An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection
Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based sel...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 51; číslo 9; s. 4553 - 4566 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., <inline-formula> <tex-math notation="LaTeX">{I}_{{{ {SDE}}}^{+}} </tex-math></inline-formula>, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2019.2960302 |