– volume: 305
  start-page: 534
  year: 2007
  end-page: 542
  ident: b0020
  article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors
  publication-title: J. Sound Vib.
– volume: 19
  start-page: 1306
  year: 2019
  ident: b0130
  article-title: Multi-objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction
  publication-title: Sensor
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107656_b0120
  article-title: Optimal sensor placement based on eigenvalues analysis for sensing deformation of wing frame using iFEM
  publication-title: Sensors
– volume: 179
  start-page: 514
  year: 2017
  ident: 10.1016/j.measurement.2020.107656_b0110
  article-title: An enhanced inverse Finite element method for displacement and stress monitoring of multilayered composite and sandwich structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.07.078
– volume: 52
  start-page: 591
  year: 2012
  ident: 10.1016/j.measurement.2020.107656_b0045
  article-title: Shape monitoring of a beam structure from measured strain or curvature
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-011-9523-y
– volume: 51
  start-page: 953
  issue: 6
  year: 2017
  ident: 10.1016/j.measurement.2020.107656_b0160
  article-title: 2D numeric simulation of serrated chip formation in orthogonal cutting of AISI316h stainless steel
  publication-title: Mater. Technol.
– volume: 10
  start-page: 264
  year: 2001
  ident: 10.1016/j.measurement.2020.107656_b0030
  article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/2/311
– volume: 49
  start-page: 3100
  year: 2011
  ident: 10.1016/j.measurement.2020.107656_b0095
  article-title: Shape sensing of 3D frame structures using an inverse finite element method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.06.009
– year: 2004
  ident: 10.1016/j.measurement.2020.107656_b0090
  article-title: Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells
– volume: 136
  start-page: 387
  year: 2019
  ident: 10.1016/j.measurement.2020.107656_b0005
  article-title: A stereovision measurement for large deformation of light structures
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.12.062
– volume: 91
  start-page: 276
  year: 2016
  ident: 10.1016/j.measurement.2020.107656_b0155
  article-title: Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.028
– volume: 140
  start-page: 94
  year: 2007
  ident: 10.1016/j.measurement.2020.107656_b0065
  article-title: Wireless and distributed sensing of the shape of morphing structures Sensor
  publication-title: Actuator
  doi: 10.1016/j.sna.2007.06.026
– volume: 20
  start-page: 1
  year: 2011
  ident: 10.1016/j.measurement.2020.107656_b0025
  article-title: Shape estimation with distributed fiber Bragg grating sensors for rotating structures
  publication-title: Smart Mater. Struct.
– volume: 55
  start-page: 297
  year: 2017
  ident: 10.1016/j.measurement.2020.107656_b0115
  article-title: Membrane shape and load reconstruction from measurements using inverse Finite Element analysis
  publication-title: AIAA J.
  doi: 10.2514/1.J055123
– volume: 148
  year: 2019
  ident: 10.1016/j.measurement.2020.107656_b0010
  article-title: Deformation measurement of high-speed rotating drone blades based on digital image correlation combined with ring projection transform and orientation codes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.106899
– volume: 18
  start-page: 025006
  year: 2009
  ident: 10.1016/j.measurement.2020.107656_b0035
  article-title: Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/2/025006
– ident: 10.1016/j.measurement.2020.107656_b0070
– volume: 149
  year: 2020
  ident: 10.1016/j.measurement.2020.107656_b0015
  article-title: Research on large deflection deformation reconstruction of elastic thin plate based on strain monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107000
– volume: 231
  start-page: 83
  issue: 2
  year: 2017
  ident: 10.1016/j.measurement.2020.107656_b0165
  article-title: Three-dimesional finite element modeling of effect on the cutting forces of rake angle and approach angle in milling
  publication-title: Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng.
  doi: 10.1177/0954408915576698
– volume: 305
  start-page: 534
  year: 2007
  ident: 10.1016/j.measurement.2020.107656_b0020
  article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.04.037
– year: 2008
  ident: 10.1016/j.measurement.2020.107656_b0055
  article-title: Comparison of shape reconstruction strategies in a complex flexible structure
– volume: 10
  start-page: 264
  year: 2011
  ident: 10.1016/j.measurement.2020.107656_b0040
  article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/2/311
– volume: 6121293
  year: 2018
  ident: 10.1016/j.measurement.2020.107656_b0125
  article-title: Optimal sensor placement for inverse finite element reconstruction of three-dimensional frame deformation
  publication-title: Int. J. Aerospace Eng.
– ident: 10.1016/j.measurement.2020.107656_b0085
– volume: 98
  start-page: 221
  year: 2017
  ident: 10.1016/j.measurement.2020.107656_b0150
  article-title: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.12.002
– volume: 31
  start-page: 265
  year: 2014
  ident: 10.1016/j.measurement.2020.107656_b0135
  article-title: Element stiffness matrix for timoshenko beam with variable section
  publication-title: Chinese J. Comput. Mech.
– volume: 3
  start-page: 92
  year: 1994
  ident: 10.1016/j.measurement.2020.107656_b0050
  article-title: Shape estimation from incomplete measurements: a neural-net approach
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/3/2/002
– year: 2008
  ident: 10.1016/j.measurement.2020.107656_b0080
  article-title: Monitoring the bending and twist of morphing structures
– ident: 10.1016/j.measurement.2020.107656_b0060
– ident: 10.1016/j.measurement.2020.107656_b0075
– volume: 127
  start-page: 69
  year: 2015
  ident: 10.1016/j.measurement.2020.107656_b0105
  article-title: A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite element method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.02.081
– volume: 44
  start-page: 885
  year: 2019
  ident: 10.1016/j.measurement.2020.107656_b0140
  article-title: Generalized hausdorff distance of multi-scale point group and its application in similarity measurement
  publication-title: Geomatics Inform. Sci. Wuhan Univ..
– start-page: 1959
  year: 1993
  ident: 10.1016/j.measurement.2020.107656_b0145
  article-title: Well-conditioned observer design for observer-based monitoring systems
– volume: 19
  start-page: 1306
  year: 2019
  ident: 10.1016/j.measurement.2020.107656_b0130
  article-title: Multi-objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction
  publication-title: Sensor
  doi: 10.3390/s19061306
– volume: 5
  start-page: 341
  year: 2010
  ident: 10.1016/j.measurement.2020.107656_b0100
  article-title: A consistent refinement of first-order sheardeformation theory for laminated composite and sandwich plates using improvedzigzag kinematics
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2010.5.341
SSID ssj0006396
Score 2.4842572
Snippet •This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new...
The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107656
SubjectTerms Concentrated loads
Constitutive equations
Constitutive relation
Constitutive relationships
Cross-sections
Discrete element method
Displacement
Finite element analysis
Finite element method
Inverse finite element method
Isogeometric analysis
Mathematical analysis
Mechanical properties
Rigidity
Shear strain
Shear strength
Smart structure
Smart structures
Strain
Stress concentration
Variable cross-section
Title Shape sensing of variable cross-section beam using the inverse finite element method and isogeometric analysis
URI https://dx.doi.org/10.1016/j.measurement.2020.107656
https://www.proquest.com/docview/2441888413
Volume 158
WOSCitedRecordID wos000524745700053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZZu5X1YWzdSrt1Q4O9BYfEdmUJ9lJGSzdYGayDsBdjyefVpbFDnYT-a_3vdvoVOy1l2WAvJghJsXOfpe8ud58I-TBUSaGFs4IsgjxAUGSBjIy8dqgESCWHKjaHTSRnZ3w8Ft96vVtfC7O4SqqK39yI6X81NbahsXXp7F-YezkpNuBnNDpe0ex4Xcvw3y-yKfQbnZhuE5oX6A6bAimzIwYN2NPBJWST_rzx5VJlpRM0oF-UmoX2waaVuxOm7V8MTf0L6ok-gktrvFoxky65_drGG02koaNK0eZo-uBjt7MpO9QSoN2sgJ8XmQnjnkBZQOlbx3MbSZB1G4M13U5rtwcbVm7AWeoS5W5YA31YnwLrV7-QRYHmFytLtZV5d4steq7MqpLf2wdsSOJyMGmfZaC_ZdCOWdXevrMnLjMVfRLcZdqZKtVTpXaqR2QzTA4FLqibR5-Px1-WNACpH7MBPvscW-R9m1z4wH09RI7u0ATDfc6fk2fOaaFHFmwvSA-qHbLdkbLcIU9MKrFqXpLKAJA6ANK6oB6AdAWAVAOQGgBShAd1AKQWgNQBkFoAUgQg7QKQegC-Ij9Ojs8_nQbuVI9ARbGYBUzlwABCQMc7QzY0igoRK86kUKoA7dECzyUDxvNCcsGHIo75YRjnfJQkBY-jXbJR1RXsERqLHNcV9HhHucJOTPIsGzLFeQEhus1qn3D_c6bKSd7rk1eu0j-adZ-Ey6FTq_uyzqCP3mapI7CWmKaIy3WGH3g7p-4NbVKk3yPOOXLN1_9yS2_I0_btOiAbs-s5vCWP1WJWNtfvHGZ_A4Ja06Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+sensing+of+variable+cross-section+beam+using+the+inverse+finite+element+method+and+isogeometric+analysis&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhao%2C+Feifei&rft.au=Xu%2C+Libo&rft.au=Bao%2C+Hong&rft.au=Du%2C+Jingli&rft.date=2020-07-01&rft.issn=0263-2241&rft.volume=158&rft.spage=107656&rft_id=info:doi/10.1016%2Fj.measurement.2020.107656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2020_107656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon