An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection

Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based sel...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 51; číslo 9; s. 4553 - 4566
Hlavní autori: Liang, Zhengping, Luo, Tingting, Hu, Kaifeng, Ma, Xiaoliang, Zhu, Zexuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., <inline-formula> <tex-math notation="LaTeX">{I}_{{{ {SDE}}}^{+}} </tex-math></inline-formula>, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
AbstractList Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest <inline-formula> <tex-math notation="LaTeX">{I}_{{\epsilon }^{+}} </tex-math></inline-formula> value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., <inline-formula> <tex-math notation="LaTeX">{I}_{{{ {SDE}}}^{+}} </tex-math></inline-formula>, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iε+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iε+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., ISDE+, SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the [Formula Omitted] indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest [Formula Omitted] value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., [Formula Omitted], SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iϵ+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iϵ+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., I SDE+ , SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number of objectives increases, the number of mutually nondominated solutions explodes and MOEAs become invalid due to the loss of Pareto-based selection pressure. Indicator-based many-objective evolutionary algorithms (MaOEAs) have been proposed to address this issue by enhancing the environmental selection. Indicator-based MaOEAs are easy to implement and of good versatility, however, they are unlikely to maintain the population diversity and coverage very well. In this article, a new indicator-based MaOEA with boundary protection, namely, MaOEA-IBP, is presented to relieve this weakness. In MaOEA-IBP, a worst elimination mechanism based on the Iϵ+ indicator and boundary protection strategy is devised to enhance the balance of population convergence, diversity, and coverage. Specifically, a pair of solutions with the smallest Iϵ+ value are first identified from the population. If one solution dominates the other, the dominated solution is eliminated. Otherwise, one solution is eliminated by the boundary protection strategy. MaOEA-IBP is compared with four indicator-based algorithms (i.e., I SDE+ , SRA, MaOEAIGD, and ARMOEA) and other five state-of-the-art MaOEAs (i.e., KnEA, MaOEA-CSS, 1by1EA, RVEA, and EFR-RR) on various benchmark MaOPs. The experimental results demonstrate that MaOEA-IBP can achieve competitive performance with the compared algorithms.
Author Zhu, Zexuan
Luo, Tingting
Liang, Zhengping
Hu, Kaifeng
Ma, Xiaoliang
Author_xml – sequence: 1
  givenname: Zhengping
  orcidid: 0000-0001-6210-8373
  surname: Liang
  fullname: Liang, Zhengping
  email: liangzp@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Tingting
  surname: Luo
  fullname: Luo, Tingting
  email: luotingting2017@email.szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Kaifeng
  orcidid: 0000-0002-6762-5035
  surname: Hu
  fullname: Hu, Kaifeng
  email: kaifengh@qq.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Xiaoliang
  surname: Ma
  fullname: Ma, Xiaoliang
  email: maxiaoliang@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Zexuan
  orcidid: 0000-0001-8479-6904
  surname: Zhu
  fullname: Zhu, Zexuan
  email: zhuzx@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31940581$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaT6aH1AKxdBLL97o--O4u6RpICUppJSejCyPWy9eKZXkQP59ZHa7hxyiw0gMzzuamfcUHfngAaEPBC8Iwebifv17taCYmAU1EjNM36ATSqSuKVXi6PCW6hidp7TB5eiSMvodOmbEcCw0OUE_lr669t3gbA6xXtkEXfXd-qf6tt2Ay8MjVJePYZzyELyNT9Vy_BPikP9uq18lVqsw-W7O38WQZz749-htb8cE5_v7DP38enm__lbf3F5dr5c3tWPc5FoI6LDl0CvQWkjC-55ZzDnpe8cwpkwQS7jWHQfDpJGKcYGdhFa1jgNv2Rn6sqv7EMO_CVJutkNyMI7WQ5hSQxkzSmtjaEE_v0A3YYq-dNdQoaiUwhBVqE97amq30DUPcdiW0Zr_yyoA2QEuhpQi9AeE4Gb2pJk9aWZPmr0nRaNeaNyQ7bynHO0wvqr8uFMOAHD4SZvSsFDsGcOolwE
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_swevo_2023_101360
crossref_primary_10_1016_j_swevo_2022_101161
crossref_primary_10_1016_j_engappai_2024_109636
crossref_primary_10_1109_TCBB_2023_3247025
crossref_primary_10_1007_s11227_024_06821_3
crossref_primary_10_1155_2023_2005465
crossref_primary_10_1007_s40747_023_01074_8
crossref_primary_10_1016_j_asoc_2023_110162
crossref_primary_10_1109_TETCI_2024_3451309
crossref_primary_10_1109_TITS_2020_3024693
crossref_primary_10_1007_s10489_023_04500_z
crossref_primary_10_1109_TC_2023_3326977
crossref_primary_10_1080_01605682_2021_1890531
crossref_primary_10_3390_math12162572
crossref_primary_10_1109_TITS_2023_3296002
crossref_primary_10_1016_j_swevo_2025_101892
crossref_primary_10_1109_ACCESS_2024_3383916
crossref_primary_10_1007_s00521_023_08330_5
crossref_primary_10_1109_ACCESS_2024_3398415
crossref_primary_10_1007_s10489_022_03307_8
crossref_primary_10_3390_sym17050671
crossref_primary_10_1007_s10586_025_05223_1
crossref_primary_10_1109_TCYB_2021_3051078
crossref_primary_10_23919_JSEE_2022_000016
crossref_primary_10_1038_s41598_023_31123_8
crossref_primary_10_1109_ACCESS_2022_3176372
crossref_primary_10_1016_j_eswa_2022_119424
crossref_primary_10_1016_j_swevo_2023_101449
crossref_primary_10_3390_math11020413
crossref_primary_10_1016_j_asoc_2025_113639
crossref_primary_10_1109_TEVC_2023_3243632
crossref_primary_10_3390_math12040554
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_1016_j_swevo_2024_101667
crossref_primary_10_3390_app142210309
crossref_primary_10_1007_s12293_023_00393_0
crossref_primary_10_1109_TCYB_2023_3336870
crossref_primary_10_1007_s12293_022_00360_1
crossref_primary_10_1007_s10586_025_05340_x
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_1007_s00521_023_08950_x
crossref_primary_10_1109_ACCESS_2023_3294095
crossref_primary_10_1016_j_ins_2022_12_021
crossref_primary_10_1155_2021_6614283
crossref_primary_10_3390_a15110392
crossref_primary_10_1016_j_swevo_2024_101495
crossref_primary_10_1016_j_eswa_2024_124559
crossref_primary_10_1109_TETCI_2024_3393388
crossref_primary_10_1109_TCYB_2022_3218345
crossref_primary_10_1111_exsy_13802
crossref_primary_10_1007_s10489_024_05596_7
crossref_primary_10_1007_s10489_022_03883_9
crossref_primary_10_1016_j_eswa_2024_123949
crossref_primary_10_1007_s10586_024_04739_2
crossref_primary_10_1007_s11227_024_06377_2
crossref_primary_10_1007_s11227_024_06547_2
crossref_primary_10_1016_j_jksuci_2023_101693
crossref_primary_10_1007_s10489_022_04296_4
crossref_primary_10_1016_j_swevo_2024_101601
crossref_primary_10_1093_jcde_qwae022
Cites_doi 10.1007/978-3-540-30217-9_84
10.1007/978-3-319-15934-8_11
10.1109/TEVC.2012.2227145
10.1109/TEVC.2016.2598687
10.1109/TCYB.2018.2859171
10.1109/CEC.2013.6557743
10.1007/3-540-36970-8_27
10.1109/TEVC.2018.2848921
10.1145/2739480.2754792
10.1109/TEVC.2015.2443001
10.1109/4235.996017
10.1109/TEVC.2019.2909271
10.1109/TEVC.2018.2791283
10.1109/TCYB.2014.2310651
10.1145/2739480.2754776
10.1109/TSMCB.2008.926329
10.1109/TCYB.2017.2737519
10.1109/TEVC.2013.2262178
10.1007/1-84628-137-7_6
10.1109/TEVC.2005.861417
10.1109/TCYB.2014.2334632
10.1109/TEVC.2011.2161872
10.1109/TEVC.2015.2420112
10.1007/s40747-017-0039-7
10.1162/106365600568202
10.1109/TCYB.2018.2872803
10.1162/106365602760234108
10.1007/978-3-540-70928-2_5
10.1007/978-3-642-37140-0_23
10.1109/TEVC.2010.2093579
10.1007/s10489-017-1126-6
10.1162/106365600568158
10.1109/TEVC.2015.2504730
10.1109/TCYB.2013.2247594
10.1109/TCYB.2016.2638902
10.1109/3468.650319
10.1109/CEC.2016.7743898
10.1007/978-3-642-44973-4_8
10.1109/TCYB.2017.2737554
10.1109/TEVC.2003.810758
10.1109/TEVC.2016.2587749
10.1109/TEVC.2016.2549267
10.1109/TEVC.2016.2587808
10.1109/TEVC.2014.2373386
10.1162/EVCO_a_00109
10.1109/TEVC.2014.2350987
10.1109/CEC.2016.7744170
10.1109/TEVC.2013.2281535
10.1109/TEVC.2014.2378512
10.1162/evco.2007.15.1.1
10.1109/TEVC.2018.2882166
10.1109/TCYB.2019.2918087
10.2307/3001968
10.1145/2330163.2330230
10.1109/CEC.2013.6557868
10.1109/CEC.2001.934293
10.1109/TCYB.2016.2550502
10.1109/TEVC.2016.2519378
10.1145/2792984
10.1109/TEVC.2017.2749619
10.1109/TEVC.2007.892759
10.1109/TEVC.2013.2258025
10.1162/EVCO_a_00009
10.1109/TEVC.2016.2521175
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2005.851275
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2960302
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 4566
ExternalDocumentID 31940581
10_1109_TCYB_2019_2960302
8957257
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Shenzhen Scientific Research and Development Funding Program
  grantid: JCYJ20170302154227954; JCGG20170414111229388; JCYJ20170302154328155
– fundername: Project of Department of Education of Guangdong Province
  grantid: 2016KTSCX121
  funderid: 10.13039/501100010226
– fundername: Zhejiang Lab’s International Talent Fund for Young Professionals
– fundername: Scientific Research Foundation of Shenzhen University for newly introduced teachers
  grantid: 2019048
  funderid: 10.13039/501100009019
– fundername: National Natural Science Foundation of China
  grantid: 61871272; 61471246; 61976143; 61672358
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-55ed0a4ef7e885614ff3a0441ffc3002351a1488d4e9369673450c6eb7bc4e4b3
IEDL.DBID RIE
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696078900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 06:47:23 EDT 2025
Sun Nov 30 04:41:29 EST 2025
Thu Jan 02 22:58:24 EST 2025
Sat Nov 29 02:02:29 EST 2025
Tue Nov 18 21:31:34 EST 2025
Wed Aug 27 02:27:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-55ed0a4ef7e885614ff3a0441ffc3002351a1488d4e9369673450c6eb7bc4e4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6210-8373
0000-0002-6762-5035
0000-0001-8479-6904
PMID 31940581
PQID 2572665917
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_31940581
proquest_miscellaneous_2339788992
crossref_primary_10_1109_TCYB_2019_2960302
crossref_citationtrail_10_1109_TCYB_2019_2960302
ieee_primary_8957257
proquest_journals_2572665917
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
alfred (ref70) 2009
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
deb (ref53) 2000; 9
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
deb (ref54) 1996; 26
zhou (ref36) 2006
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
zou (ref11) 2008; 38
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref30
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref28
  doi: 10.1007/978-3-319-15934-8_11
– ident: ref12
  doi: 10.1109/TEVC.2012.2227145
– volume: 26
  start-page: 30
  year: 1996
  ident: ref54
  article-title: A combined genetic adaptive search (geneAS) for engineering design
  publication-title: Comput Sci Inf
– ident: ref58
  doi: 10.1109/TEVC.2016.2598687
– ident: ref55
  doi: 10.1109/TCYB.2018.2859171
– ident: ref42
  doi: 10.1109/CEC.2013.6557743
– ident: ref7
  doi: 10.1007/3-540-36970-8_27
– ident: ref47
  doi: 10.1109/TEVC.2018.2848921
– ident: ref37
  doi: 10.1145/2739480.2754792
– ident: ref57
  doi: 10.1109/TEVC.2015.2443001
– ident: ref8
  doi: 10.1109/4235.996017
– ident: ref43
  doi: 10.1109/TEVC.2019.2909271
– ident: ref67
  doi: 10.1109/TEVC.2018.2791283
– ident: ref1
  doi: 10.1109/TCYB.2014.2310651
– ident: ref27
  doi: 10.1145/2739480.2754776
– volume: 38
  start-page: 1402
  year: 2008
  ident: ref11
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Trans Syst Man Cybern A Syst Humans
  doi: 10.1109/TSMCB.2008.926329
– ident: ref20
  doi: 10.1109/TCYB.2017.2737519
– ident: ref46
  doi: 10.1109/TEVC.2013.2262178
– ident: ref62
  doi: 10.1007/1-84628-137-7_6
– ident: ref61
  doi: 10.1109/TEVC.2005.861417
– ident: ref3
  doi: 10.1109/TCYB.2014.2334632
– ident: ref39
  doi: 10.1109/TEVC.2011.2161872
– ident: ref14
  doi: 10.1109/TEVC.2015.2420112
– ident: ref63
  doi: 10.1007/s40747-017-0039-7
– ident: ref32
  doi: 10.1162/106365600568202
– ident: ref18
  doi: 10.1109/TCYB.2018.2872803
– ident: ref9
  doi: 10.1162/106365602760234108
– ident: ref10
  doi: 10.1007/978-3-540-70928-2_5
– ident: ref16
  doi: 10.1007/978-3-642-37140-0_23
– ident: ref48
  doi: 10.1109/TEVC.2010.2093579
– ident: ref52
  doi: 10.1007/s10489-017-1126-6
– ident: ref35
  doi: 10.1162/106365600568158
– ident: ref22
  doi: 10.1109/TEVC.2015.2504730
– ident: ref49
  doi: 10.1109/TCYB.2013.2247594
– ident: ref50
  doi: 10.1109/TCYB.2016.2638902
– ident: ref6
  doi: 10.1109/3468.650319
– ident: ref44
  doi: 10.1109/CEC.2016.7743898
– ident: ref41
  doi: 10.1007/978-3-642-44973-4_8
– ident: ref21
  doi: 10.1109/TCYB.2017.2737554
– ident: ref33
  doi: 10.1109/TEVC.2003.810758
– ident: ref23
  doi: 10.1109/TEVC.2016.2587749
– volume: 9
  start-page: 115
  year: 2000
  ident: ref53
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref31
  doi: 10.1109/TEVC.2016.2549267
– ident: ref51
  doi: 10.1109/TEVC.2016.2587808
– ident: ref68
  doi: 10.1109/TEVC.2014.2373386
– ident: ref19
  doi: 10.1162/EVCO_a_00109
– ident: ref45
  doi: 10.1109/TEVC.2014.2350987
– ident: ref64
  doi: 10.1109/CEC.2016.7744170
– ident: ref56
  doi: 10.1109/TEVC.2013.2281535
– ident: ref59
  doi: 10.1109/TEVC.2014.2378512
– ident: ref40
  doi: 10.1162/evco.2007.15.1.1
– ident: ref5
  doi: 10.1109/TEVC.2018.2882166
– ident: ref4
  doi: 10.1109/TCYB.2019.2918087
– ident: ref69
  doi: 10.2307/3001968
– ident: ref38
  doi: 10.1145/2330163.2330230
– ident: ref26
  doi: 10.1109/CEC.2013.6557868
– start-page: 892
  year: 2006
  ident: ref36
  article-title: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion
  publication-title: Proc IEEE Int Conf Evol Comput
– ident: ref13
  doi: 10.1109/CEC.2001.934293
– ident: ref65
  doi: 10.1109/TCYB.2016.2550502
– ident: ref66
  doi: 10.1109/TEVC.2016.2519378
– ident: ref2
  doi: 10.1145/2792984
– year: 2009
  ident: ref70
  publication-title: Parallel Coordinates Visual Multidimensional Geometry and Its Applications
– ident: ref29
  doi: 10.1109/TEVC.2017.2749619
– ident: ref17
  doi: 10.1109/TEVC.2007.892759
– ident: ref15
  doi: 10.1109/TEVC.2013.2258025
– ident: ref25
  doi: 10.1162/EVCO_a_00009
– ident: ref60
  doi: 10.1109/TEVC.2016.2521175
– ident: ref24
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref34
  doi: 10.1109/TEVC.2005.851275
SSID ssj0000816898
Score 2.5323777
Snippet Many-objective optimization problems (MaOPs) pose a big challenge to the traditional Pareto-based multiobjective evolutionary algorithms (MOEAs). As the number...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4553
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">I ϵ⁺ indicator
boundary protection
Computational complexity
Convergence
coverage
diversity
Diversity reception
evolutionary algorithm
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
many-objective evolutionary algorithm (MaOEA)
multiobjective evolutionary algorithm (MOEA)
Multiple objective analysis
Optimization
Sociology
Statistics
Strategy
Title An Indicator-Based Many-Objective Evolutionary Algorithm With Boundary Protection
URI https://ieeexplore.ieee.org/document/8957257
https://www.ncbi.nlm.nih.gov/pubmed/31940581
https://www.proquest.com/docview/2572665917
https://www.proquest.com/docview/2339788992
Volume 51
WOSCitedRecordID wos000696078900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UfPDFzztdv4hwD3eHcdum3SSPu6Io3HkeeLj3VNp0cqdoV9Zdwf_eSZotCHpwUEpIk7T0N0l-k0lmAD7FhmiwtjHX0gqeliLiZZIZrg3aVBUxXR7pb_LiQg2H-nIODtuzMIjoN5_hkUt6W341MlO3VNZVOpMkYvMwL6Vszmq16yk-gIQPfZtQghOrkMGIGUe6e3X8e-D2cemjhCi7iFwQGxI-YisqfjUj-RAr77NNP-ucrvzf967CcmCXrN-IwxrMYb0Oa6H_PrLPwcn0l3VYciyzcdK8AT_7NTuvncWGNHA-oImtYt9plOA_yttmQGQnT0FGi_Ez69_9GY1vJn_v2TXd2cCHZqL8y8bpA5X6AL9OT66Oz3iItcCNSPWEZxlWUZGilaiU8w5qrSgi4krWGuGd4sQFaU6qStGHAJQizSLTw1KWJkXC-CMs1KMat4CVidSF6FVJj2pUWaWRSJvEVBhtLBGSDkSz_52b4IjcxcO4y71CEuncoZU7tPKAVge-tlUeGi8c_yq84aBoCwYUOrA7AzUP_fQxp3xiKBnprB04aB9TD3Nmk6LG0ZTKCOJsivRSanmzEYa27ZkMbb_9zh1YStweGL8nbRcWJuMp7sGieSKAx_skxkO178X4BVHH6ds
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3_S9wwFH84J8xf3NRNz7ktwn7YxqJtk16aH-9EUTxPBzemP5U2ffEL2pPzTth_v5c0Vxhsg0EpIU3S0s9L8nl5yXsAH2NDNFjbmGtlBZeliHiZpIZrg1ZmRUyXR3qghsPs4kKfL8DX9iwMIvrNZ7jrkt6WX43NzC2V7WU6VSRiz-B5KmUSN6e12hUVH0LCB79NKMGJV6hgxowjvTfav-y7nVx6NyHSLiIXxobEj_hKFv82J_kgK3_nm37eOXz5f1_8ClYCv2S9RiBWYQHrNVgNPfiRfQpupj-vwbLjmY2b5nX41qvZce1sNqSD8z5NbRU7pXGCn5W3zZDIDp6ClBaTn6x3dzWe3Eyv79kPurO-D85E-eeN2wcq9Rq-Hx6M9o94iLbAjZB6ytMUq6iQaBVmmfMPaq0oImJL1hrh3eLEBelOWSXRBwFUQqaR6WKpSiORUH4Di_W4xk1gZaJ0IbpV0qUaVVppJNqmUAqjjSVK0oFo_r9zE1yRu4gYd7lXSSKdO7Ryh1Ye0OrAl7bKQ-OH41-F1x0UbcGAQge256Dmoac-5pRPHCUlrbUDO-1j6mPOcFLUOJ5RGUGsLSPNlFreaIShbXsuQ1t_fucHeHE0Oh3kg-PhyVtYTtyOGL9DbRsWp5MZvoMl80RgT957Yf4FIDTsOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Indicator-Based+Many-Objective+Evolutionary+Algorithm+With+Boundary+Protection&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liang%2C+Zhengping&rft.au=Luo%2C+Tingting&rft.au=Hu%2C+Kaifeng&rft.au=Ma%2C+Xiaoliang&rft.date=2021-09-01&rft.eissn=2168-2275&rft_id=info:doi/10.1109%2FTCYB.2019.2960302&rft_id=info%3Apmid%2F31940581&rft.externalDocID=31940581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon