Tightness of the maximum likelihood semidefinite relaxation for angular synchronization
Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to s...
Saved in:
| Published in: | Mathematical programming Vol. 163; no. 1-2; pp. 145 - 167 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2017
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of
n
phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise. |
|---|---|
| AbstractList | Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of n phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise. Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of n phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise. |
| Author | Boumal, Nicolas Bandeira, Afonso S. Singer, Amit |
| Author_xml | – sequence: 1 givenname: Afonso S. surname: Bandeira fullname: Bandeira, Afonso S. organization: New York University – sequence: 2 givenname: Nicolas surname: Boumal fullname: Boumal, Nicolas email: nboumal@princeton.edu organization: Princeton University – sequence: 3 givenname: Amit surname: Singer fullname: Singer, Amit organization: Princeton University |
| BookMark | eNp9kE1L7TAQhoMoePz4Ae4CbtzUO2nSNF2K-AWCG8VlSNPJOdE20aQFvb_-9pzj4iLoahbzPu8MzwHZDTEgIScMzhlA_SczYFAXwGTBoGoKuUMWTHBZCCnkLlkAlFVRSQb75CDnFwBgXKkFeX70y9UYMGcaHR1XSAfz4YdpoL1_xd6vYuxoxsF36HzwI9KEvfkwo4-BupioCcupN4nmz2BXKQb_d7M7InvO9BmPv-Yhebq-ery8Le4fbu4uL-4Ly0UzFlWnStlVjW2lRcdaw0G2DUArXGkbrDtwlreKc1DKqUrUpepYx2usrXVGAj8kZ9vetxTfJ8yjHny22PcmYJyyZg2IshS14HP09Fv0JU4pzN9ppuZuJoDLOcW2KZtizgmdfkt-MOlTM9Br1XqrWs-q9Vq1XjP1N8b6caNhTMb3v5LllszzlbDE9N9PP0L_ALeelbM |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1007_s10898_023_01290_z crossref_primary_10_1002_cpa_21750 crossref_primary_10_1007_s10898_017_0551_8 crossref_primary_10_1109_TSP_2019_2914884 crossref_primary_10_1109_TAES_2024_3443020 crossref_primary_10_1093_imaiai_iaaf012 crossref_primary_10_1137_17M115075X crossref_primary_10_1137_21M1402340 crossref_primary_10_1016_j_acha_2019_05_002 crossref_primary_10_1109_TRO_2020_3006717 crossref_primary_10_1109_TSIPN_2023_3258062 crossref_primary_10_1137_15M1034386 crossref_primary_10_1109_TRO_2024_3475220 crossref_primary_10_1137_18M1217644 crossref_primary_10_1137_21M1422707 crossref_primary_10_1080_01621459_2021_1917418 crossref_primary_10_1109_TSP_2017_2775591 crossref_primary_10_1137_16M110109X crossref_primary_10_1109_TRO_2021_3072346 crossref_primary_10_1109_TIT_2020_2966438 crossref_primary_10_1007_s10898_023_01305_9 crossref_primary_10_1093_imaiai_iaaf024 crossref_primary_10_1007_s00041_021_09834_1 crossref_primary_10_1109_TAES_2018_2881366 crossref_primary_10_1214_21_AOS2140 crossref_primary_10_1109_TIT_2022_3167603 crossref_primary_10_1109_TIT_2021_3112712 crossref_primary_10_1016_j_laa_2020_06_007 crossref_primary_10_1016_j_ifacol_2019_11_762 crossref_primary_10_1109_TIT_2017_2745623 crossref_primary_10_1146_annurev_control_072720_082553 crossref_primary_10_1007_s00041_023_10023_5 crossref_primary_10_1007_s10107_025_02267_4 crossref_primary_10_1007_s10208_021_09532_w crossref_primary_10_1137_24M1631122 crossref_primary_10_1016_j_acha_2023_05_002 crossref_primary_10_1109_TIT_2018_2889674 crossref_primary_10_1109_TAES_2022_3175465 crossref_primary_10_1214_17_AOS1625 crossref_primary_10_1109_TAES_2019_2934336 crossref_primary_10_1007_s10107_022_01896_3 crossref_primary_10_1016_j_acha_2023_04_008 crossref_primary_10_1007_s10107_019_01367_2 crossref_primary_10_1007_s11263_022_01686_6 crossref_primary_10_1214_24_AOS2424 crossref_primary_10_1007_s10107_021_01702_6 crossref_primary_10_1137_20M1389571 crossref_primary_10_1109_LRA_2017_2718661 crossref_primary_10_1214_19_AOS1854 crossref_primary_10_1007_s10208_025_09707_9 crossref_primary_10_1137_17M1122025 crossref_primary_10_1007_s43670_022_00035_5 crossref_primary_10_1177_0278364918784361 crossref_primary_10_1007_s10107_024_02147_3 crossref_primary_10_1177_02783649241269337 crossref_primary_10_1016_j_acha_2022_02_003 crossref_primary_10_3934_fods_2021036 crossref_primary_10_1073_pnas_1922664117 |
| Cites_doi | 10.1093/imaiai/iat006 10.1287/moor.23.2.339 10.1007/BF02296274 10.1016/j.acha.2010.02.001 10.1137/080731359 10.1090/S0273-0979-2011-01348-9 10.1109/TNSE.2014.2368716 10.1093/imaiai/iau002 10.1137/120875338 10.1007/BF02614432 10.1109/TIT.2005.862083 10.1214/10-AAP677 10.1214/11-AOS949 10.1109/TIT.2006.871582 10.1002/cpa.20124 10.1137/130915261 10.1016/j.laa.2011.03.027 10.1007/s11263-012-0601-0 10.1137/04061341X 10.1109/MSP.2010.936019 10.1137/090767777 10.1109/TIT.2015.2490670 10.1007/s10107-006-0064-6 10.1007/s10208-012-9135-7 10.1007/s10107-013-0729-x 10.1007/s10208-009-9045-5 10.1016/j.jcss.2003.07.012 10.1007/BF02574037 10.1093/imaiai/iau005 10.1017/CBO9780511921735 10.1137/12089939X 10.1093/imaiai/iat005 10.4086/toc.2014.v010a004 10.1007/11744023_45 10.1137/1038003 10.1145/227683.227684 10.1109/TIT.2005.864420 10.1002/cpa.21432 10.1007/s10043-001-0281-4 10.1111/cgf.12184 10.1145/2554797.2554839 10.1137/1.9781611973075.57 10.1515/9781400830244 10.1137/1.9780898719857 10.1007/s10107-016-0993-7 10.1007/s00041-013-9305-2 10.1515/9781400841059 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 Mathematical Programming is a copyright of Springer, 2017. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016 – notice: Mathematical Programming is a copyright of Springer, 2017. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-016-1059-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1436-4646 |
| EndPage | 167 |
| ExternalDocumentID | 4321547333 10_1007_s10107_016_1059_6 |
| Genre | Feature |
| GrantInformation_xml | – fundername: National Institute of General Medical Sciences grantid: R01GM090200 funderid: http://dx.doi.org/10.13039/100000057 – fundername: Air Force Office of Scientific Research (US) grantid: FA9550-12-1-0317; FA9550-13-1-0076 funderid: http://dx.doi.org/10.13039/100000181 – fundername: Air Force Office of Scientific Research grantid: FA9550-12-1-0317 funderid: http://dx.doi.org/10.13039/100000181 – fundername: Simons Foundation (US) grantid: LTR DTD 06-05-2012 funderid: http://dx.doi.org/10.13039/100000893 – fundername: Air Force Office of Scientific Research grantid: FA9550-13-1-0076 funderid: http://dx.doi.org/10.13039/100000181 – fundername: National Institute of General Medical Sciences grantid: R01GM09020 funderid: http://dx.doi.org/10.13039/100000057 – fundername: Belgian FRS-FNRS fellowship – fundername: Belgian F.R.S.-FNRS – fundername: Research in Paris fellowship – fundername: Moore Foundation |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c349t-5d826d59cb6cef1ba306b900b4f2c9e7d0fc3b833088f854728d1d37e7ccfa603 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399178500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Thu Sep 04 17:39:56 EDT 2025 Thu Sep 25 00:55:22 EDT 2025 Tue Nov 18 22:05:39 EST 2025 Sat Nov 29 03:33:59 EST 2025 Fri Feb 21 02:32:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Angular synchronization Maximum likelihood estimation Semidefinite programming 90C22 (Semidefinite programming) Tightness of convex relaxation 90C26 (Nonconvex programming, global optimization) 62F10 (Point estimation) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-5d826d59cb6cef1ba306b900b4f2c9e7d0fc3b833088f854728d1d37e7ccfa603 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1885414036 |
| PQPubID | 25307 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_1904224743 proquest_journals_1885414036 crossref_primary_10_1007_s10107_016_1059_6 crossref_citationtrail_10_1007_s10107_016_1059_6 springer_journals_10_1007_s10107_016_1059_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20170500 2017-5-00 20170501 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 5 year: 2017 text: 20170500 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | CR39 CR37 Singer, Shkolnisky (CR50) 2011; 4 Ding, Jiang (CR30) 2010; 20 CR35 Abbe, Bandeira, Hall (CR2) 2015; 62 CR32 Chandrasekaran, Parrilo, Willsky (CR24) 2012; 40 Alexeev, Bandeira, Fickus, Mixon (CR5) 2013; 7 Alizadeh, Haeberly, Overton (CR6) 1997; 77 Absil, Mahony, Sepulchre (CR3) 2008 Amelunxen, Lotz, McCoy, Tropp (CR7) 2014; 3 Goemans, Williamson (CR34) 2004; 68 Williamson, Shmoys (CR58) 2011 Candès, Romberg, Tao (CR22) 2006; 59 Rubinstein, Wolansky (CR45) 2001; 8 CR42 CR40 Ames (CR8) 2014; 147 Bandeira, Singer, Spielman (CR11) 2013; 34 So, Zhang, Ye (CR52) 2007; 110 Zhang, Huang (CR59) 2006; 16 Abbe, Bandeira, Bracher, Singer (CR1) 2014; 1 CR17 CR15 CR14 CR13 Vanderberghe, Boyd (CR55) 1996; 38 CR12 Briët, de Oliveira Filho, Vallentin (CR19) 2014; 10 CR10 Luo, Ma, So, Ye, Zhang (CR41) 2010; 27 Pisier (CR44) 2011; 49 Barvinok (CR16) 1995; 13 CR51 Donoho (CR31) 2006; 52 Shapiro (CR48) 1982; 47 Sagnol (CR47) 2011; 435 Tropp (CR54) 2006; 52 Singer (CR49) 2011; 30 Wang, Singer (CR57) 2013; 2 Chandrasekaran, Recht, Parrilo, Willsky (CR25) 2012; 12 Ruszczyński (CR46) 2006 Candès, Recht (CR20) 2009; 9 CR29 CR28 Candès, Strohmer, Voroninski (CR23) 2011; 66 CR27 CR26 Pataki (CR43) 1998; 23 Hartley, Trumpf, Dai, Li (CR36) 2013; 103 Bandeira, Chen, Mixon (CR9) 2014; 3 Candès, Romberg, Tao (CR21) 2006; 52 CR60 Boumal, Singer, Absil, Blondel (CR18) 2014; 3 Goemans, Williamson (CR33) 1995; 42 Sojoudi, Lavaei (CR53) 2014; 24 Vershynin, Eldar, Kutyniok (CR56) 2012 Journée, Bach, Absil, Sepulchre (CR38) 2010; 20 Agrawal, Raskar, Chellappa, Leonardis, Bischof, Pinz (CR4) 2006 EJ Candès (1059_CR20) 2009; 9 AS Bandeira (1059_CR11) 2013; 34 1059_CR17 B Alexeev (1059_CR5) 2013; 7 DL Donoho (1059_CR31) 2006; 52 P-A Absil (1059_CR3) 2008 1059_CR10 R Vershynin (1059_CR56) 2012 N Boumal (1059_CR18) 2014; 3 1059_CR14 1059_CR15 DP Williamson (1059_CR58) 2011 1059_CR12 1059_CR13 E Abbe (1059_CR1) 2014; 1 G Sagnol (1059_CR47) 2011; 435 A Singer (1059_CR50) 2011; 4 1059_CR51 L Vanderberghe (1059_CR55) 1996; 38 V Chandrasekaran (1059_CR24) 2012; 40 V Chandrasekaran (1059_CR25) 2012; 12 1059_CR29 J Rubinstein (1059_CR45) 2001; 8 1059_CR27 1059_CR28 MX Goemans (1059_CR34) 2004; 68 F Alizadeh (1059_CR6) 1997; 77 1059_CR26 BPW Ames (1059_CR8) 2014; 147 AI Barvinok (1059_CR16) 1995; 13 G Pisier (1059_CR44) 2011; 49 L Wang (1059_CR57) 2013; 2 1059_CR60 AM-C So (1059_CR52) 2007; 110 A Shapiro (1059_CR48) 1982; 47 EJ Candès (1059_CR23) 2011; 66 1059_CR39 Z Luo (1059_CR41) 2010; 27 1059_CR32 D Amelunxen (1059_CR7) 2014; 3 J Briët (1059_CR19) 2014; 10 E Abbe (1059_CR2) 2015; 62 AS Bandeira (1059_CR9) 2014; 3 EJ Candès (1059_CR21) 2006; 52 G Pataki (1059_CR43) 1998; 23 S Zhang (1059_CR59) 2006; 16 R Hartley (1059_CR36) 2013; 103 1059_CR37 1059_CR35 MX Goemans (1059_CR33) 1995; 42 A Singer (1059_CR49) 2011; 30 AP Ruszczyński (1059_CR46) 2006 S Sojoudi (1059_CR53) 2014; 24 A Agrawal (1059_CR4) 2006 M Journée (1059_CR38) 2010; 20 1059_CR42 JA Tropp (1059_CR54) 2006; 52 EJ Candès (1059_CR22) 2006; 59 X Ding (1059_CR30) 2010; 20 1059_CR40 |
| References_xml | – ident: CR39 – volume: 3 start-page: 1 year: 2014 end-page: 39 ident: CR18 article-title: Cramér-Rao bounds for synchronization of rotations publication-title: Inf. Inference doi: 10.1093/imaiai/iat006 – ident: CR51 – ident: CR12 – volume: 23 start-page: 339 issue: 2 year: 1998 end-page: 358 ident: CR43 article-title: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues publication-title: Math. Operations Res. doi: 10.1287/moor.23.2.339 – year: 2012 ident: CR56 article-title: Introduction to the non-asymptotic analysis of random matrices publication-title: Chapter 5 of: Compressed Sensing, Theory and Applications – ident: CR35 – ident: CR29 – volume: 47 start-page: 187 issue: 2 year: 1982 end-page: 199 ident: CR48 article-title: Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis publication-title: Psychometrika doi: 10.1007/BF02296274 – volume: 30 start-page: 20 issue: 1 year: 2011 end-page: 36 ident: CR49 article-title: Angular synchronization by eigenvectors and semidefinite programming publication-title: Appl. Comput. Harmonic Anal. doi: 10.1016/j.acha.2010.02.001 – ident: CR42 – volume: 20 start-page: 2327 issue: 5 year: 2010 end-page: 2351 ident: CR38 article-title: Low-rank optimization on the cone of positive semidefinite matrices publication-title: SIAM J. Optim. doi: 10.1137/080731359 – volume: 49 start-page: 237 year: 2011 end-page: 323 ident: CR44 article-title: Grothendieck’s theorem, past and present publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-2011-01348-9 – volume: 1 start-page: 10 issue: 1 year: 2014 end-page: 22 ident: CR1 article-title: Decoding binary node labels from censored edge measurements: phase transition and efficient recovery publication-title: IEEE Trans. Network Sci. Eng. doi: 10.1109/TNSE.2014.2368716 – volume: 3 start-page: 83 year: 2014 end-page: 102 ident: CR9 article-title: Phase retrieval from power spectra of masked signals publication-title: Inf. Inference J. IMA doi: 10.1093/imaiai/iau002 – volume: 34 start-page: 1611 issue: 4 year: 2013 end-page: 1630 ident: CR11 article-title: A Cheeger inequality for the graph connection Laplacian publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120875338 – volume: 77 start-page: 111 issue: 1 year: 1997 end-page: 128 ident: CR6 article-title: Complementarity and nondegeneracy in semidefinite programming publication-title: Math. Program. doi: 10.1007/BF02614432 – volume: 52 start-page: 489 year: 2006 end-page: 509 ident: CR21 article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2005.862083 – ident: CR15 – volume: 20 start-page: 2086 issue: 6 year: 2010 end-page: 2117 ident: CR30 article-title: Spectral distributions of adjacency and Laplacian matrices of random graphs publication-title: Annal. Appl. Probab. doi: 10.1214/10-AAP677 – volume: 40 start-page: 1935 year: 2012 end-page: 1967 ident: CR24 article-title: Latent variable graphical model selection via convex optimization publication-title: Annal. Stat. doi: 10.1214/11-AOS949 – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: CR31 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 59 start-page: 1207 year: 2006 end-page: 1223 ident: CR22 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20124 – ident: CR32 – volume: 24 start-page: 1746 issue: 4 year: 2014 end-page: 1778 ident: CR53 article-title: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure publication-title: SIAM J. Optim. doi: 10.1137/130915261 – ident: CR60 – volume: 435 start-page: 1446 issue: 6 year: 2011 end-page: 1463 ident: CR47 article-title: A class of semidefinite programs with rank-one solutions publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2011.03.027 – volume: 103 start-page: 267 issue: 3 year: 2013 end-page: 305 ident: CR36 article-title: Rotation averaging publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0601-0 – volume: 16 start-page: 871 issue: 3 year: 2006 end-page: 890 ident: CR59 article-title: Complex quadratic optimization and semidefinite programming publication-title: SIAM J. Optim. doi: 10.1137/04061341X – ident: CR26 – volume: 27 start-page: 20 issue: 3 year: 2010 end-page: 34 ident: CR41 article-title: Semidefinite relaxation of quadratic optimization problems publication-title: Sign. Process. Mag. IEEE doi: 10.1109/MSP.2010.936019 – volume: 4 start-page: 543 issue: 2 year: 2011 end-page: 572 ident: CR50 article-title: Three-dimensional structure determination from common lines in Cryo-EM by eigenvectors and semidefinite programming publication-title: SIAM J. Imaging Sci. doi: 10.1137/090767777 – volume: 62 start-page: 471 issue: 1 year: 2015 end-page: 487 ident: CR2 article-title: Exact recovery in the stochastic block model publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2490670 – volume: 110 start-page: 93 issue: 1 year: 2007 end-page: 110 ident: CR52 article-title: On approximating complex quadratic optimization problems via semidefinite programming relaxations publication-title: Math. Program. doi: 10.1007/s10107-006-0064-6 – volume: 12 start-page: 805 issue: 6 year: 2012 end-page: 849 ident: CR25 article-title: The convex geometry of linear inverse problems publication-title: Found. Comput. Math. doi: 10.1007/s10208-012-9135-7 – ident: CR14 – ident: CR37 – volume: 147 start-page: 429 year: 2014 end-page: 465 ident: CR8 article-title: Guaranteed clustering and biclustering via semidefinite programming publication-title: Math. Program. doi: 10.1007/s10107-013-0729-x – ident: CR10 – volume: 9 start-page: 717 issue: 6 year: 2009 end-page: 772 ident: CR20 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 68 start-page: 442 issue: 2 year: 2004 end-page: 470 ident: CR34 article-title: Approximation algorithms for Max-3-Cut and other problems via complex semidefinite programming publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2003.07.012 – volume: 13 start-page: 189 issue: 1 year: 1995 end-page: 202 ident: CR16 article-title: Problems of distance geometry and convex properties of quadratic maps publication-title: Discrete Comput. Geom. doi: 10.1007/BF02574037 – volume: 3 start-page: 224 issue: 3 year: 2014 end-page: 294 ident: CR7 article-title: Living on the edge: phase transitions in convex programs with random data publication-title: Inf. Inference doi: 10.1093/imaiai/iau005 – year: 2011 ident: CR58 publication-title: The Design of Approximation Algorithms doi: 10.1017/CBO9780511921735 – volume: 7 start-page: 35 issue: 1 year: 2013 end-page: 66 ident: CR5 article-title: Phase retrieval with polarization publication-title: SIAM J. on Imaging Sci. doi: 10.1137/12089939X – ident: CR40 – volume: 2 start-page: 145 issue: 2 year: 2013 end-page: 193 ident: CR57 article-title: Exact and stable recovery of rotations for robust synchronization publication-title: Inf. Inference doi: 10.1093/imaiai/iat005 – year: 2008 ident: CR3 publication-title: Optimization Algorithms on Matrix – volume: 10 start-page: 77 issue: 4 year: 2014 end-page: 105 ident: CR19 article-title: Grothendieck inequalities for semidefinite programs with rank constraint publication-title: Theory Comput. doi: 10.4086/toc.2014.v010a004 – ident: CR27 – start-page: 578 year: 2006 end-page: 591 ident: CR4 article-title: What is the range of surface reconstructions from a gradient field? publication-title: Computer Vision—ECCV 2006 doi: 10.1007/11744023_45 – volume: 38 start-page: 49 year: 1996 end-page: 95 ident: CR55 article-title: Semidefinite programming publication-title: SIAM Rev. doi: 10.1137/1038003 – ident: CR17 – ident: CR13 – volume: 42 start-page: 1115 issue: 6 year: 1995 end-page: 1145 ident: CR33 article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming publication-title: J. ACM (JACM) doi: 10.1145/227683.227684 – volume: 52 start-page: 1030 issue: 3 year: 2006 end-page: 1051 ident: CR54 article-title: Just relax: convex programming methods for identifying sparse signals in noise publication-title: IEEE Trans Inf. Theory doi: 10.1109/TIT.2005.864420 – volume: 66 start-page: 1241 year: 2011 end-page: 1274 ident: CR23 article-title: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21432 – volume: 8 start-page: 281 issue: 4 year: 2001 end-page: 283 ident: CR45 article-title: Reconstruction of optical surfaces from ray data publication-title: Opt. Rev. doi: 10.1007/s10043-001-0281-4 – ident: CR28 – year: 2006 ident: CR46 publication-title: Nonlinear Optimization – volume: 8 start-page: 281 issue: 4 year: 2001 ident: 1059_CR45 publication-title: Opt. Rev. doi: 10.1007/s10043-001-0281-4 – volume: 52 start-page: 1030 issue: 3 year: 2006 ident: 1059_CR54 publication-title: IEEE Trans Inf. Theory doi: 10.1109/TIT.2005.864420 – ident: 1059_CR39 – ident: 1059_CR37 doi: 10.1111/cgf.12184 – ident: 1059_CR12 – volume: 24 start-page: 1746 issue: 4 year: 2014 ident: 1059_CR53 publication-title: SIAM J. Optim. doi: 10.1137/130915261 – volume: 3 start-page: 83 year: 2014 ident: 1059_CR9 publication-title: Inf. Inference J. IMA doi: 10.1093/imaiai/iau002 – volume: 2 start-page: 145 issue: 2 year: 2013 ident: 1059_CR57 publication-title: Inf. Inference doi: 10.1093/imaiai/iat005 – ident: 1059_CR13 doi: 10.1145/2554797.2554839 – volume: 20 start-page: 2086 issue: 6 year: 2010 ident: 1059_CR30 publication-title: Annal. Appl. Probab. doi: 10.1214/10-AAP677 – ident: 1059_CR60 – ident: 1059_CR32 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 1059_CR20 publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – ident: 1059_CR51 doi: 10.1137/1.9781611973075.57 – volume: 110 start-page: 93 issue: 1 year: 2007 ident: 1059_CR52 publication-title: Math. Program. doi: 10.1007/s10107-006-0064-6 – volume-title: Optimization Algorithms on Matrix year: 2008 ident: 1059_CR3 doi: 10.1515/9781400830244 – volume: 66 start-page: 1241 year: 2011 ident: 1059_CR23 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21432 – ident: 1059_CR40 – ident: 1059_CR17 – volume-title: Chapter 5 of: Compressed Sensing, Theory and Applications year: 2012 ident: 1059_CR56 – volume: 30 start-page: 20 issue: 1 year: 2011 ident: 1059_CR49 publication-title: Appl. Comput. Harmonic Anal. doi: 10.1016/j.acha.2010.02.001 – volume: 13 start-page: 189 issue: 1 year: 1995 ident: 1059_CR16 publication-title: Discrete Comput. Geom. doi: 10.1007/BF02574037 – volume-title: The Design of Approximation Algorithms year: 2011 ident: 1059_CR58 doi: 10.1017/CBO9780511921735 – volume: 62 start-page: 471 issue: 1 year: 2015 ident: 1059_CR2 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2490670 – volume: 16 start-page: 871 issue: 3 year: 2006 ident: 1059_CR59 publication-title: SIAM J. Optim. doi: 10.1137/04061341X – ident: 1059_CR27 – ident: 1059_CR26 doi: 10.1137/1.9780898719857 – volume: 27 start-page: 20 issue: 3 year: 2010 ident: 1059_CR41 publication-title: Sign. Process. Mag. IEEE doi: 10.1109/MSP.2010.936019 – volume: 23 start-page: 339 issue: 2 year: 1998 ident: 1059_CR43 publication-title: Math. Operations Res. doi: 10.1287/moor.23.2.339 – volume: 59 start-page: 1207 year: 2006 ident: 1059_CR22 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20124 – volume: 435 start-page: 1446 issue: 6 year: 2011 ident: 1059_CR47 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2011.03.027 – volume: 38 start-page: 49 year: 1996 ident: 1059_CR55 publication-title: SIAM Rev. doi: 10.1137/1038003 – volume: 20 start-page: 2327 issue: 5 year: 2010 ident: 1059_CR38 publication-title: SIAM J. Optim. doi: 10.1137/080731359 – volume: 4 start-page: 543 issue: 2 year: 2011 ident: 1059_CR50 publication-title: SIAM J. Imaging Sci. doi: 10.1137/090767777 – ident: 1059_CR14 – volume: 49 start-page: 237 year: 2011 ident: 1059_CR44 publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-2011-01348-9 – volume: 52 start-page: 489 year: 2006 ident: 1059_CR21 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2005.862083 – volume: 103 start-page: 267 issue: 3 year: 2013 ident: 1059_CR36 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0601-0 – volume: 3 start-page: 1 year: 2014 ident: 1059_CR18 publication-title: Inf. Inference doi: 10.1093/imaiai/iat006 – volume: 40 start-page: 1935 year: 2012 ident: 1059_CR24 publication-title: Annal. Stat. doi: 10.1214/11-AOS949 – start-page: 578 volume-title: Computer Vision—ECCV 2006 year: 2006 ident: 1059_CR4 doi: 10.1007/11744023_45 – volume: 7 start-page: 35 issue: 1 year: 2013 ident: 1059_CR5 publication-title: SIAM J. on Imaging Sci. doi: 10.1137/12089939X – volume: 34 start-page: 1611 issue: 4 year: 2013 ident: 1059_CR11 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120875338 – ident: 1059_CR10 doi: 10.1007/s10107-016-0993-7 – volume: 12 start-page: 805 issue: 6 year: 2012 ident: 1059_CR25 publication-title: Found. Comput. Math. doi: 10.1007/s10208-012-9135-7 – volume: 52 start-page: 1289 year: 2006 ident: 1059_CR31 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 10 start-page: 77 issue: 4 year: 2014 ident: 1059_CR19 publication-title: Theory Comput. doi: 10.4086/toc.2014.v010a004 – volume: 42 start-page: 1115 issue: 6 year: 1995 ident: 1059_CR33 publication-title: J. ACM (JACM) doi: 10.1145/227683.227684 – ident: 1059_CR15 – volume: 3 start-page: 224 issue: 3 year: 2014 ident: 1059_CR7 publication-title: Inf. Inference doi: 10.1093/imaiai/iau005 – ident: 1059_CR42 – volume: 1 start-page: 10 issue: 1 year: 2014 ident: 1059_CR1 publication-title: IEEE Trans. Network Sci. Eng. doi: 10.1109/TNSE.2014.2368716 – ident: 1059_CR28 doi: 10.1007/s00041-013-9305-2 – ident: 1059_CR29 – volume: 47 start-page: 187 issue: 2 year: 1982 ident: 1059_CR48 publication-title: Psychometrika doi: 10.1007/BF02296274 – ident: 1059_CR35 – volume: 77 start-page: 111 issue: 1 year: 1997 ident: 1059_CR6 publication-title: Math. Program. doi: 10.1007/BF02614432 – volume: 147 start-page: 429 year: 2014 ident: 1059_CR8 publication-title: Math. Program. doi: 10.1007/s10107-013-0729-x – volume-title: Nonlinear Optimization year: 2006 ident: 1059_CR46 doi: 10.1515/9781400841059 – volume: 68 start-page: 442 issue: 2 year: 2004 ident: 1059_CR34 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2003.07.012 |
| SSID | ssj0001388 |
| Score | 2.5639186 |
| Snippet | Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 145 |
| SubjectTerms | Algorithms Analysis Approximation Calculus of Variations and Optimal Control; Optimization Combinatorics Computer science Convex analysis Estimating Estimating techniques Full Length Paper Heuristic Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Maximum likelihood method Noise Numerical Analysis Optimization Phases Semidefinite programming Studies Synchronism Synchronization Theoretical Tightness |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BlgM9lPJSt6XISJxAFnZsEvtUVVURl0UcQHCL4pcUsZsFsovg39eTxy6tBJceIydxorHH33jG3wdwqLwISUglDS4wKuOSRAttDbUyy0wR0kSHVmwiu7hQt7f6sttwq7uyyt4nNo7aTS3ukZ9wpVCxOjrcH_cPFFWjMLvaSWiswoeIbDiWdI2Sy4Un5kKpXrIVcUKf1WyPzvGm6DKliDBo-ve6tASb_-RHm2XnbON_P_gzfOoAJ_nZjpBNWPHVFmz0Yg6km9tb8PEVM2G8Gi3oXOttuLnCEB6dIpkGEhvIpHguJ_MJGZd3flwiNTKp_aR0PpQIYgkekXlujE4iKia4KRpDaFK_VLZh420Pf-7A9dnvq1_ntFNkoFZIPaOnLkYj7jQaM7U-cFPEgMNoxowMidU-cyxYYZQQ0XeF-PtZohx3IvOZtaFImdiFQTWt_BcgunCJcExyXRjJXQT6qdIZk8IwFUzCh8B6e-S2oytH1YxxviRaRhPmWKKGJszTIRwtHrlvuTreu3mvN1veTds6X9psCAeL5jjhMItSVH46j_dopE2TEXkN4bgfHK9e8VaHX9_v8BusJ4gYmlrKPRjMHuf-O6zZp1lZP-434_oPxhf-PQ priority: 102 providerName: ProQuest |
| Title | Tightness of the maximum likelihood semidefinite relaxation for angular synchronization |
| URI | https://link.springer.com/article/10.1007/s10107-016-1059-6 https://www.proquest.com/docview/1885414036 https://www.proquest.com/docview/1904224743 |
| Volume | 163 |
| WOSCitedRecordID | wos000399178500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQf2wDdaYauMxBPIkhO7sf0I06ZJaFW1DTZ4iRJ_SBFtipYWjf-euzTpCgIkeDnJsuNEPvvu59wXwCsTZExjpnj0UXCFKokX1pXcKa3LImapjatiE3o8NldXdtLFcTe9t3tvkmwl9UawW9K6SWacMAHPtmAHpzZUr-Hs_ONa_CbSmL5OK4GD3pT5uyl-Vka3CPMXo2ira44f_NdXPoT7HbRkb1d74RHcCfVj2N1IOIit03WW1uYJXF7QzZxkHZtHhh1sVtxUs-WMTasvYVpRxmPWhFnlQ6wImzKKfLlpeckQ7DL614k3Y9Z8r12bZHcV0_kUPhwfXRye8K7QAndS2QUfebxk-BHyKHMhJmWB94jSClGqmDobtBfRydJIiSIpmpHSqfGJlzpo52KRCfkMtut5HfaA2cKn0guV2KJUiUf8nhmrhZKlMLFMkwGIfsVz12Uhp2IY0_w2fzKtYE6eZ7SCeTaA1-tHvq5ScPxt8H7Pxrw7jU2eGEPVzlFZD-DluhvPERlHijrMlzjGUjY0hYBqAG961m5M8acXPv-n0S_gXkq4oPWY3IftxfUyHMBd921RNddD2NKXn4aw8-5oPDnD1nvNkZ6KQ6LphKg-RzoZfR62m_4HCcz0ig |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcKBQQCwWMBBeQVcdxE_uAEAKqVm1XPSyitxB_SRG72bLZhfZP8RvxJPFuQaK3HjhGTuwkfh4_e8ZvAF5Kl3ruM0G99YyKMCXRUhlNjchzXfqMK98lm8iHQ3lyoo7X4Fc8C4NhldEmtobaTg3ukW8nUmLG6mBw351-p5g1Cr2rMYVGB4sDd_4zLNmat_sfQ_--4nz30-jDHu2zClCTCjWnOzYwarsTXigzzie6DKRZK8a08Nwol1vmTaplWOdL6UObOZc2sWnucmN8mbE01HsNrgtUFsNQQX68tPxJKmVMEYu8JHpRu6N6SRvkmVFkNDT7cx5ckdu__LHtNLe78b_9oLtwpyfU5H03Au7Bmqs3YSMmqyC97dqE2xeUF8PV0VKutrkPX0a4RYFGn0w9CQVkUp5Vk8WEjKtvblyh9DNp3KSyzldI0gkeATprQU0C6ye46TsuZ6Q5r02rNtwdbn0An6_k0x_Cej2t3SMgqrQ8tUwkqtQisWEhk0mVM5FqJr3myQBY7P_C9HLsmBVkXKyEpBEyBYbgIWSKbACvl4-cdlokl928FWFS9GapKVYYGcCLZXEwKOglKms3XYR7FMrCicAsB_AmgvFCFf9q8PHlDT6Hm3ujo8PicH948ARucWRHbdzoFqzPZwv3FG6YH_OqmT1rxxSBr1eN0d8FPlwn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8IGoIPqIjhBLEkPkGa6257u-2jAS8a9EICIm-b7Vey8W6PsHcG_3s7-3EcBk0Ij5t2u5tO2_lNZ-Y3AB-k4z72iaDeekZFUEk0V0ZTI9JU5z6JlW-KTaSjkby8VKdtndOqi3bvXJJNTgOyNJWz_pX1_aXEt6gOmUwo4gOarMBTgXH0aK6fXSyO4ohL2dVsRaDQuTXvG-KuYrpFm385SGu9M3zx6D9-CRst5CQfmzXyCp64chOeLxERhqdvC_bW6jX8OEeLHc9AMvUkNJBJflNM5hMyLn66cYFMyKRyk8I6XyBmJZgRc1PLmAQQTPAONFjMpPpdmpp8t8n13ILvw0_nR59pW4CBGi7UjA5sMD7sIMguMc5HOg_2hVaMaeFjo1xqmTdcS87DUeXlQKSxtJHlqUuN8XnC-BtYLael2waichtzy0Skci0iG3B9IlXKBNdMeh1HPWDd7GemZSfHIhnj7JZXGWcww4g0nMEs6cHB4pWrhprjf513O5Fm7S6tskhKrIIelHgP9hfNYX-h0yQv3XQe-ihkSRMBaPXgsBPz0hD_-uDbB_V-D2unx8Ps65fRyQ6sxwgd6qDKXVidXc_dO3hmfs2K6nqvXt9_ANN7-Rc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tightness+of+the+maximum+likelihood+semidefinite+relaxation+for+angular+synchronization&rft.jtitle=Mathematical+programming&rft.au=Bandeira%2C+Afonso+S.&rft.au=Boumal%2C+Nicolas&rft.au=Singer%2C+Amit&rft.date=2017-05-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=163&rft.issue=1-2&rft.spage=145&rft.epage=167&rft_id=info:doi/10.1007%2Fs10107-016-1059-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_016_1059_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |