VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network
We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep n...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 27; H. 2; S. 326 - 336 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode. |
|---|---|
| AbstractList | We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode. We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode. |
| Author | Zhang, Peiying Li, Chenhui Wang, Changbo |
| Author_xml | – sequence: 1 givenname: Peiying surname: Zhang fullname: Zhang, Peiying organization: School of Computer Science and TechnologyEast China Normal University – sequence: 2 givenname: Chenhui surname: Li fullname: Li, Chenhui email: chli@cs.ecnu.edu.cn organization: School of Computer Science and TechnologyEast China Normal University – sequence: 3 givenname: Changbo surname: Wang fullname: Wang, Changbo organization: School of Computer Science and TechnologyEast China Normal University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33048685$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9LxDAQxYMo6qofQAQpePHSNf-aNt5kXXVh0cvqNaTtVKJtokmL6Kc3664e9iBzmCH5vccwb4S2rbOA0DHBY0KwvFg8TW7HFFM8ZjgWZ1ton0hOUpxhsR1nnOcpFVTsoVEILxgTzgu5i_YYw7wQRbaPFk8mTFwNl8m0K6GujX1OZrZxvtO9cTYxNonEoFvztXqYdfoZQjKEJTm1VdT69Bp-enIP_Yfzr4dop9FtgKN1P0CPN9PF5C6dP9zOJlfztGJc9qmoGG4azEkuCyjrUkOZNUWtORXxQ4MEXAEQnYuCUVzlrOG00aXUZclpxik7QOcr3zfv3gcIvepMqKBttQU3BEV5RghjhWARPdtAX9zgbdwuUtFeCCmzSJ2uqaHsoFZv3nTaf6rfe0UgXwGVdyF4aFRl-p_D9F6bVhGslsmoZTJqmYxaJxOVZEP5a_6f5mSlMQDwx0tKKcsK9g26FZhJ |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3454531 crossref_primary_10_1109_TVCG_2024_3485701 crossref_primary_10_1109_TMM_2022_3223559 crossref_primary_10_1109_TVCG_2022_3225554 crossref_primary_10_1109_TVCG_2022_3229023 crossref_primary_10_1016_j_eswa_2024_123715 crossref_primary_10_1109_TVCG_2023_3326597 crossref_primary_10_1109_TVCG_2024_3383089 crossref_primary_10_1109_TVCG_2021_3099002 crossref_primary_10_1145_3674976 crossref_primary_10_1109_MCI_2021_3108305 crossref_primary_10_1007_s11704_023_2691_y crossref_primary_10_1007_s10489_025_06333_4 crossref_primary_10_1109_TVCG_2021_3106142 crossref_primary_10_1109_TVCG_2022_3153514 crossref_primary_10_1016_j_compbiomed_2023_107344 crossref_primary_10_1109_TVCG_2023_3261320 crossref_primary_10_1145_3576935 crossref_primary_10_1002_cpe_6448 crossref_primary_10_1038_s41598_025_14576_x crossref_primary_10_1109_TMM_2021_3097900 crossref_primary_10_1111_tgis_13164 crossref_primary_10_1038_s41598_022_09858_7 crossref_primary_10_3390_s24061835 |
| Cites_doi | 10.1109/IPTA.2010.5586786 10.1109/TVCG.2016.2525771 10.1109/TPAMI.2016.2577031 10.1109/TVCG.2013.234 10.1109/CVPR.2016.90 10.1007/s12650-018-0530-2 10.1145/2896818 10.1109/CVPR.2019.00161 10.1006/jcss.2002.1827 10.1109/WIFS.2012.6412655 10.1002/j.1538-7305.1948.tb01338.x 10.1117/12.337436 10.1145/2858036.2858435 10.1007/978-3-642-16435-4_13 10.1007/978-3-030-01267-0_40 10.1145/3152823 10.1109/TVCG.2011.185 10.3390/fi10060054 10.1109/ACSSC.2003.1292216 10.1145/2307636.2307645 10.1109/CVPR.2018.00068 10.1111/cgf.13686 10.1145/3126594.3126653 10.1109/TVCG.2015.2467732 10.1109/TVCG.2017.2744320 10.1111/cgf.13193 10.1109/ICPR.2006.479 10.1016/j.visinf.2018.04.011 10.1038/540330a 10.1007/978-1-4899-3324-9 10.1109/LSP.2017.2745572 10.1109/CVPR.2014.81 10.1016/j.jvlc.2018.08.005 10.1109/LSP.2006.870357 10.1109/CVPR.2019.00766 10.1007/s10479-005-5724-z 10.1109/TIP.2003.819861 10.1016/j.sigpro.2019.06.010 10.2352/ISSN.2470-1173.2016.8.MWSF-078 10.1007/s00521-014-1702-1 10.1109/CVPR42600.2020.00219 10.1137/0108018 10.1007/978-3-642-21551-3_13 10.1109/TVCG.2018.2865138 10.1300/J104v40n03_02 10.1016/S0019-9958(60)90287-4 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2020.3030343 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 336 |
| ExternalDocumentID | 33048685 10_1109_TVCG_2020_3030343 9222358 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: NSFC grantid: 61802128; 61672237; 61532002 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIC RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-6c30ff041798ebdbaeb5f8da42630fae9e0cee1a768320c73f42fab9abb425423 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706330100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sat Sep 27 23:13:25 EDT 2025 Sun Nov 09 08:52:22 EST 2025 Wed Feb 19 02:30:41 EST 2025 Sat Nov 29 06:05:44 EST 2025 Tue Nov 18 21:21:07 EST 2025 Wed Aug 27 02:27:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-6c30ff041798ebdbaeb5f8da42630fae9e0cee1a768320c73f42fab9abb425423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 33048685 |
| PQID | 2483266995 |
| PQPubID | 75741 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2483266995 proquest_miscellaneous_2451133863 pubmed_primary_33048685 crossref_citationtrail_10_1109_TVCG_2020_3030343 crossref_primary_10_1109_TVCG_2020_3030343 ieee_primary_9222358 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref12 ref59 ref15 ref14 ref53 ref55 ref11 ref54 ref10 kingma (ref29) 2014 baluja (ref5) 0 ref17 ref19 paszke (ref36) 0 ref18 hayes (ref22) 0 (ref1) 2015 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 zhang (ref58) 2019 wave (ref52) 0 ref8 ref7 ref9 ref6 alok (ref4) 2019 ronneberger (ref44) 0 poco (ref39) 2017; 36 ref40 ref35 ref37 ref31 ref30 ref33 ref32 ref2 ref38 tufte (ref49) 2001; 2 ref24 ref23 ref25 ref20 ref21 enamul (ref16) 2020; 26 ref28 ref27 ioffe (ref26) 2015 ref60 almohammad (ref3) 0 ref61 nair (ref34) 0 cox (ref13) 2007 |
| References_xml | – ident: ref2 doi: 10.1109/IPTA.2010.5586786 – ident: ref57 doi: 10.1109/TVCG.2016.2525771 – ident: ref43 doi: 10.1109/TPAMI.2016.2577031 – ident: ref8 doi: 10.1109/TVCG.2013.234 – year: 2007 ident: ref13 publication-title: Digital Watermarking and Steganography – start-page: 2069 year: 0 ident: ref5 article-title: Hiding images in plain sight: Deep steganography publication-title: Advances in neural information processing systems – ident: ref23 doi: 10.1109/CVPR.2016.90 – year: 0 ident: ref52 publication-title: Or code – ident: ref60 doi: 10.1007/s12650-018-0530-2 – ident: ref27 doi: 10.1145/2896818 – ident: ref53 doi: 10.1109/CVPR.2019.00161 – ident: ref6 doi: 10.1006/jcss.2002.1827 – start-page: 234 year: 0 ident: ref44 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – ident: ref24 doi: 10.1109/WIFS.2012.6412655 – ident: ref45 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref28 doi: 10.1117/12.337436 – ident: ref32 doi: 10.1145/2858036.2858435 – ident: ref37 doi: 10.1007/978-3-642-16435-4_13 – ident: ref61 doi: 10.1007/978-3-030-01267-0_40 – start-page: 8024 year: 0 ident: ref36 article-title: Pytorch: An imperative style, highperformance deep learning library publication-title: Advances in neural information processing systems – ident: ref56 doi: 10.1145/3152823 – ident: ref10 doi: 10.1109/TVCG.2011.185 – ident: ref55 doi: 10.3390/fi10060054 – ident: ref51 doi: 10.1109/ACSSC.2003.1292216 – ident: ref21 doi: 10.1145/2307636.2307645 – start-page: 1954 year: 0 ident: ref22 article-title: Generating steganographic images via adversarial training publication-title: Advances in neural information processing systems – start-page: 807 year: 0 ident: ref34 article-title: Rectified linear units improve restricted boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10) – ident: ref59 doi: 10.1109/CVPR.2018.00068 – ident: ref12 doi: 10.1111/cgf.13686 – year: 2014 ident: ref29 publication-title: Adam A method for stochastic optimization – ident: ref11 doi: 10.1145/3126594.3126653 – ident: ref7 doi: 10.1109/TVCG.2015.2467732 – year: 2019 ident: ref58 publication-title: Steganogan High capacity image steganography with gans – ident: ref40 doi: 10.1109/TVCG.2017.2744320 – start-page: 544 year: 0 ident: ref3 article-title: High capacity stegano-graphic method based upon jpeg publication-title: 2008 Third International Conference on Availability Reliability and Security – volume: 36 start-page: 353 year: 2017 ident: ref39 article-title: Reverse-engineering visualizations: Recovering visual encodings from chart images publication-title: Computer Graphics Forum doi: 10.1111/cgf.13193 – ident: ref35 doi: 10.1109/ICPR.2006.479 – ident: ref30 doi: 10.1016/j.visinf.2018.04.011 – volume: 2 year: 2001 ident: ref49 publication-title: The Visual Display of Quantitative Information – ident: ref31 doi: 10.1038/540330a – volume: 26 start-page: 1236 year: 2020 ident: ref16 article-title: Searching the visual style and structure of d3 visualizations publication-title: IEEE Transactions on Visualization and Computer Graphics – ident: ref46 doi: 10.1007/978-1-4899-3324-9 – ident: ref48 doi: 10.1109/LSP.2017.2745572 – ident: ref18 doi: 10.1109/CVPR.2014.81 – ident: ref14 doi: 10.1016/j.jvlc.2018.08.005 – ident: ref33 doi: 10.1109/LSP.2006.870357 – ident: ref41 doi: 10.1109/CVPR.2019.00766 – ident: ref15 doi: 10.1007/s10479-005-5724-z – year: 2015 ident: ref1 – ident: ref50 doi: 10.1109/TIP.2003.819861 – ident: ref17 doi: 10.1016/j.sigpro.2019.06.010 – ident: ref38 doi: 10.2352/ISSN.2470-1173.2016.8.MWSF-078 – ident: ref25 doi: 10.1007/s00521-014-1702-1 – year: 2015 ident: ref26 publication-title: Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift – ident: ref47 doi: 10.1109/CVPR42600.2020.00219 – ident: ref42 doi: 10.1137/0108018 – ident: ref54 doi: 10.1007/978-3-642-21551-3_13 – ident: ref20 doi: 10.1109/TVCG.2018.2865138 – ident: ref19 doi: 10.1300/J104v40n03_02 – ident: ref9 doi: 10.1016/S0019-9958(60)90287-4 – start-page: 1 year: 2019 ident: ref4 article-title: Embedding meta information into visualizations publication-title: IEEE Transactions on Visualization and Computer Graphics |
| SSID | ssj0014489 |
| Score | 2.5342002 |
| Snippet | We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 326 |
| SubjectTerms | Algorithms Artificial neural networks autocoding Coders Data visualization Decoding Embedding Encoders-Decoders Encoding Image coding Image color analysis information steganography Information visualization Media Performance evaluation saliency detection Scientific visualization Visualization visualization retargeting |
| Title | VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network |
| URI | https://ieeexplore.ieee.org/document/9222358 https://www.ncbi.nlm.nih.gov/pubmed/33048685 https://www.proquest.com/docview/2483266995 https://www.proquest.com/docview/2451133863 |
| Volume | 27 |
| WOSCitedRecordID | wos000706330100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4F1AMc-gLatBRtpZ4qDBu_1ttblSYtEop6SKPcrN31LIoETpUHv5-ZtWNxoEg92ZLHr50Zz3yeF8AXbwx57VpHmdeKAEqhoyKL8yhNKqykI4MUOt7MrtVkUszn-ncPzrtaGEQMyWd4wbshll8t3ZZ_lV1qNmZZsQd7SuVNrVYXMSCYoZv8QhXF5KW3EcyB1JfT2fAnIcGYACqJdJLy7ByG8UXOE5QfmaMwX-XfrmYwOeNX__ewr-Fl61qK740svIEe1m_h8FHDwSOYzhbr4bLCb2J0Z7FiuyXagiRmkFjUgii4zrKpzhRXd_S9WQvOjr8Ro5oL4FfRDwxbMWlSyI_hz3g0Hf6K2rkKkUtSvYlyl0jvJc8eK9BW1qDNfFEZ7t0uvUGNkkznwBASSWLpVOLT2BurjbWk4eR_ncB-vazxPYgKnUnIpJmBdykqUvbUK8thZqeszGwf5G55S9c2HefZF7dlAB9Sl8yckplTtszpw9fulL9Nx43niI945TvCdtH7cLrjYdnq5LqMU3qdPNc668Pn7jBpE4dITI3LLdOQA0qoPacrv2t43117JzIfnr7nRziIOd8lZHSfwv5mtcVP8MLdbxbr1RmJ7Lw4CyL7AIcs5H0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VFgl6KI9SmrbAInFCmG783t5QmtKKEHEIUW_W7nq2ikQdlEd_f2fWG6sHQOJkSx6_dmY883leAB-c1uS1KxVlThUEUEoVlVmcR2lSYy0tGSTf8WY6Ksbj8vpa_diCT10tDCL65DP8zLs-ll_P7Zp_lZ0qNmZZ-Qh2eHJWqNbqYgYENFSbYVhEMfnpIYbZl-p0Mh18JSwYE0QloU5Snp7DQL7MeYbyA4PkJ6z83dn0Rufi2f897nPYC86l-NJKwwvYwuYl7D5oObgPk-lsOZjXeCaGtwZrtlwilCQxi8SsEUTBlZZtfaa4uqUvzlJwfvyNGDZcAr-IztFvxbhNIn8FPy-Gk8FlFCYrRDZJ1SrKbSKdkzx9rERTG40mc2WtuXu7dBoVSjKefU1YJImlLRKXxk4bpY0hHScP7AC2m3mDhyBqtDoho6b7zqZYkLqnrjAcaLaFkZnpgdwsb2VD23GefvGr8vBDqoqZUzFzqsCcHnzsTvnd9tz4F_E-r3xHGBa9BycbHlZBK5dVnNLr5LlSWQ_ed4dJnzhIohucr5mGXFDC7Tld-XXL--7aG5E5-vM938GTy8n3UTW6Gn87hqcxZ7_4_O4T2F4t1vgGHtu71Wy5eOsF9x4yvObe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VisCode%3A+Embedding+Information+in+Visualization+Images+using+Encoder-Decoder+Network&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Zhang%2C+Peiying&rft.au=Li%2C+Chenhui&rft.au=Wang%2C+Changbo&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=27&rft.issue=2&rft.spage=326&rft.epage=336&rft_id=info:doi/10.1109%2FTVCG.2020.3030343&rft_id=info%3Apmid%2F33048685&rft.externalDocID=9222358 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |