Shape sensing of variable cross-section beam using the inverse finite element method and isogeometric analysis
•This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new constitutive equations are established.•This paper presents a new approach to approximate and instead of the original displacement field func...
Gespeichert in:
| Veröffentlicht in: | Measurement : journal of the International Measurement Confederation Jg. 158; S. 107656 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Elsevier Ltd
01.07.2020
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0263-2241, 1873-412X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new constitutive equations are established.•This paper presents a new approach to approximate and instead of the original displacement field functions.
The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem. |
|---|---|
| AbstractList | The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem. •This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new constitutive equations are established.•This paper presents a new approach to approximate and instead of the original displacement field functions. The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem. |
| ArticleNumber | 107656 |
| Author | Bao, Hong Zhao, Feifei Xu, Libo Du, Jingli |
| Author_xml | – sequence: 1 givenname: Feifei orcidid: 0000-0002-7251-6802 surname: Zhao fullname: Zhao, Feifei email: ffzhao@stu.xidian.edu.cn organization: Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, Xi’an, China – sequence: 2 givenname: Libo surname: Xu fullname: Xu, Libo organization: Shaanxi Key Laboratory of Space Solar Power Station System, Xidian University, Xi’an, China – sequence: 3 givenname: Hong surname: Bao fullname: Bao, Hong email: hbao@xidian.edu.cn organization: Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, Xi’an, China – sequence: 4 givenname: Jingli surname: Du fullname: Du, Jingli email: jldu@mail.xidian.edu.cn organization: Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, Xidian University, Xi’an, China |
| BookMark | eNqNkE9LAzEUxIMo2Fa_Q8Tz1iSbpslJpPgPCh5U8Bay2bdtym5Sk7TQb--29SCeenowzAzzfkN07oMHhG4oGVNCxd1q3IFJmwgd-DxmhO31qZiIMzSgcloWnLKvczQgTJQFY5xeomFKK0KIKJUYIP--NGvACXxyfoFDg7cmOlO1gG0MKRUJbHbB4wpMhzcHU14Cdn4LMQFunHcZMLSHAbiDvAw1Nr7GLoUFhF6IzvaCaXfJpSt00Zg2wfXvHaHPp8eP2Usxf3t-nT3MC1tylQthaxAADNhEGc4ULRvFrRSVsraBkkwEyLoSIGTdVFJJojiXE8ZrSafTRvJyhG6PvesYvjeQsl6FTexHJM04p1JKTsvedX90HV6N0Gjrstm_m6NxraZE7yHrlf4DWe8h6yPkvkH9a1hH15m4Oyk7O2ahB7F1EHWyDryF2sUeuq6DO6HlBzsUo0U |
| CitedBy_id | crossref_primary_10_3390_s24020608 crossref_primary_10_1177_10812865231224384 crossref_primary_10_3390_s25010059 crossref_primary_10_3390_s23073406 crossref_primary_10_1016_j_compstruct_2020_113321 crossref_primary_10_1016_j_tws_2024_111907 crossref_primary_10_1016_j_ymssp_2021_107875 crossref_primary_10_1016_j_tws_2025_113935 crossref_primary_10_1016_j_tws_2024_112127 crossref_primary_10_1016_j_ymssp_2025_112700 crossref_primary_10_1016_j_compstruc_2024_107520 crossref_primary_10_1007_s11012_024_01925_9 crossref_primary_10_1016_j_ast_2024_109665 crossref_primary_10_1016_j_ast_2023_108314 crossref_primary_10_1016_j_oceaneng_2022_110763 crossref_primary_10_1016_j_ast_2025_110917 crossref_primary_10_1016_j_measurement_2023_113945 crossref_primary_10_1016_j_oceaneng_2023_116287 crossref_primary_10_1088_1361_665X_ad2c70 crossref_primary_10_1016_j_istruc_2024_105941 crossref_primary_10_1016_j_measurement_2022_111708 crossref_primary_10_3390_s22031064 crossref_primary_10_1061_JENMDT_EMENG_6901 crossref_primary_10_1016_j_apm_2023_04_013 crossref_primary_10_1007_s40430_024_04964_1 crossref_primary_10_1016_j_ast_2020_106484 crossref_primary_10_1016_j_ijnonlinmec_2022_104229 crossref_primary_10_3390_s22239252 crossref_primary_10_1016_j_oceaneng_2024_119848 crossref_primary_10_1088_1361_665X_ac1086 crossref_primary_10_1016_j_ijmecsci_2024_109859 crossref_primary_10_1016_j_measurement_2021_109575 crossref_primary_10_1016_j_measurement_2020_108282 crossref_primary_10_1016_j_tws_2022_109485 crossref_primary_10_1016_j_oceaneng_2024_119253 crossref_primary_10_1109_TIM_2025_3547086 crossref_primary_10_1109_TIM_2025_3576002 crossref_primary_10_3390_s23135793 crossref_primary_10_1016_j_measurement_2021_110676 crossref_primary_10_1088_1361_6501_abe286 crossref_primary_10_3390_s23249809 crossref_primary_10_1016_j_measurement_2020_108434 crossref_primary_10_1016_j_oceaneng_2024_118369 crossref_primary_10_1016_j_tws_2023_110884 crossref_primary_10_1016_j_cma_2021_114520 crossref_primary_10_1016_j_ast_2025_110960 crossref_primary_10_1016_j_measurement_2021_110031 crossref_primary_10_1109_TIM_2022_3169529 crossref_primary_10_1177_13694332231187437 crossref_primary_10_1016_j_finel_2020_103440 crossref_primary_10_1016_j_oceaneng_2024_118028 crossref_primary_10_1016_j_measurement_2022_111688 crossref_primary_10_3390_s21020528 crossref_primary_10_1007_s10409_023_23039_x crossref_primary_10_1016_j_oceaneng_2024_119145 crossref_primary_10_3390_s23135962 crossref_primary_10_1016_j_measurement_2021_109958 crossref_primary_10_1016_j_measurement_2023_113492 crossref_primary_10_1109_TIM_2021_3086889 |
| Cites_doi | 10.1016/j.compstruct.2017.07.078 10.1007/s11340-011-9523-y 10.1088/0964-1726/10/2/311 10.1016/j.ijsolstr.2012.06.009 10.1016/j.measurement.2018.12.062 10.1016/j.measurement.2016.05.028 10.1016/j.sna.2007.06.026 10.2514/1.J055123 10.1016/j.measurement.2019.106899 10.1088/0964-1726/18/2/025006 10.1016/j.measurement.2019.107000 10.1177/0954408915576698 10.1016/j.jsv.2007.04.037 10.1016/j.measurement.2016.12.002 10.1088/0964-1726/3/2/002 10.1016/j.compstruct.2015.02.081 10.3390/s19061306 10.2140/jomms.2010.5.341 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Jul 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jul 1, 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2020.107656 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2020_107656 S0263224120301949 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M 9DU AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACLOT ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c349t-6cde6ee2e259a42913f94c86b9ccfe3056e8db6e68dfb89809448524d8177f843 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524745700053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Mon Nov 10 03:04:04 EST 2025 Sat Nov 29 07:24:36 EST 2025 Tue Nov 18 21:56:41 EST 2025 Fri Feb 23 02:49:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Isogeometric analysis Smart structure Variable cross-section Constitutive relation Inverse finite element method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-6cde6ee2e259a42913f94c86b9ccfe3056e8db6e68dfb89809448524d8177f843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7251-6802 |
| PQID | 2441888413 |
| PQPubID | 2047460 |
| ParticipantIDs | proquest_journals_2441888413 crossref_citationtrail_10_1016_j_measurement_2020_107656 crossref_primary_10_1016_j_measurement_2020_107656 elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107656 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Zhao, Du, Bao (b0120) 2018; 18 Smoker, Baz (b0080) 2008 Gok, Sari, Gok (b0165) 2017; 231 Cheng, Sun, Li, Li (b0140) 2019; 44 W.L. Ko, W.L. Richards, V.T. Fleischer, Displacement theories for in-flight deformed shape predictions of aerospace structures, 2007. NASA/TP-2007–214612. Bruno, Toomarian, Salama (b0050) 1994; 3 Zhao, Du, Bao (b0125) 2018; 6121293 Gok (b0160) 2017; 51 Zhao, Bao, Xue (b0130) 2019; 19 Lively, Atalla, Hagood (b0030) 2001; 10 W.L. Ko, V.T. Fleischer, Further development of Ko displacement theory for deformed shape predictions of nonuniform aerospace structures, 2009. NASA/TP-2009–214643. Kang, Kim, Han (b0020) 2007; 305 Francisco, Fernando, Patricio (b0150) 2017; 98 Kefal, Tessler, Oterkus (b0110) 2017; 179 Cerracchio, Gherlone, Sciuva, Tessler (b0105) 2015; 127 Mao, Todd (b0055) 2008 Gherlone, Cerracchio, Mattone, Tessler (b0095) 2011; 49 Tessle, Sciuva, Gherlone (b0100) 2010; 5 A. Tessler, J.L. Spangler, A variational principal for reconstruction of elastic deformation of shear deformable plates and shells, 2003. NASA/TM-2003–212445. Wang, Lu, Zhao (b0015) 2020; 149 Deng, Wang, Zhang (b0005) 2019; 136 Rapp, Kang, Han (b0035) 2009; 18 Alioli, Masarati, Morandini, Carpenter (b0115) 2017; 55 Kršák, Blištˇan, Pauliková (b0155) 2016; 91 Kang, Kim, Han (b0025) 2011; 20 Chuan, Chen, Tong (b0135) 2014; 31 Kunsoo, Stein (b0145) 1993 Akl, Poh, Baz (b0065) 2007; 140 C.V. Jutte, W.L. Ko, C.A. Stephens, Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test, 2011. NASA/TP-2011–215975. Wang, Bi, Lu (b0010) 2019; 148 Lively, Atalla, Hagood (b0040) 2011; 10 Glaser, Caccese, Shahinpoor (b0045) 2012; 52 Tessler, Spangler (b0090) 2004 10.1016/j.measurement.2020.107656_b0070 Mao (10.1016/j.measurement.2020.107656_b0055) 2008 Lively (10.1016/j.measurement.2020.107656_b0030) 2001; 10 Wang (10.1016/j.measurement.2020.107656_b0010) 2019; 148 Gok (10.1016/j.measurement.2020.107656_b0160) 2017; 51 Tessler (10.1016/j.measurement.2020.107656_b0090) 2004 Gherlone (10.1016/j.measurement.2020.107656_b0095) 2011; 49 Francisco (10.1016/j.measurement.2020.107656_b0150) 2017; 98 Zhao (10.1016/j.measurement.2020.107656_b0120) 2018; 18 Lively (10.1016/j.measurement.2020.107656_b0040) 2011; 10 Cerracchio (10.1016/j.measurement.2020.107656_b0105) 2015; 127 Smoker (10.1016/j.measurement.2020.107656_b0080) 2008 Kang (10.1016/j.measurement.2020.107656_b0020) 2007; 305 Kefal (10.1016/j.measurement.2020.107656_b0110) 2017; 179 Alioli (10.1016/j.measurement.2020.107656_b0115) 2017; 55 Deng (10.1016/j.measurement.2020.107656_b0005) 2019; 136 Bruno (10.1016/j.measurement.2020.107656_b0050) 1994; 3 10.1016/j.measurement.2020.107656_b0060 Kang (10.1016/j.measurement.2020.107656_b0025) 2011; 20 Zhao (10.1016/j.measurement.2020.107656_b0125) 2018; 6121293 10.1016/j.measurement.2020.107656_b0085 Chuan (10.1016/j.measurement.2020.107656_b0135) 2014; 31 Akl (10.1016/j.measurement.2020.107656_b0065) 2007; 140 Zhao (10.1016/j.measurement.2020.107656_b0130) 2019; 19 Kunsoo (10.1016/j.measurement.2020.107656_b0145) 1993 Kršák (10.1016/j.measurement.2020.107656_b0155) 2016; 91 Tessle (10.1016/j.measurement.2020.107656_b0100) 2010; 5 Cheng (10.1016/j.measurement.2020.107656_b0140) 2019; 44 Wang (10.1016/j.measurement.2020.107656_b0015) 2020; 149 Gok (10.1016/j.measurement.2020.107656_b0165) 2017; 231 Glaser (10.1016/j.measurement.2020.107656_b0045) 2012; 52 Rapp (10.1016/j.measurement.2020.107656_b0035) 2009; 18 10.1016/j.measurement.2020.107656_b0075 |
| References_xml | – volume: 5 start-page: 341 year: 2010 end-page: 367 ident: b0100 article-title: A consistent refinement of first-order sheardeformation theory for laminated composite and sandwich plates using improvedzigzag kinematics publication-title: J. Mech. Mater. Struct. – volume: 20 start-page: 1 year: 2011 end-page: 11 ident: b0025 article-title: Shape estimation with distributed fiber Bragg grating sensors for rotating structures publication-title: Smart Mater. Struct. – volume: 231 start-page: 83 year: 2017 end-page: 88 ident: b0165 article-title: Three-dimesional finite element modeling of effect on the cutting forces of rake angle and approach angle in milling publication-title: Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng. – reference: W.L. Ko, W.L. Richards, V.T. Fleischer, Displacement theories for in-flight deformed shape predictions of aerospace structures, 2007. NASA/TP-2007–214612. – year: 2008 ident: b0080 article-title: Monitoring the bending and twist of morphing structures publication-title: Proceedings of the SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System (San Diego, 2008) – year: 2008 ident: b0055 article-title: Comparison of shape reconstruction strategies in a complex flexible structure publication-title: Proceedings of the SPIE 6932, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System, (San Diego, 2008) – volume: 18 start-page: 1 year: 2018 end-page: 21 ident: b0120 article-title: Optimal sensor placement based on eigenvalues analysis for sensing deformation of wing frame using iFEM publication-title: Sensors – volume: 3 start-page: 92 year: 1994 end-page: 97 ident: b0050 article-title: Shape estimation from incomplete measurements: a neural-net approach publication-title: Smart Mater. Struct. – volume: 148 year: 2019 ident: b0010 article-title: Deformation measurement of high-speed rotating drone blades based on digital image correlation combined with ring projection transform and orientation codes publication-title: Measurement – volume: 52 start-page: 591 year: 2012 end-page: 606 ident: b0045 article-title: Shape monitoring of a beam structure from measured strain or curvature publication-title: Exp. Mech. – year: 2004 ident: b0090 article-title: Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells publication-title: Proceedings of the 2nd European Workshop on Structural Health Monitoring (Munich, Germany, 2004) – volume: 91 start-page: 276 year: 2016 end-page: 287 ident: b0155 article-title: Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study publication-title: Measurement – volume: 31 start-page: 265 year: 2014 end-page: 272 ident: b0135 article-title: Element stiffness matrix for timoshenko beam with variable section publication-title: Chinese J. Comput. Mech. – volume: 6121293 year: 2018 ident: b0125 article-title: Optimal sensor placement for inverse finite element reconstruction of three-dimensional frame deformation publication-title: Int. J. Aerospace Eng. – volume: 44 start-page: 885 year: 2019 end-page: 890 ident: b0140 article-title: Generalized hausdorff distance of multi-scale point group and its application in similarity measurement publication-title: Geomatics Inform. Sci. Wuhan Univ.. – reference: W.L. Ko, V.T. Fleischer, Further development of Ko displacement theory for deformed shape predictions of nonuniform aerospace structures, 2009. NASA/TP-2009–214643. – start-page: 1959 year: 1993 end-page: 1965 ident: b0145 article-title: Well-conditioned observer design for observer-based monitoring systems publication-title: American Control Conference – volume: 98 start-page: 221 year: 2017 end-page: 227 ident: b0150 article-title: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle publication-title: Measurement – volume: 127 start-page: 69 year: 2015 end-page: 76 ident: b0105 article-title: A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite element method publication-title: Compos. Struct. – volume: 136 start-page: 387 year: 2019 end-page: 394 ident: b0005 article-title: A stereovision measurement for large deformation of light structures publication-title: Measurement – volume: 18 start-page: 025006 year: 2009 ident: b0035 article-title: Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors publication-title: Smart Mater. Struct. – reference: A. Tessler, J.L. Spangler, A variational principal for reconstruction of elastic deformation of shear deformable plates and shells, 2003. NASA/TM-2003–212445. – volume: 140 start-page: 94 year: 2007 end-page: 102 ident: b0065 article-title: Wireless and distributed sensing of the shape of morphing structures Sensor publication-title: Actuator – volume: 179 start-page: 514 year: 2017 end-page: 540 ident: b0110 article-title: An enhanced inverse Finite element method for displacement and stress monitoring of multilayered composite and sandwich structures publication-title: Compos. Struct. – volume: 149 year: 2020 ident: b0015 article-title: Research on large deflection deformation reconstruction of elastic thin plate based on strain monitoring publication-title: Measurement – volume: 10 start-page: 264 year: 2011 end-page: 272 ident: b0040 article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem publication-title: Smart Mater. Struct. – volume: 55 start-page: 297 year: 2017 end-page: 308 ident: b0115 article-title: Membrane shape and load reconstruction from measurements using inverse Finite Element analysis publication-title: AIAA J. – volume: 10 start-page: 264 year: 2001 end-page: 272 ident: b0030 article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem publication-title: Smart Mater. Struct. – reference: C.V. Jutte, W.L. Ko, C.A. Stephens, Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test, 2011. NASA/TP-2011–215975. – volume: 49 start-page: 3100 year: 2011 end-page: 3112 ident: b0095 article-title: Shape sensing of 3D frame structures using an inverse finite element method publication-title: Int. J. Solids Struct. – volume: 51 start-page: 953 year: 2017 end-page: 956 ident: b0160 article-title: 2D numeric simulation of serrated chip formation in orthogonal cutting of AISI316h stainless steel publication-title: Mater. Technol. – volume: 305 start-page: 534 year: 2007 end-page: 542 ident: b0020 article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors publication-title: J. Sound Vib. – volume: 19 start-page: 1306 year: 2019 ident: b0130 article-title: Multi-objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction publication-title: Sensor – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.measurement.2020.107656_b0120 article-title: Optimal sensor placement based on eigenvalues analysis for sensing deformation of wing frame using iFEM publication-title: Sensors – volume: 179 start-page: 514 year: 2017 ident: 10.1016/j.measurement.2020.107656_b0110 article-title: An enhanced inverse Finite element method for displacement and stress monitoring of multilayered composite and sandwich structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.07.078 – volume: 52 start-page: 591 year: 2012 ident: 10.1016/j.measurement.2020.107656_b0045 article-title: Shape monitoring of a beam structure from measured strain or curvature publication-title: Exp. Mech. doi: 10.1007/s11340-011-9523-y – volume: 51 start-page: 953 issue: 6 year: 2017 ident: 10.1016/j.measurement.2020.107656_b0160 article-title: 2D numeric simulation of serrated chip formation in orthogonal cutting of AISI316h stainless steel publication-title: Mater. Technol. – volume: 10 start-page: 264 year: 2001 ident: 10.1016/j.measurement.2020.107656_b0030 article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/2/311 – volume: 49 start-page: 3100 year: 2011 ident: 10.1016/j.measurement.2020.107656_b0095 article-title: Shape sensing of 3D frame structures using an inverse finite element method publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.06.009 – year: 2004 ident: 10.1016/j.measurement.2020.107656_b0090 article-title: Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells – volume: 136 start-page: 387 year: 2019 ident: 10.1016/j.measurement.2020.107656_b0005 article-title: A stereovision measurement for large deformation of light structures publication-title: Measurement doi: 10.1016/j.measurement.2018.12.062 – volume: 91 start-page: 276 year: 2016 ident: 10.1016/j.measurement.2020.107656_b0155 article-title: Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study publication-title: Measurement doi: 10.1016/j.measurement.2016.05.028 – volume: 140 start-page: 94 year: 2007 ident: 10.1016/j.measurement.2020.107656_b0065 article-title: Wireless and distributed sensing of the shape of morphing structures Sensor publication-title: Actuator doi: 10.1016/j.sna.2007.06.026 – volume: 20 start-page: 1 year: 2011 ident: 10.1016/j.measurement.2020.107656_b0025 article-title: Shape estimation with distributed fiber Bragg grating sensors for rotating structures publication-title: Smart Mater. Struct. – volume: 55 start-page: 297 year: 2017 ident: 10.1016/j.measurement.2020.107656_b0115 article-title: Membrane shape and load reconstruction from measurements using inverse Finite Element analysis publication-title: AIAA J. doi: 10.2514/1.J055123 – volume: 148 year: 2019 ident: 10.1016/j.measurement.2020.107656_b0010 article-title: Deformation measurement of high-speed rotating drone blades based on digital image correlation combined with ring projection transform and orientation codes publication-title: Measurement doi: 10.1016/j.measurement.2019.106899 – volume: 18 start-page: 025006 year: 2009 ident: 10.1016/j.measurement.2020.107656_b0035 article-title: Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/2/025006 – ident: 10.1016/j.measurement.2020.107656_b0070 – volume: 149 year: 2020 ident: 10.1016/j.measurement.2020.107656_b0015 article-title: Research on large deflection deformation reconstruction of elastic thin plate based on strain monitoring publication-title: Measurement doi: 10.1016/j.measurement.2019.107000 – volume: 231 start-page: 83 issue: 2 year: 2017 ident: 10.1016/j.measurement.2020.107656_b0165 article-title: Three-dimesional finite element modeling of effect on the cutting forces of rake angle and approach angle in milling publication-title: Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng. doi: 10.1177/0954408915576698 – volume: 305 start-page: 534 year: 2007 ident: 10.1016/j.measurement.2020.107656_b0020 article-title: Estimation of dynamic structural displacements using fiber Bragg grating strain sensors publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.04.037 – year: 2008 ident: 10.1016/j.measurement.2020.107656_b0055 article-title: Comparison of shape reconstruction strategies in a complex flexible structure – volume: 10 start-page: 264 year: 2011 ident: 10.1016/j.measurement.2020.107656_b0040 article-title: Investigation of filtering techniques applied to the dynamic shape estimation problem publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/2/311 – volume: 6121293 year: 2018 ident: 10.1016/j.measurement.2020.107656_b0125 article-title: Optimal sensor placement for inverse finite element reconstruction of three-dimensional frame deformation publication-title: Int. J. Aerospace Eng. – ident: 10.1016/j.measurement.2020.107656_b0085 – volume: 98 start-page: 221 year: 2017 ident: 10.1016/j.measurement.2020.107656_b0150 article-title: Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle publication-title: Measurement doi: 10.1016/j.measurement.2016.12.002 – volume: 31 start-page: 265 year: 2014 ident: 10.1016/j.measurement.2020.107656_b0135 article-title: Element stiffness matrix for timoshenko beam with variable section publication-title: Chinese J. Comput. Mech. – volume: 3 start-page: 92 year: 1994 ident: 10.1016/j.measurement.2020.107656_b0050 article-title: Shape estimation from incomplete measurements: a neural-net approach publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/3/2/002 – year: 2008 ident: 10.1016/j.measurement.2020.107656_b0080 article-title: Monitoring the bending and twist of morphing structures – ident: 10.1016/j.measurement.2020.107656_b0060 – ident: 10.1016/j.measurement.2020.107656_b0075 – volume: 127 start-page: 69 year: 2015 ident: 10.1016/j.measurement.2020.107656_b0105 article-title: A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite element method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.02.081 – volume: 44 start-page: 885 year: 2019 ident: 10.1016/j.measurement.2020.107656_b0140 article-title: Generalized hausdorff distance of multi-scale point group and its application in similarity measurement publication-title: Geomatics Inform. Sci. Wuhan Univ.. – start-page: 1959 year: 1993 ident: 10.1016/j.measurement.2020.107656_b0145 article-title: Well-conditioned observer design for observer-based monitoring systems – volume: 19 start-page: 1306 year: 2019 ident: 10.1016/j.measurement.2020.107656_b0130 article-title: Multi-objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction publication-title: Sensor doi: 10.3390/s19061306 – volume: 5 start-page: 341 year: 2010 ident: 10.1016/j.measurement.2020.107656_b0100 article-title: A consistent refinement of first-order sheardeformation theory for laminated composite and sandwich plates using improvedzigzag kinematics publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2010.5.341 |
| SSID | ssj0006396 |
| Score | 2.4842572 |
| Snippet | •This paper proposes a new iFEM method for reconstructing displacement field of variable cross-section beam.•Mechanical parameters are linearized, and the new... The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107656 |
| SubjectTerms | Concentrated loads Constitutive equations Constitutive relation Constitutive relationships Cross-sections Discrete element method Displacement Finite element analysis Finite element method Inverse finite element method Isogeometric analysis Mathematical analysis Mechanical properties Rigidity Shear strain Shear strength Smart structure Smart structures Strain Stress concentration Variable cross-section |
| Title | Shape sensing of variable cross-section beam using the inverse finite element method and isogeometric analysis |
| URI | https://dx.doi.org/10.1016/j.measurement.2020.107656 https://www.proquest.com/docview/2441888413 |
| Volume | 158 |
| WOSCitedRecordID | wos000524745700053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZZu5X1YWzdSrt1Q4O9BYfEdmUJ9lJGSzdYGayDsBdjyefVpbFDnYT-a_3vdvoVOy1l2WAvJghJsXOfpe8ud58I-TBUSaGFs4IsgjxAUGSBjIy8dqgESCWHKjaHTSRnZ3w8Ft96vVtfC7O4SqqK39yI6X81NbahsXXp7F-YezkpNuBnNDpe0ex4Xcvw3y-yKfQbnZhuE5oX6A6bAimzIwYN2NPBJWST_rzx5VJlpRM0oF-UmoX2waaVuxOm7V8MTf0L6ok-gktrvFoxky65_drGG02koaNK0eZo-uBjt7MpO9QSoN2sgJ8XmQnjnkBZQOlbx3MbSZB1G4M13U5rtwcbVm7AWeoS5W5YA31YnwLrV7-QRYHmFytLtZV5d4steq7MqpLf2wdsSOJyMGmfZaC_ZdCOWdXevrMnLjMVfRLcZdqZKtVTpXaqR2QzTA4FLqibR5-Px1-WNACpH7MBPvscW-R9m1z4wH09RI7u0ATDfc6fk2fOaaFHFmwvSA-qHbLdkbLcIU9MKrFqXpLKAJA6ANK6oB6AdAWAVAOQGgBShAd1AKQWgNQBkFoAUgQg7QKQegC-Ij9Ojs8_nQbuVI9ARbGYBUzlwABCQMc7QzY0igoRK86kUKoA7dECzyUDxvNCcsGHIo75YRjnfJQkBY-jXbJR1RXsERqLHNcV9HhHucJOTPIsGzLFeQEhus1qn3D_c6bKSd7rk1eu0j-adZ-Ey6FTq_uyzqCP3mapI7CWmKaIy3WGH3g7p-4NbVKk3yPOOXLN1_9yS2_I0_btOiAbs-s5vCWP1WJWNtfvHGZ_A4Ja06Y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+sensing+of+variable+cross-section+beam+using+the+inverse+finite+element+method+and+isogeometric+analysis&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Zhao%2C+Feifei&rft.au=Xu%2C+Libo&rft.au=Bao%2C+Hong&rft.au=Du%2C+Jingli&rft.date=2020-07-01&rft.issn=0263-2241&rft.volume=158&rft.spage=107656&rft_id=info:doi/10.1016%2Fj.measurement.2020.107656&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2020_107656 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |