An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection
Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based sel...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 51; číslo 9; s. 4553 - 4566 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., <inline-formula> <tex-math notation="LaTeX">{I}_{{{ {SDE}}}^{+}} </tex-math></inline-formula>, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms. |
|---|---|
| AbstractList | Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., <inline-formula> <tex-math notation="LaTeX">{I}_{{{ {SDE}}}^{+}} </tex-math></inline-formula>, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms. Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iε+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iε+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., ISDE+, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms. Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the [Formula Omitted] indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest [Formula Omitted] value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., [Formula Omitted], SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms. Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iϵ+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iϵ+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., I SDE+ , SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iϵ+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iϵ+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., I SDE+ , SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms. |
| Author | Zhu, Zexuan Luo, Tingting Liang, Zhengping Hu, Kaifeng Ma, Xiaoliang |
| Author_xml | – sequence: 1 givenname: Zhengping orcidid: 0000-0001-6210-8373 surname: Liang fullname: Liang, Zhengping email: liangzp@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Tingting surname: Luo fullname: Luo, Tingting email: luotingting2017@email.szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Kaifeng orcidid: 0000-0002-6762-5035 surname: Hu fullname: Hu, Kaifeng email: kaifengh@qq.com organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Xiaoliang surname: Ma fullname: Ma, Xiaoliang email: maxiaoliang@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 5 givenname: Zexuan orcidid: 0000-0001-8479-6904 surname: Zhu fullname: Zhu, Zexuan email: zhuzx@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31940581$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1r3DAQhkVJaT6aH1AKxdBLL97o--O4u6RpICUppJSejCyPWy9eKZXkQP59ZHa7hxyiw0gMzzuamfcUHfngAaEPBC8Iwebifv17taCYmAU1EjNM36ATSqSuKVXi6PCW6hidp7TB5eiSMvodOmbEcCw0OUE_lr669t3gbA6xXtkEXfXd-qf6tt2Ay8MjVJePYZzyELyNT9Vy_BPikP9uq18lVqsw-W7O38WQZz749-htb8cE5_v7DP38enm__lbf3F5dr5c3tWPc5FoI6LDl0CvQWkjC-55ZzDnpe8cwpkwQS7jWHQfDpJGKcYGdhFa1jgNv2Rn6sqv7EMO_CVJutkNyMI7WQ5hSQxkzSmtjaEE_v0A3YYq-dNdQoaiUwhBVqE97amq30DUPcdiW0Zr_yyoA2QEuhpQi9AeE4Gb2pJk9aWZPmr0nRaNeaNyQ7bynHO0wvqr8uFMOAHD4SZvSsFDsGcOolwE |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2023_101360 crossref_primary_10_1016_j_swevo_2022_101161 crossref_primary_10_1016_j_engappai_2024_109636 crossref_primary_10_1109_TCBB_2023_3247025 crossref_primary_10_1007_s11227_024_06821_3 crossref_primary_10_1155_2023_2005465 crossref_primary_10_1007_s40747_023_01074_8 crossref_primary_10_1016_j_asoc_2023_110162 crossref_primary_10_1109_TETCI_2024_3451309 crossref_primary_10_1109_TITS_2020_3024693 crossref_primary_10_1007_s10489_023_04500_z crossref_primary_10_1109_TC_2023_3326977 crossref_primary_10_1080_01605682_2021_1890531 crossref_primary_10_3390_math12162572 crossref_primary_10_1109_TITS_2023_3296002 crossref_primary_10_1016_j_swevo_2025_101892 crossref_primary_10_1109_ACCESS_2024_3383916 crossref_primary_10_1007_s00521_023_08330_5 crossref_primary_10_1109_ACCESS_2024_3398415 crossref_primary_10_1007_s10489_022_03307_8 crossref_primary_10_3390_sym17050671 crossref_primary_10_1007_s10586_025_05223_1 crossref_primary_10_1109_TCYB_2021_3051078 crossref_primary_10_23919_JSEE_2022_000016 crossref_primary_10_1038_s41598_023_31123_8 crossref_primary_10_1109_ACCESS_2022_3176372 crossref_primary_10_1016_j_eswa_2022_119424 crossref_primary_10_1016_j_swevo_2023_101449 crossref_primary_10_3390_math11020413 crossref_primary_10_1016_j_asoc_2025_113639 crossref_primary_10_1109_TEVC_2023_3243632 crossref_primary_10_3390_math12040554 crossref_primary_10_1016_j_eswa_2023_121244 crossref_primary_10_1016_j_swevo_2024_101667 crossref_primary_10_3390_app142210309 crossref_primary_10_1007_s12293_023_00393_0 crossref_primary_10_1109_TCYB_2023_3336870 crossref_primary_10_1007_s12293_022_00360_1 crossref_primary_10_1007_s10586_025_05340_x crossref_primary_10_1007_s11227_024_06553_4 crossref_primary_10_1007_s00521_023_08950_x crossref_primary_10_1109_ACCESS_2023_3294095 crossref_primary_10_1016_j_ins_2022_12_021 crossref_primary_10_1155_2021_6614283 crossref_primary_10_3390_a15110392 crossref_primary_10_1016_j_swevo_2024_101495 crossref_primary_10_1016_j_eswa_2024_124559 crossref_primary_10_1109_TETCI_2024_3393388 crossref_primary_10_1109_TCYB_2022_3218345 crossref_primary_10_1111_exsy_13802 crossref_primary_10_1007_s10489_024_05596_7 crossref_primary_10_1007_s10489_022_03883_9 crossref_primary_10_1016_j_eswa_2024_123949 crossref_primary_10_1007_s10586_024_04739_2 crossref_primary_10_1007_s11227_024_06377_2 crossref_primary_10_1007_s11227_024_06547_2 crossref_primary_10_1016_j_jksuci_2023_101693 crossref_primary_10_1007_s10489_022_04296_4 crossref_primary_10_1016_j_swevo_2024_101601 crossref_primary_10_1093_jcde_qwae022 |
| Cites_doi | 10.1007/978-3-540-30217-9_84 10.1007/978-3-319-15934-8_11 10.1109/TEVC.2012.2227145 10.1109/TEVC.2016.2598687 10.1109/TCYB.2018.2859171 10.1109/CEC.2013.6557743 10.1007/3-540-36970-8_27 10.1109/TEVC.2018.2848921 10.1145/2739480.2754792 10.1109/TEVC.2015.2443001 10.1109/4235.996017 10.1109/TEVC.2019.2909271 10.1109/TEVC.2018.2791283 10.1109/TCYB.2014.2310651 10.1145/2739480.2754776 10.1109/TSMCB.2008.926329 10.1109/TCYB.2017.2737519 10.1109/TEVC.2013.2262178 10.1007/1-84628-137-7_6 10.1109/TEVC.2005.861417 10.1109/TCYB.2014.2334632 10.1109/TEVC.2011.2161872 10.1109/TEVC.2015.2420112 10.1007/s40747-017-0039-7 10.1162/106365600568202 10.1109/TCYB.2018.2872803 10.1162/106365602760234108 10.1007/978-3-540-70928-2_5 10.1007/978-3-642-37140-0_23 10.1109/TEVC.2010.2093579 10.1007/s10489-017-1126-6 10.1162/106365600568158 10.1109/TEVC.2015.2504730 10.1109/TCYB.2013.2247594 10.1109/TCYB.2016.2638902 10.1109/3468.650319 10.1109/CEC.2016.7743898 10.1007/978-3-642-44973-4_8 10.1109/TCYB.2017.2737554 10.1109/TEVC.2003.810758 10.1109/TEVC.2016.2587749 10.1109/TEVC.2016.2549267 10.1109/TEVC.2016.2587808 10.1109/TEVC.2014.2373386 10.1162/EVCO_a_00109 10.1109/TEVC.2014.2350987 10.1109/CEC.2016.7744170 10.1109/TEVC.2013.2281535 10.1109/TEVC.2014.2378512 10.1162/evco.2007.15.1.1 10.1109/TEVC.2018.2882166 10.1109/TCYB.2019.2918087 10.2307/3001968 10.1145/2330163.2330230 10.1109/CEC.2013.6557868 10.1109/CEC.2001.934293 10.1109/TCYB.2016.2550502 10.1109/TEVC.2016.2519378 10.1145/2792984 10.1109/TEVC.2017.2749619 10.1109/TEVC.2007.892759 10.1109/TEVC.2013.2258025 10.1162/EVCO_a_00009 10.1109/TEVC.2016.2521175 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2005.851275 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2019.2960302 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 4566 |
| ExternalDocumentID | 31940581 10_1109_TCYB_2019_2960302 8957257 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Shenzhen Scientific Research and Development Funding Program grantid: JCYJ20170302154227954; JCGG20170414111229388; JCYJ20170302154328155 – fundername: Project of Department of Education of Guangdong Province grantid: 2016KTSCX121 funderid: 10.13039/501100010226 – fundername: Zhejiang Lab’s International Talent Fund for Young Professionals – fundername: Scientific Research Foundation of Shenzhen University for newly introduced teachers grantid: 2019048 funderid: 10.13039/501100009019 – fundername: National Natural Science Foundation of China grantid: 61871272; 61471246; 61976143; 61672358 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-55ed0a4ef7e885614ff3a0441ffc3002351a1488d4e9369673450c6eb7bc4e4b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696078900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 06:47:23 EDT 2025 Sun Nov 30 04:41:29 EST 2025 Thu Jan 02 22:58:24 EST 2025 Sat Nov 29 02:02:29 EST 2025 Tue Nov 18 21:31:34 EST 2025 Wed Aug 27 02:27:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-55ed0a4ef7e885614ff3a0441ffc3002351a1488d4e9369673450c6eb7bc4e4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6210-8373 0000-0002-6762-5035 0000-0001-8479-6904 |
| PMID | 31940581 |
| PQID | 2572665917 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_31940581 proquest_miscellaneous_2339788992 crossref_primary_10_1109_TCYB_2019_2960302 crossref_citationtrail_10_1109_TCYB_2019_2960302 ieee_primary_8957257 proquest_journals_2572665917 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 alfred (ref70) 2009 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 deb (ref53) 2000; 9 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 deb (ref54) 1996; 26 zhou (ref36) 2006 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 zou (ref11) 2008; 38 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref30 doi: 10.1007/978-3-540-30217-9_84 – ident: ref28 doi: 10.1007/978-3-319-15934-8_11 – ident: ref12 doi: 10.1109/TEVC.2012.2227145 – volume: 26 start-page: 30 year: 1996 ident: ref54 article-title: A combined genetic adaptive search (geneAS) for engineering design publication-title: Comput Sci Inf – ident: ref58 doi: 10.1109/TEVC.2016.2598687 – ident: ref55 doi: 10.1109/TCYB.2018.2859171 – ident: ref42 doi: 10.1109/CEC.2013.6557743 – ident: ref7 doi: 10.1007/3-540-36970-8_27 – ident: ref47 doi: 10.1109/TEVC.2018.2848921 – ident: ref37 doi: 10.1145/2739480.2754792 – ident: ref57 doi: 10.1109/TEVC.2015.2443001 – ident: ref8 doi: 10.1109/4235.996017 – ident: ref43 doi: 10.1109/TEVC.2019.2909271 – ident: ref67 doi: 10.1109/TEVC.2018.2791283 – ident: ref1 doi: 10.1109/TCYB.2014.2310651 – ident: ref27 doi: 10.1145/2739480.2754776 – volume: 38 start-page: 1402 year: 2008 ident: ref11 article-title: A new evolutionary algorithm for solving many-objective optimization problems publication-title: IEEE Trans Syst Man Cybern A Syst Humans doi: 10.1109/TSMCB.2008.926329 – ident: ref20 doi: 10.1109/TCYB.2017.2737519 – ident: ref46 doi: 10.1109/TEVC.2013.2262178 – ident: ref62 doi: 10.1007/1-84628-137-7_6 – ident: ref61 doi: 10.1109/TEVC.2005.861417 – ident: ref3 doi: 10.1109/TCYB.2014.2334632 – ident: ref39 doi: 10.1109/TEVC.2011.2161872 – ident: ref14 doi: 10.1109/TEVC.2015.2420112 – ident: ref63 doi: 10.1007/s40747-017-0039-7 – ident: ref32 doi: 10.1162/106365600568202 – ident: ref18 doi: 10.1109/TCYB.2018.2872803 – ident: ref9 doi: 10.1162/106365602760234108 – ident: ref10 doi: 10.1007/978-3-540-70928-2_5 – ident: ref16 doi: 10.1007/978-3-642-37140-0_23 – ident: ref48 doi: 10.1109/TEVC.2010.2093579 – ident: ref52 doi: 10.1007/s10489-017-1126-6 – ident: ref35 doi: 10.1162/106365600568158 – ident: ref22 doi: 10.1109/TEVC.2015.2504730 – ident: ref49 doi: 10.1109/TCYB.2013.2247594 – ident: ref50 doi: 10.1109/TCYB.2016.2638902 – ident: ref6 doi: 10.1109/3468.650319 – ident: ref44 doi: 10.1109/CEC.2016.7743898 – ident: ref41 doi: 10.1007/978-3-642-44973-4_8 – ident: ref21 doi: 10.1109/TCYB.2017.2737554 – ident: ref33 doi: 10.1109/TEVC.2003.810758 – ident: ref23 doi: 10.1109/TEVC.2016.2587749 – volume: 9 start-page: 115 year: 2000 ident: ref53 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref31 doi: 10.1109/TEVC.2016.2549267 – ident: ref51 doi: 10.1109/TEVC.2016.2587808 – ident: ref68 doi: 10.1109/TEVC.2014.2373386 – ident: ref19 doi: 10.1162/EVCO_a_00109 – ident: ref45 doi: 10.1109/TEVC.2014.2350987 – ident: ref64 doi: 10.1109/CEC.2016.7744170 – ident: ref56 doi: 10.1109/TEVC.2013.2281535 – ident: ref59 doi: 10.1109/TEVC.2014.2378512 – ident: ref40 doi: 10.1162/evco.2007.15.1.1 – ident: ref5 doi: 10.1109/TEVC.2018.2882166 – ident: ref4 doi: 10.1109/TCYB.2019.2918087 – ident: ref69 doi: 10.2307/3001968 – ident: ref38 doi: 10.1145/2330163.2330230 – ident: ref26 doi: 10.1109/CEC.2013.6557868 – start-page: 892 year: 2006 ident: ref36 article-title: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion publication-title: Proc IEEE Int Conf Evol Comput – ident: ref13 doi: 10.1109/CEC.2001.934293 – ident: ref65 doi: 10.1109/TCYB.2016.2550502 – ident: ref66 doi: 10.1109/TEVC.2016.2519378 – ident: ref2 doi: 10.1145/2792984 – year: 2009 ident: ref70 publication-title: Parallel Coordinates Visual Multidimensional Geometry and Its Applications – ident: ref29 doi: 10.1109/TEVC.2017.2749619 – ident: ref17 doi: 10.1109/TEVC.2007.892759 – ident: ref15 doi: 10.1109/TEVC.2013.2258025 – ident: ref25 doi: 10.1162/EVCO_a_00009 – ident: ref60 doi: 10.1109/TEVC.2016.2521175 – ident: ref24 doi: 10.1016/j.ejor.2006.08.008 – ident: ref34 doi: 10.1109/TEVC.2005.851275 |
| SSID | ssj0000816898 |
| Score | 2.5323777 |
| Snippet | Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4553 |
| SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">I ϵ⁺ indicator boundary protection Computational complexity Convergence coverage diversity Diversity reception evolutionary algorithm Evolutionary algorithms Evolutionary computation Genetic algorithms many-objective evolutionary algorithm (MaOEA) multiobjective evolutionary algorithm (MOEA) Multiple objective analysis Optimization Sociology Statistics Strategy |
| Title | An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection |
| URI | https://ieeexplore.ieee.org/document/8957257 https://www.ncbi.nlm.nih.gov/pubmed/31940581 https://www.proquest.com/docview/2572665917 https://www.proquest.com/docview/2339788992 |
| Volume | 51 |
| WOSCitedRecordID | wos000696078900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UfPDFzztdv4hwD3eHcdum3SSPu6Io3HkeeLj3VNp0cqdoV9Zdwf_eSZotCHpwUEpIk7T0N0l-k0lmAD7FhmiwtjHX0gqeliLiZZIZrg3aVBUxXR7pb_LiQg2H-nIODtuzMIjoN5_hkUt6W341MlO3VNZVOpMkYvMwL6Vszmq16yk-gIQPfZtQghOrkMGIGUe6e3X8e-D2cemjhCi7iFwQGxI-YisqfjUj-RAr77NNP-ucrvzf967CcmCXrN-IwxrMYb0Oa6H_PrLPwcn0l3VYciyzcdK8AT_7NTuvncWGNHA-oImtYt9plOA_yttmQGQnT0FGi_Ez69_9GY1vJn_v2TXd2cCHZqL8y8bpA5X6AL9OT66Oz3iItcCNSPWEZxlWUZGilaiU8w5qrSgi4krWGuGd4sQFaU6qStGHAJQizSLTw1KWJkXC-CMs1KMat4CVidSF6FVJj2pUWaWRSJvEVBhtLBGSDkSz_52b4IjcxcO4y71CEuncoZU7tPKAVge-tlUeGi8c_yq84aBoCwYUOrA7AzUP_fQxp3xiKBnprB04aB9TD3Nmk6LG0ZTKCOJsivRSanmzEYa27ZkMbb_9zh1YStweGL8nbRcWJuMp7sGieSKAx_skxkO178X4BVHH6ds |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3_S9wwFH84J8xf3NRNz7ktwn7YxqJtk16aH-9EUTxPBzemP5U2ffEL2pPzTth_v5c0Vxhsg0EpIU3S0s9L8nl5yXsAH2NDNFjbmGtlBZeliHiZpIZrg1ZmRUyXR3qghsPs4kKfL8DX9iwMIvrNZ7jrkt6WX43NzC2V7WU6VSRiz-B5KmUSN6e12hUVH0LCB79NKMGJV6hgxowjvTfav-y7nVx6NyHSLiIXxobEj_hKFv82J_kgK3_nm37eOXz5f1_8ClYCv2S9RiBWYQHrNVgNPfiRfQpupj-vwbLjmY2b5nX41qvZce1sNqSD8z5NbRU7pXGCn5W3zZDIDp6ClBaTn6x3dzWe3Eyv79kPurO-D85E-eeN2wcq9Rq-Hx6M9o94iLbAjZB6ytMUq6iQaBVmmfMPaq0oImJL1hrh3eLEBelOWSXRBwFUQqaR6WKpSiORUH4Di_W4xk1gZaJ0IbpV0qUaVVppJNqmUAqjjSVK0oFo_r9zE1yRu4gYd7lXSSKdO7Ryh1Ye0OrAl7bKQ-OH41-F1x0UbcGAQge256Dmoac-5pRPHCUlrbUDO-1j6mPOcFLUOJ5RGUGsLSPNlFreaIShbXsuQ1t_fucHeHE0Oh3kg-PhyVtYTtyOGL9DbRsWp5MZvoMl80RgT957Yf4FIDTsOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Indicator-Based+Many-Objective+Evolutionary+Algorithm+With+Boundary+Protection&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liang%2C+Zhengping&rft.au=Luo%2C+Tingting&rft.au=Hu%2C+Kaifeng&rft.au=Ma%2C+Xiaoliang&rft.date=2021-09-01&rft.eissn=2168-2275&rft_id=info:doi/10.1109%2FTCYB.2019.2960302&rft_id=info%3Apmid%2F31940581&rft.externalDocID=31940581 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |