VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network

We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 27; H. 2; S. 326 - 336
Hauptverfasser: Zhang, Peiying, Li, Chenhui, Wang, Changbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1077-2626, 1941-0506, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.
AbstractList We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.
We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.
Author Zhang, Peiying
Li, Chenhui
Wang, Changbo
Author_xml – sequence: 1
  givenname: Peiying
  surname: Zhang
  fullname: Zhang, Peiying
  organization: School of Computer Science and TechnologyEast China Normal University
– sequence: 2
  givenname: Chenhui
  surname: Li
  fullname: Li, Chenhui
  email: chli@cs.ecnu.edu.cn
  organization: School of Computer Science and TechnologyEast China Normal University
– sequence: 3
  givenname: Changbo
  surname: Wang
  fullname: Wang, Changbo
  organization: School of Computer Science and TechnologyEast China Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33048685$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LxDAQxYMo6qofQAQpePHSNf-aNt5kXXVh0cvqNaTtVKJtokmL6Kc3664e9iBzmCH5vccwb4S2rbOA0DHBY0KwvFg8TW7HFFM8ZjgWZ1ton0hOUpxhsR1nnOcpFVTsoVEILxgTzgu5i_YYw7wQRbaPFk8mTFwNl8m0K6GujX1OZrZxvtO9cTYxNonEoFvztXqYdfoZQjKEJTm1VdT69Bp-enIP_Yfzr4dop9FtgKN1P0CPN9PF5C6dP9zOJlfztGJc9qmoGG4azEkuCyjrUkOZNUWtORXxQ4MEXAEQnYuCUVzlrOG00aXUZclpxik7QOcr3zfv3gcIvepMqKBttQU3BEV5RghjhWARPdtAX9zgbdwuUtFeCCmzSJ2uqaHsoFZv3nTaf6rfe0UgXwGVdyF4aFRl-p_D9F6bVhGslsmoZTJqmYxaJxOVZEP5a_6f5mSlMQDwx0tKKcsK9g26FZhJ
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3454531
crossref_primary_10_1109_TVCG_2024_3485701
crossref_primary_10_1109_TMM_2022_3223559
crossref_primary_10_1109_TVCG_2022_3225554
crossref_primary_10_1109_TVCG_2022_3229023
crossref_primary_10_1016_j_eswa_2024_123715
crossref_primary_10_1109_TVCG_2023_3326597
crossref_primary_10_1109_TVCG_2024_3383089
crossref_primary_10_1109_TVCG_2021_3099002
crossref_primary_10_1145_3674976
crossref_primary_10_1109_MCI_2021_3108305
crossref_primary_10_1007_s11704_023_2691_y
crossref_primary_10_1007_s10489_025_06333_4
crossref_primary_10_1109_TVCG_2021_3106142
crossref_primary_10_1109_TVCG_2022_3153514
crossref_primary_10_1016_j_compbiomed_2023_107344
crossref_primary_10_1109_TVCG_2023_3261320
crossref_primary_10_1145_3576935
crossref_primary_10_1002_cpe_6448
crossref_primary_10_1038_s41598_025_14576_x
crossref_primary_10_1109_TMM_2021_3097900
crossref_primary_10_1111_tgis_13164
crossref_primary_10_1038_s41598_022_09858_7
crossref_primary_10_3390_s24061835
Cites_doi 10.1109/IPTA.2010.5586786
10.1109/TVCG.2016.2525771
10.1109/TPAMI.2016.2577031
10.1109/TVCG.2013.234
10.1109/CVPR.2016.90
10.1007/s12650-018-0530-2
10.1145/2896818
10.1109/CVPR.2019.00161
10.1006/jcss.2002.1827
10.1109/WIFS.2012.6412655
10.1002/j.1538-7305.1948.tb01338.x
10.1117/12.337436
10.1145/2858036.2858435
10.1007/978-3-642-16435-4_13
10.1007/978-3-030-01267-0_40
10.1145/3152823
10.1109/TVCG.2011.185
10.3390/fi10060054
10.1109/ACSSC.2003.1292216
10.1145/2307636.2307645
10.1109/CVPR.2018.00068
10.1111/cgf.13686
10.1145/3126594.3126653
10.1109/TVCG.2015.2467732
10.1109/TVCG.2017.2744320
10.1111/cgf.13193
10.1109/ICPR.2006.479
10.1016/j.visinf.2018.04.011
10.1038/540330a
10.1007/978-1-4899-3324-9
10.1109/LSP.2017.2745572
10.1109/CVPR.2014.81
10.1016/j.jvlc.2018.08.005
10.1109/LSP.2006.870357
10.1109/CVPR.2019.00766
10.1007/s10479-005-5724-z
10.1109/TIP.2003.819861
10.1016/j.sigpro.2019.06.010
10.2352/ISSN.2470-1173.2016.8.MWSF-078
10.1007/s00521-014-1702-1
10.1109/CVPR42600.2020.00219
10.1137/0108018
10.1007/978-3-642-21551-3_13
10.1109/TVCG.2018.2865138
10.1300/J104v40n03_02
10.1016/S0019-9958(60)90287-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2020.3030343
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 336
ExternalDocumentID 33048685
10_1109_TVCG_2020_3030343
9222358
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSFC
  grantid: 61802128; 61672237; 61532002
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIC
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-6c30ff041798ebdbaeb5f8da42630fae9e0cee1a768320c73f42fab9abb425423
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706330100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sat Sep 27 23:13:25 EDT 2025
Sun Nov 09 08:52:22 EST 2025
Wed Feb 19 02:30:41 EST 2025
Sat Nov 29 06:05:44 EST 2025
Tue Nov 18 21:21:07 EST 2025
Wed Aug 27 02:27:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-6c30ff041798ebdbaeb5f8da42630fae9e0cee1a768320c73f42fab9abb425423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33048685
PQID 2483266995
PQPubID 75741
PageCount 11
ParticipantIDs proquest_journals_2483266995
proquest_miscellaneous_2451133863
pubmed_primary_33048685
crossref_citationtrail_10_1109_TVCG_2020_3030343
crossref_primary_10_1109_TVCG_2020_3030343
ieee_primary_9222358
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref15
ref14
ref53
ref55
ref11
ref54
ref10
kingma (ref29) 2014
baluja (ref5) 0
ref17
ref19
paszke (ref36) 0
ref18
hayes (ref22) 0
(ref1) 2015
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
zhang (ref58) 2019
wave (ref52) 0
ref8
ref7
ref9
ref6
alok (ref4) 2019
ronneberger (ref44) 0
poco (ref39) 2017; 36
ref40
ref35
ref37
ref31
ref30
ref33
ref32
ref2
ref38
tufte (ref49) 2001; 2
ref24
ref23
ref25
ref20
ref21
enamul (ref16) 2020; 26
ref28
ref27
ioffe (ref26) 2015
ref60
almohammad (ref3) 0
ref61
nair (ref34) 0
cox (ref13) 2007
References_xml – ident: ref2
  doi: 10.1109/IPTA.2010.5586786
– ident: ref57
  doi: 10.1109/TVCG.2016.2525771
– ident: ref43
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref8
  doi: 10.1109/TVCG.2013.234
– year: 2007
  ident: ref13
  publication-title: Digital Watermarking and Steganography
– start-page: 2069
  year: 0
  ident: ref5
  article-title: Hiding images in plain sight: Deep steganography
  publication-title: Advances in neural information processing systems
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– year: 0
  ident: ref52
  publication-title: Or code
– ident: ref60
  doi: 10.1007/s12650-018-0530-2
– ident: ref27
  doi: 10.1145/2896818
– ident: ref53
  doi: 10.1109/CVPR.2019.00161
– ident: ref6
  doi: 10.1006/jcss.2002.1827
– start-page: 234
  year: 0
  ident: ref44
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– ident: ref24
  doi: 10.1109/WIFS.2012.6412655
– ident: ref45
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref28
  doi: 10.1117/12.337436
– ident: ref32
  doi: 10.1145/2858036.2858435
– ident: ref37
  doi: 10.1007/978-3-642-16435-4_13
– ident: ref61
  doi: 10.1007/978-3-030-01267-0_40
– start-page: 8024
  year: 0
  ident: ref36
  article-title: Pytorch: An imperative style, highperformance deep learning library
  publication-title: Advances in neural information processing systems
– ident: ref56
  doi: 10.1145/3152823
– ident: ref10
  doi: 10.1109/TVCG.2011.185
– ident: ref55
  doi: 10.3390/fi10060054
– ident: ref51
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref21
  doi: 10.1145/2307636.2307645
– start-page: 1954
  year: 0
  ident: ref22
  article-title: Generating steganographic images via adversarial training
  publication-title: Advances in neural information processing systems
– start-page: 807
  year: 0
  ident: ref34
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
– ident: ref59
  doi: 10.1109/CVPR.2018.00068
– ident: ref12
  doi: 10.1111/cgf.13686
– year: 2014
  ident: ref29
  publication-title: Adam A method for stochastic optimization
– ident: ref11
  doi: 10.1145/3126594.3126653
– ident: ref7
  doi: 10.1109/TVCG.2015.2467732
– year: 2019
  ident: ref58
  publication-title: Steganogan High capacity image steganography with gans
– ident: ref40
  doi: 10.1109/TVCG.2017.2744320
– start-page: 544
  year: 0
  ident: ref3
  article-title: High capacity stegano-graphic method based upon jpeg
  publication-title: 2008 Third International Conference on Availability Reliability and Security
– volume: 36
  start-page: 353
  year: 2017
  ident: ref39
  article-title: Reverse-engineering visualizations: Recovering visual encodings from chart images
  publication-title: Computer Graphics Forum
  doi: 10.1111/cgf.13193
– ident: ref35
  doi: 10.1109/ICPR.2006.479
– ident: ref30
  doi: 10.1016/j.visinf.2018.04.011
– volume: 2
  year: 2001
  ident: ref49
  publication-title: The Visual Display of Quantitative Information
– ident: ref31
  doi: 10.1038/540330a
– volume: 26
  start-page: 1236
  year: 2020
  ident: ref16
  article-title: Searching the visual style and structure of d3 visualizations
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: ref46
  doi: 10.1007/978-1-4899-3324-9
– ident: ref48
  doi: 10.1109/LSP.2017.2745572
– ident: ref18
  doi: 10.1109/CVPR.2014.81
– ident: ref14
  doi: 10.1016/j.jvlc.2018.08.005
– ident: ref33
  doi: 10.1109/LSP.2006.870357
– ident: ref41
  doi: 10.1109/CVPR.2019.00766
– ident: ref15
  doi: 10.1007/s10479-005-5724-z
– year: 2015
  ident: ref1
– ident: ref50
  doi: 10.1109/TIP.2003.819861
– ident: ref17
  doi: 10.1016/j.sigpro.2019.06.010
– ident: ref38
  doi: 10.2352/ISSN.2470-1173.2016.8.MWSF-078
– ident: ref25
  doi: 10.1007/s00521-014-1702-1
– year: 2015
  ident: ref26
  publication-title: Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift
– ident: ref47
  doi: 10.1109/CVPR42600.2020.00219
– ident: ref42
  doi: 10.1137/0108018
– ident: ref54
  doi: 10.1007/978-3-642-21551-3_13
– ident: ref20
  doi: 10.1109/TVCG.2018.2865138
– ident: ref19
  doi: 10.1300/J104v40n03_02
– ident: ref9
  doi: 10.1016/S0019-9958(60)90287-4
– start-page: 1
  year: 2019
  ident: ref4
  article-title: Embedding meta information into visualizations
  publication-title: IEEE Transactions on Visualization and Computer Graphics
SSID ssj0014489
Score 2.5342002
Snippet We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 326
SubjectTerms Algorithms
Artificial neural networks
autocoding
Coders
Data visualization
Decoding
Embedding
Encoders-Decoders
Encoding
Image coding
Image color analysis
information steganography
Information visualization
Media
Performance evaluation
saliency detection
Scientific visualization
Visualization
visualization retargeting
Title VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network
URI https://ieeexplore.ieee.org/document/9222358
https://www.ncbi.nlm.nih.gov/pubmed/33048685
https://www.proquest.com/docview/2483266995
https://www.proquest.com/docview/2451133863
Volume 27
WOSCitedRecordID wos000706330100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4F1AMc-gLatBRtpZ4qDBu_1ttblSYtEop6SKPcrN31LIoETpUHv5-ZtWNxoEg92ZLHr50Zz3yeF8AXbwx57VpHmdeKAEqhoyKL8yhNKqykI4MUOt7MrtVkUszn-ncPzrtaGEQMyWd4wbshll8t3ZZ_lV1qNmZZsQd7SuVNrVYXMSCYoZv8QhXF5KW3EcyB1JfT2fAnIcGYACqJdJLy7ByG8UXOE5QfmaMwX-XfrmYwOeNX__ewr-Fl61qK740svIEe1m_h8FHDwSOYzhbr4bLCb2J0Z7FiuyXagiRmkFjUgii4zrKpzhRXd_S9WQvOjr8Ro5oL4FfRDwxbMWlSyI_hz3g0Hf6K2rkKkUtSvYlyl0jvJc8eK9BW1qDNfFEZ7t0uvUGNkkznwBASSWLpVOLT2BurjbWk4eR_ncB-vazxPYgKnUnIpJmBdykqUvbUK8thZqeszGwf5G55S9c2HefZF7dlAB9Sl8yckplTtszpw9fulL9Nx43niI945TvCdtH7cLrjYdnq5LqMU3qdPNc668Pn7jBpE4dITI3LLdOQA0qoPacrv2t43117JzIfnr7nRziIOd8lZHSfwv5mtcVP8MLdbxbr1RmJ7Lw4CyL7AIcs5H0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VFgl6KI9SmrbAInFCmG783t5QmtKKEHEIUW_W7nq2ikQdlEd_f2fWG6sHQOJkSx6_dmY883leAB-c1uS1KxVlThUEUEoVlVmcR2lSYy0tGSTf8WY6Ksbj8vpa_diCT10tDCL65DP8zLs-ll_P7Zp_lZ0qNmZZ-Qh2eHJWqNbqYgYENFSbYVhEMfnpIYbZl-p0Mh18JSwYE0QloU5Snp7DQL7MeYbyA4PkJ6z83dn0Rufi2f897nPYC86l-NJKwwvYwuYl7D5oObgPk-lsOZjXeCaGtwZrtlwilCQxi8SsEUTBlZZtfaa4uqUvzlJwfvyNGDZcAr-IztFvxbhNIn8FPy-Gk8FlFCYrRDZJ1SrKbSKdkzx9rERTG40mc2WtuXu7dBoVSjKefU1YJImlLRKXxk4bpY0hHScP7AC2m3mDhyBqtDoho6b7zqZYkLqnrjAcaLaFkZnpgdwsb2VD23GefvGr8vBDqoqZUzFzqsCcHnzsTvnd9tz4F_E-r3xHGBa9BycbHlZBK5dVnNLr5LlSWQ_ed4dJnzhIohucr5mGXFDC7Tld-XXL--7aG5E5-vM938GTy8n3UTW6Gn87hqcxZ7_4_O4T2F4t1vgGHtu71Wy5eOsF9x4yvObe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VisCode%3A+Embedding+Information+in+Visualization+Images+using+Encoder-Decoder+Network&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Zhang%2C+Peiying&rft.au=Li%2C+Chenhui&rft.au=Wang%2C+Changbo&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=27&rft.issue=2&rft.spage=326&rft.epage=336&rft_id=info:doi/10.1109%2FTVCG.2020.3030343&rft_id=info%3Apmid%2F33048685&rft.externalDocID=9222358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon