Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm

For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studie...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine tools & manufacture Vol. 113; pp. 35 - 48
Main Authors: Liu, Hui, Miao, En Ming, Wei, Xin Yuan, Zhuang, Xin Dong
Format: Journal Article
Language:English
Published: Elmsford Elsevier Ltd 01.02.2017
Elsevier BV
Subjects:
ISSN:0890-6955, 1879-2170
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studies the thermal error of Leaderway V-450 type CNC machine tools during different seasons. It is found that although the commonly used temperature sensitive point selection methods can significantly reduce the collinearity between temperature sensitive points, the correlation between some of the selected temperature-sensitive points and thermal error is weak. This causes the temperature-sensitive points to be variable and the predicted accuracy and robustness of thermal error to be reduced. Therefore, in this paper, the temperature sensitive points are selected directly by their correlation with thermal error to eliminate variability. However, the experimental results also show that the collinearity between temperature sensitive points is very large. Hence, the ridge regression algorithm is used to establish a thermal error model to inhibit the bad influence of collinearity on the thermal error predicted robustness. Thus, the “robustness ridge regression machine tool thermal error modeling method” is proposed, the “RRR method” for short. In addition, in the “RRR method”, the correlation coefficient is used to measure the correlation between temperature sensitive points and thermal error instead of the commonly used gray correlation; because this paper finds that the gray correlation algorithm is essentially inapplicable for measuring a negative correlation. Based on the thermal error experiment data for the whole year, the “RRR method” is compared with two currently used methods, and the results show that the “RRR method” can significantly enhance the long-term predicted accuracy and robustness of thermal error. Finally, the application effect of practical compensation shows that the “RRR method” is usable and effective. •The long-term prediction performance of commonly used traditional machine tool thermal error modeling methods is deeply studied.•Although the traditional methods can significantly reduce the collinearity between temperature sensitive points (Input variables of thermal error model), the correlation between some points and thermal error is weak.•The temperature sensitive points which have strong correlation with thermal error also have high collinearity between them.•The ridge regression algorithm is used to inhibit the bad influence of collinearity on the thermal error predicted robustness.•The thermal error predicted effect of proposed method is verified by 18 thermal error experiments done in different seasons.
AbstractList For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studies the thermal error of Leaderway V-450 type CNC machine tools during different seasons. It is found that although the commonly used temperature sensitive point selection methods can significantly reduce the collinearity between temperature sensitive points, the correlation between some of the selected temperature-sensitive points and thermal error is weak. This causes the temperature-sensitive points to be variable and the predicted accuracy and robustness of thermal error to be reduced. Therefore, in this paper, the temperature sensitive points are selected directly by their correlation with thermal error to eliminate variability. However, the experimental results also show that the collinearity between temperature sensitive points is very large. Hence, the ridge regression algorithm is used to establish a thermal error model to inhibit the bad influence of collinearity on the thermal error predicted robustness. Thus, the “robustness ridge regression machine tool thermal error modeling method” is proposed, the “RRR method” for short. In addition, in the “RRR method”, the correlation coefficient is used to measure the correlation between temperature sensitive points and thermal error instead of the commonly used gray correlation; because this paper finds that the gray correlation algorithm is essentially inapplicable for measuring a negative correlation. Based on the thermal error experiment data for the whole year, the “RRR method” is compared with two currently used methods, and the results show that the “RRR method” can significantly enhance the long-term predicted accuracy and robustness of thermal error. Finally, the application effect of practical compensation shows that the “RRR method” is usable and effective. •The long-term prediction performance of commonly used traditional machine tool thermal error modeling methods is deeply studied.•Although the traditional methods can significantly reduce the collinearity between temperature sensitive points (Input variables of thermal error model), the correlation between some points and thermal error is weak.•The temperature sensitive points which have strong correlation with thermal error also have high collinearity between them.•The ridge regression algorithm is used to inhibit the bad influence of collinearity on the thermal error predicted robustness.•The thermal error predicted effect of proposed method is verified by 18 thermal error experiments done in different seasons.
For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studies the thermal error of Leaderway V-450 type CNC machine tools during different seasons. It is found that although the commonly used temperature sensitive point selection methods can significantly reduce the collinearity between temperature sensitive points, the correlation between some of the selected temperature-sensitive points and thermal error is weak. This causes the temperature-sensitive points to be variable and the predicted accuracy and robustness of thermal error to be reduced. Therefore, in this paper, the temperature sensitive points are selected directly by their correlation with thermal error to eliminate variability. However, the experimental results also show that the collinearity between temperature sensitive points is very large. Hence, the ridge regression algorithm is used to establish a thermal error model to inhibit the bad influence of collinearity on the thermal error predicted robustness. Thus, the "robustness ridge regression machine tool thermal error modeling method" is proposed, the "RRR method" for short. In addition, in the "RRR method", the correlation coefficient is used to measure the correlation between temperature sensitive points and thermal error instead of the commonly used gray correlation; because this paper finds that the gray correlation algorithm is essentially inapplicable for measuring a negative correlation. Based on the thermal error experiment data for the whole year, the "RRR method" is compared with two currently used methods, and the results show that the "RRR method" can significantly enhance the long-term predicted accuracy and robustness of thermal error. Finally, the application effect of practical compensation shows that the "RRR method" is usable and effective.
Author Liu, Hui
Wei, Xin Yuan
Zhuang, Xin Dong
Miao, En Ming
Author_xml – sequence: 1
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
– sequence: 2
  givenname: En Ming
  surname: Miao
  fullname: Miao, En Ming
  email: miaoem@163.com
– sequence: 3
  givenname: Xin Yuan
  surname: Wei
  fullname: Wei, Xin Yuan
– sequence: 4
  givenname: Xin Dong
  surname: Zhuang
  fullname: Zhuang, Xin Dong
BookMark eNqNkE1r3DAQhkVIoJuk_0GlZ7say_JapxJMmhRCC6U5C1ke78rYVjLSBvrvo832UHrKaZjh_RieS3a-hhUZ-wSiBAHNl6n002LdPoUwx7LKpxKgFALO2AbarS4q2IpzthGtFkWjlfrALmOcRFa0EjbM_gr9ISa-hAFnv-74gmkfBj4G4mmPtNiZI1Hewsi7Hx0_lvkV-Vsh723EgYeVkx92yAl3hDH6fLDzLpBP--WaXYx2jvjx77xij99uf3f3xcPPu-_dzUPhZK1ToeqxqXQFIJXsVT_2zaB65UarbQsDOnRbaYVQsoZaOFUhgBVQacza1rVOXrHPp9wnCs8HjMlM4UBrrjSg5bZp60a2WfX1pHIUYiQcjfPJpvxxIutnA8IcuZrJ_MPVHLkaAJOp5QT9X8IT-cXSn3d5u5MXM4gXj2Si87g6HDyhS2YI_h0pr5Abndg
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2983471
crossref_primary_10_3390_s23104916
crossref_primary_10_1088_1742_6596_2724_1_012045
crossref_primary_10_1016_j_engappai_2021_104626
crossref_primary_10_3390_mi16050563
crossref_primary_10_1109_ACCESS_2022_3197797
crossref_primary_10_1007_s00521_023_08553_6
crossref_primary_10_1007_s10845_021_01894_w
crossref_primary_10_1007_s12206_022_0829_8
crossref_primary_10_1002_we_2269
crossref_primary_10_1016_j_ymssp_2024_112105
crossref_primary_10_1016_j_jmsy_2025_03_003
crossref_primary_10_1007_s00170_019_04482_8
crossref_primary_10_3390_app11125444
crossref_primary_10_1007_s00170_023_12685_3
crossref_primary_10_1016_j_mechatronics_2018_06_018
crossref_primary_10_3390_s22145085
crossref_primary_10_1177_00368504231171268
crossref_primary_10_1007_s00170_023_12038_0
crossref_primary_10_1007_s00170_024_13560_5
crossref_primary_10_3390_ma12193113
crossref_primary_10_1007_s40430_020_02538_5
crossref_primary_10_1109_TIM_2025_3551844
crossref_primary_10_1016_j_ijmecsci_2020_105531
crossref_primary_10_1088_1757_899X_322_7_072052
crossref_primary_10_1007_s00170_023_11998_7
crossref_primary_10_3390_machines10020132
crossref_primary_10_1016_j_csite_2025_106745
crossref_primary_10_1007_s00170_023_12778_z
crossref_primary_10_1007_s00170_023_11877_1
crossref_primary_10_1016_j_ijmachtools_2017_11_002
crossref_primary_10_1007_s11044_024_09966_4
crossref_primary_10_1016_j_ymssp_2022_109682
crossref_primary_10_1007_s10845_023_02095_3
crossref_primary_10_3390_s22062325
crossref_primary_10_1007_s00170_018_1593_x
crossref_primary_10_3390_s23239450
crossref_primary_10_1016_j_ijmachtools_2023_104003
crossref_primary_10_1063_5_0280256
crossref_primary_10_3390_machines10060427
crossref_primary_10_1016_j_precisioneng_2022_05_008
crossref_primary_10_1016_j_asoc_2021_107094
crossref_primary_10_1007_s00170_023_10831_5
crossref_primary_10_1016_j_precisioneng_2024_07_013
crossref_primary_10_1007_s00170_021_06680_9
crossref_primary_10_1088_1742_6596_2787_1_012051
crossref_primary_10_1016_j_applthermaleng_2018_05_063
crossref_primary_10_1016_j_jmapro_2023_12_026
crossref_primary_10_1007_s00170_021_07066_7
crossref_primary_10_1016_j_jestch_2023_101359
crossref_primary_10_1016_j_applthermaleng_2025_128071
crossref_primary_10_1016_j_mechmachtheory_2020_104009
crossref_primary_10_1007_s00170_018_2994_6
crossref_primary_10_1016_j_aei_2022_101618
crossref_primary_10_1016_j_matpr_2021_09_182
crossref_primary_10_1007_s00170_018_2559_8
crossref_primary_10_1007_s00170_023_11616_6
crossref_primary_10_7736_KSPE_2018_35_3_279
crossref_primary_10_1109_TII_2024_3424287
crossref_primary_10_1007_s00170_025_16239_7
crossref_primary_10_1016_j_measurement_2025_118416
crossref_primary_10_1007_s12541_019_00206_w
crossref_primary_10_1016_j_asoc_2023_110221
crossref_primary_10_1016_j_aei_2024_102741
crossref_primary_10_1016_j_jmsy_2022_04_015
crossref_primary_10_1016_j_ijmachtools_2025_104298
crossref_primary_10_1016_j_jhazmat_2023_131541
crossref_primary_10_1016_j_knosys_2021_107704
crossref_primary_10_1016_j_measurement_2024_116341
crossref_primary_10_1016_j_csite_2025_106009
crossref_primary_10_1016_j_jmapro_2024_01_024
crossref_primary_10_1016_j_mechmachtheory_2021_104639
crossref_primary_10_1177_09544062211066243
crossref_primary_10_1093_jom_ufad042
crossref_primary_10_1007_s00170_021_08241_6
crossref_primary_10_1007_s00170_018_2918_5
crossref_primary_10_1007_s11071_025_10898_7
crossref_primary_10_3390_s20102777
crossref_primary_10_1007_s00170_018_1595_8
crossref_primary_10_1016_j_jmapro_2019_10_018
crossref_primary_10_1016_j_ymssp_2023_110240
crossref_primary_10_1007_s00170_025_15188_5
crossref_primary_10_1007_s00170_022_09052_z
crossref_primary_10_1016_j_aei_2022_101759
crossref_primary_10_1007_s00170_024_13192_9
crossref_primary_10_1007_s40430_020_02514_z
crossref_primary_10_1016_j_aei_2024_103005
crossref_primary_10_1007_s00170_022_09533_1
crossref_primary_10_1016_j_aei_2024_102844
crossref_primary_10_1007_s12206_019_0635_0
crossref_primary_10_1007_s12206_023_0539_x
crossref_primary_10_1007_s00170_024_13445_7
crossref_primary_10_1007_s12541_025_01302_w
crossref_primary_10_1016_j_precisioneng_2019_08_003
crossref_primary_10_2478_amns_2024_3246
crossref_primary_10_1007_s00170_018_2259_4
crossref_primary_10_3390_machines10080624
crossref_primary_10_1007_s00170_025_16329_6
crossref_primary_10_1007_s00170_019_03650_0
crossref_primary_10_1016_j_ymssp_2025_112792
crossref_primary_10_5194_ms_14_15_2023
crossref_primary_10_1007_s00170_018_1992_z
crossref_primary_10_1016_j_jmapro_2025_03_011
crossref_primary_10_1007_s00170_022_09563_9
crossref_primary_10_1016_j_sna_2019_06_055
crossref_primary_10_1007_s40436_020_00293_3
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125083
crossref_primary_10_1016_j_precisioneng_2023_06_002
crossref_primary_10_1016_j_precisioneng_2025_01_021
crossref_primary_10_3390_app7080791
crossref_primary_10_1007_s00170_019_04767_y
crossref_primary_10_1007_s00170_021_07560_y
crossref_primary_10_1007_s00170_022_09260_7
crossref_primary_10_1016_j_eswa_2023_120122
crossref_primary_10_1007_s12206_022_1230_3
crossref_primary_10_1016_j_jmsy_2021_01_013
crossref_primary_10_1016_j_jksuci_2017_12_004
crossref_primary_10_3390_lubricants13060269
crossref_primary_10_1007_s00170_020_05752_6
crossref_primary_10_1007_s00170_024_13021_z
crossref_primary_10_1007_s00170_021_08462_9
crossref_primary_10_1007_s10845_021_01821_z
crossref_primary_10_1007_s00170_023_12227_x
crossref_primary_10_1177_1687814019839513
crossref_primary_10_1016_j_ymssp_2023_110599
crossref_primary_10_1007_s00170_025_15021_z
crossref_primary_10_1007_s00170_020_04932_8
crossref_primary_10_1016_j_ijthermalsci_2022_108095
crossref_primary_10_1007_s00170_022_09158_4
crossref_primary_10_1139_tcsme_2022_0116
Cites_doi 10.1016/j.ijmachtools.2011.04.001
10.1007/s00170-013-4998-6
10.1016/0167-8191(90)90086-O
10.1016/j.ijmachtools.2006.06.018
10.1080/00401706.2000.10485983
10.1007/s00170-013-5229-x
10.1016/j.ijmachtools.2014.03.002
10.1016/j.ijmachtools.2009.11.002
10.1007/s00170-011-3564-3
10.1007/s00170-014-6193-9
10.1007/s00521-007-0084-z
10.1016/S0141-6359(00)00044-1
10.1016/j.ijmachtools.2015.07.004
10.1016/0890-6955(95)00040-2
10.1016/S0924-0136(97)00291-4
10.1016/j.apm.2014.10.016
10.1016/j.neunet.2009.11.016
10.1016/S0007-8506(07)63001-7
10.1016/j.ijmachtools.2006.02.018
10.1007/s00170-008-1791-z
10.1080/01621459.1992.10475190
10.1016/0278-6125(96)82336-3
10.2307/1937887
10.1016/S0890-6955(00)00010-9
10.1016/j.precisioneng.2011.07.013
10.1016/j.procir.2014.01.080
10.1016/S0890-6955(02)00263-8
10.1016/S0890-6955(02)00264-X
10.1080/02664760500165339
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Feb 2017
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2017
DBID AAYXX
CITATION
7TB
8BQ
8FD
F28
FR3
JG9
DOI 10.1016/j.ijmachtools.2016.11.001
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2170
EndPage 48
ExternalDocumentID 10_1016_j_ijmachtools_2016_11_001
S0890695516301341
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8BQ
8FD
AFXIZ
AGCQF
AGRNS
F28
FR3
JG9
SSH
ID FETCH-LOGICAL-c349t-54f629211353b5bfb6d5b5cfa9a81decec73a00534140c52e11a0129e5bf8c8c3
ISICitedReferencesCount 143
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392353000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0890-6955
IngestDate Mon Jul 14 10:06:46 EDT 2025
Tue Nov 18 22:18:37 EST 2025
Sat Nov 29 02:33:06 EST 2025
Fri Feb 23 02:33:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ridge regression
Thermal error
Collinearity
Predicted accuracy and robustness
CNC machine tools
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-54f629211353b5bfb6d5b5cfa9a81decec73a00534140c52e11a0129e5bf8c8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1937684638
PQPubID 2045462
PageCount 14
ParticipantIDs proquest_journals_1937684638
crossref_citationtrail_10_1016_j_ijmachtools_2016_11_001
crossref_primary_10_1016_j_ijmachtools_2016_11_001
elsevier_sciencedirect_doi_10_1016_j_ijmachtools_2016_11_001
PublicationCentury 2000
PublicationDate February 2017
2017-02-00
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle International journal of machine tools & manufacture
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mize, Ziegert (bib16) 2000; 24
Creighton, Honegger, Tulsian, Mukhopadhyay (bib10) 2010; 50
Vyroubal (bib11) 2012; 36
Zhang, Ye, Shan (bib28) 2015; 85
Yang, Yuan, Ni (bib3) 1996; 15
Ramesh, Mannan, Poo (bib17) 2000; 40
Yang (bib5) 1998
Miao, Liu, Liu, Gao, Li (bib29) 2015; 97
Socha, Blum (bib32) 2007; 23
Wang, Wang, Li (bib23) 2013; 69
ISO 230-3, Test Code for Machine Tools Part 3: Determination of Thermal Effects, ISO Copyright Office, Switzerland, 2007.
Whitley, Starkweather, Bogart (bib33) 1990; 14
Xu, Jiang, Cai (bib8) 2007; 47
Farrar, Glauber (bib6) 1964; 49
Tan, Mao, Liu (bib26) 2014; 82–83
Hippert, Taylor (bib34) 2010; 23
Yan, Yang (bib22) 2009; 43
Raymond (bib39) 2005
Fox, Monette (bib38) 1992; 87
Ramesh, Mannan, Poo (bib18) 2003; 43
Park, Lee, Gwon (bib15) 2000; 24
Douglas Bonett (bib35) 2005; 32
Miao, Gong, Dang (bib24) 2014; 74
Yang, Shi, Feng (bib25) 2014; 17
Jiang, Fan, Yang (bib36) 2014; 75
Raymond (bib30) 2005
Abdulshahed, Longstaff, Fletcher (bib27) 2015; 39
Yang, Deng, Ren, Li, Dou (bib21) 2004; 15
Yang, Yuan, Ni (bib12) 1996; 36
Xu, Liu, Kim, Shin, Lyu (bib7) 2011; 51
Liang, Ye, Zhang, Yang (bib42) 2012; 63
Zhang, Yang, Jiang (bib20) 2012; 59
Yang, Van, Vanherck (bib14) 1999; 44
Kumar (bib41) 2006
Raymond (bib40) 2005
Aronson (bib2) 1996; 116
Bryan (bib1) 1990; 39
Ramesh, Mannan, Poo (bib19) 2003; 43
Miao, Gong, Niu, Ji, Chen (bib4) 2013; 69
Wang, Zhang, Moon (bib13) 1998; 75
Hoerl, Kennard (bib31) 1970; 42
Zhao, Yang, Shen (bib9) 2007; 47
Raymond (10.1016/j.ijmachtools.2016.11.001_bib30) 2005
Raymond (10.1016/j.ijmachtools.2016.11.001_bib40) 2005
Miao (10.1016/j.ijmachtools.2016.11.001_bib4) 2013; 69
Wang (10.1016/j.ijmachtools.2016.11.001_bib23) 2013; 69
Park (10.1016/j.ijmachtools.2016.11.001_bib15) 2000; 24
Yang (10.1016/j.ijmachtools.2016.11.001_bib12) 1996; 36
Xu (10.1016/j.ijmachtools.2016.11.001_bib8) 2007; 47
Hippert (10.1016/j.ijmachtools.2016.11.001_bib34) 2010; 23
Yan (10.1016/j.ijmachtools.2016.11.001_bib22) 2009; 43
Yang (10.1016/j.ijmachtools.2016.11.001_bib3) 1996; 15
Creighton (10.1016/j.ijmachtools.2016.11.001_bib10) 2010; 50
Kumar (10.1016/j.ijmachtools.2016.11.001_bib41) 2006
Ramesh (10.1016/j.ijmachtools.2016.11.001_bib18) 2003; 43
Whitley (10.1016/j.ijmachtools.2016.11.001_bib33) 1990; 14
Ramesh (10.1016/j.ijmachtools.2016.11.001_bib17) 2000; 40
Zhang (10.1016/j.ijmachtools.2016.11.001_bib28) 2015; 85
Socha (10.1016/j.ijmachtools.2016.11.001_bib32) 2007; 23
Yang (10.1016/j.ijmachtools.2016.11.001_bib21) 2004; 15
Fox (10.1016/j.ijmachtools.2016.11.001_bib38) 1992; 87
Liang (10.1016/j.ijmachtools.2016.11.001_bib42) 2012; 63
Yang (10.1016/j.ijmachtools.2016.11.001_bib5) 1998
Vyroubal (10.1016/j.ijmachtools.2016.11.001_bib11) 2012; 36
Mize (10.1016/j.ijmachtools.2016.11.001_bib16) 2000; 24
Douglas Bonett (10.1016/j.ijmachtools.2016.11.001_bib35) 2005; 32
Miao (10.1016/j.ijmachtools.2016.11.001_bib24) 2014; 74
Miao (10.1016/j.ijmachtools.2016.11.001_bib29) 2015; 97
Farrar (10.1016/j.ijmachtools.2016.11.001_bib6) 1964; 49
Ramesh (10.1016/j.ijmachtools.2016.11.001_bib19) 2003; 43
Zhang (10.1016/j.ijmachtools.2016.11.001_bib20) 2012; 59
Abdulshahed (10.1016/j.ijmachtools.2016.11.001_bib27) 2015; 39
Yang (10.1016/j.ijmachtools.2016.11.001_bib25) 2014; 17
Raymond (10.1016/j.ijmachtools.2016.11.001_bib39) 2005
Zhao (10.1016/j.ijmachtools.2016.11.001_bib9) 2007; 47
Aronson (10.1016/j.ijmachtools.2016.11.001_bib2) 1996; 116
Tan (10.1016/j.ijmachtools.2016.11.001_bib26) 2014; 82–83
Bryan (10.1016/j.ijmachtools.2016.11.001_bib1) 1990; 39
Wang (10.1016/j.ijmachtools.2016.11.001_bib13) 1998; 75
Hoerl (10.1016/j.ijmachtools.2016.11.001_bib31) 1970; 42
Xu (10.1016/j.ijmachtools.2016.11.001_bib7) 2011; 51
Jiang (10.1016/j.ijmachtools.2016.11.001_bib36) 2014; 75
10.1016/j.ijmachtools.2016.11.001_bib37
Yang (10.1016/j.ijmachtools.2016.11.001_bib14) 1999; 44
References_xml – start-page: 164
  year: 2006
  end-page: 204
  ident: bib41
  article-title: Neural Networks
– volume: 36
  start-page: 121
  year: 2012
  end-page: 127
  ident: bib11
  article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method
  publication-title: Precis. Eng.
– volume: 39
  start-page: 1837
  year: 2015
  end-page: 1852
  ident: bib27
  article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera
  publication-title: Appl. Math. Model.
– start-page: 91
  year: 2005
  end-page: 93
  ident: bib40
  publication-title: Classical and Modern Regression with Applications
– volume: 47
  start-page: 53
  year: 2007
  end-page: 62
  ident: bib8
  article-title: An improved thermal model for machine tool bearings
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 85
  start-page: 2761
  year: 2015
  end-page: 2771
  ident: bib28
  article-title: Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 69
  start-page: 121
  year: 2013
  end-page: 126
  ident: bib23
  article-title: Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 43
  start-page: 1124
  year: 2009
  end-page: 1132
  ident: bib22
  article-title: Application of synthetic gray correlation theory on thermal point optimization for machine tool thermal error compensation
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 44
  start-page: 146
  year: 1999
  end-page: 152
  ident: bib14
  article-title: Linear regression and neural net models applied to thermal error compensation in machine tools
  publication-title: Eur. J. Mech. Environ. Eng.
– volume: 42
  start-page: 80
  year: 1970
  end-page: 86
  ident: bib31
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– start-page: 368
  year: 2005
  end-page: 370
  ident: bib39
  publication-title: Classical and Modern Regression with Applications
– volume: 116
  start-page: 45
  year: 1996
  end-page: 50
  ident: bib2
  article-title: War against thermal expansion
  publication-title: Manuf. Eng.
– volume: 47
  start-page: 1003
  year: 2007
  end-page: 1010
  ident: bib9
  article-title: Simulation of thermal behavior of a cnc machine tool spindle
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 43
  start-page: 391
  year: 2003
  end-page: 404
  ident: bib18
  article-title: Thermal error measurement and modelling in machine tools.: Part I
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 74
  start-page: 681
  year: 2014
  end-page: 691
  ident: bib24
  article-title: Temperature-sensitive point selection of thermal error model of CNC machining center
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 23
  start-page: 235
  year: 2007
  end-page: 247
  ident: bib32
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Comput. Appl.
– year: 1998
  ident: bib5
  article-title: Error Synthetic Compensation Technique and Application for NC Machine Tools
– volume: 59
  start-page: 1065
  year: 2012
  end-page: 1072
  ident: bib20
  article-title: Machine tool thermal error modeling and prediction by gray neural network
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 51
  start-page: 605
  year: 2011
  end-page: 611
  ident: bib7
  article-title: Thermal error forecast and performance evaluation for an air-cooling ball screw system
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 97
  start-page: 50
  year: 2015
  end-page: 59
  ident: bib29
  article-title: Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool
  publication-title: Int. J. Mach. Tools Manuf.
– reference: ISO 230-3, Test Code for Machine Tools Part 3: Determination of Thermal Effects, ISO Copyright Office, Switzerland, 2007.
– volume: 82–83
  start-page: 11
  year: 2014
  end-page: 20
  ident: bib26
  article-title: A thermal error model for large machine tools that considers environmental thermal hysteresis effects
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 17
  start-page: 698
  year: 2014
  end-page: 703
  ident: bib25
  article-title: Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine
  publication-title: Procedia Cirp
– volume: 75
  start-page: 45
  year: 1998
  end-page: 53
  ident: bib13
  article-title: Compensation for the thermal error of a multi-axis machining center
  publication-title: J. Mater. Process. Technol.
– volume: 14
  start-page: 347
  year: 1990
  end-page: 361
  ident: bib33
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput.
– volume: 75
  start-page: 1279
  year: 2014
  end-page: 1289
  ident: bib36
  article-title: An improved method for thermally induced positioning errors measurement, modeling, and compensation
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 24
  start-page: 338
  year: 2000
  end-page: 346
  ident: bib16
  article-title: Neural network thermal error compensation of a machining center
  publication-title: Precis. Eng.
– volume: 23
  start-page: 386
  year: 2010
  end-page: 395
  ident: bib34
  article-title: An evaluation of bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting
  publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc.
– volume: 39
  start-page: 645
  year: 1990
  end-page: 656
  ident: bib1
  article-title: International status of thermal error research
  publication-title: Ann. Cirp.
– volume: 40
  start-page: 1257
  year: 2000
  end-page: 1284
  ident: bib17
  article-title: Error compensation in machine tools – A review. Part II: thermal errors
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 32
  start-page: 1089
  year: 2005
  end-page: 1094
  ident: bib35
  article-title: Robust confidence interval for a residual standard deviation
  publication-title: J. Appl. Stat.
– volume: 63
  start-page: 1167
  year: 2012
  end-page: 1176
  ident: bib42
  article-title: The thermal error optimization models for cnc machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 49
  start-page: 92
  year: 1964
  end-page: 107
  ident: bib6
  article-title: Multicollinearity in regression analysis: the problem revisited
  publication-title: Rev. Econ. Stat.
– volume: 36
  start-page: 527
  year: 1996
  end-page: 537
  ident: bib12
  article-title: The improvement of thermal error modeling and compensation on machine tools by CMAC neural network
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 15
  year: 2004
  ident: bib21
  article-title: Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools
  publication-title: Chin. J. Mech. Eng.
– start-page: 286
  year: 2005
  end-page: 289
  ident: bib30
  publication-title: Classical and Modern Regression with Applications
– volume: 15
  start-page: 113
  year: 1996
  end-page: 124
  ident: bib3
  article-title: Accuracy enhancement of a horizontal machining center by real-time error compensation
  publication-title: J. Manuf. Syst.
– volume: 87
  start-page: 178
  year: 1992
  end-page: 183
  ident: bib38
  article-title: Generalized collinearity diagnostics
  publication-title: J. Am. Stat. Assoc.
– volume: 43
  start-page: 405
  year: 2003
  end-page: 419
  ident: bib19
  article-title: Thermal error measurement and modelling in machine tools. Part II. hybrid Bayesian network - support vector machine model
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 69
  start-page: 2593
  year: 2013
  end-page: 2603
  ident: bib4
  article-title: Robustness of thermal error compensation modeling models of CNC machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 24
  start-page: 1343
  year: 2000
  end-page: 1351
  ident: bib15
  article-title: Thermal error measurement and modeling techniques for the 5 degree of freedom (DOF) spindle unit drifts in CNC machine tools
  publication-title: Trans. Korean Soc. Mech. Eng. A
– volume: 50
  start-page: 386
  year: 2010
  end-page: 393
  ident: bib10
  article-title: Analysis of thermal errors in a high-speed micro-milling spindle
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 51
  start-page: 605
  issue: 7–8
  year: 2011
  ident: 10.1016/j.ijmachtools.2016.11.001_bib7
  article-title: Thermal error forecast and performance evaluation for an air-cooling ball screw system
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2011.04.001
– volume: 69
  start-page: 121
  issue: 1–4
  year: 2013
  ident: 10.1016/j.ijmachtools.2016.11.001_bib23
  article-title: Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-4998-6
– volume: 14
  start-page: 347
  issue: 3
  year: 1990
  ident: 10.1016/j.ijmachtools.2016.11.001_bib33
  article-title: Genetic algorithms and neural networks: optimizing connections and connectivity
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(90)90086-O
– volume: 116
  start-page: 45
  issue: 6
  year: 1996
  ident: 10.1016/j.ijmachtools.2016.11.001_bib2
  article-title: War against thermal expansion
  publication-title: Manuf. Eng.
– volume: 47
  start-page: 1003
  issue: 6
  year: 2007
  ident: 10.1016/j.ijmachtools.2016.11.001_bib9
  article-title: Simulation of thermal behavior of a cnc machine tool spindle
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.06.018
– volume: 74
  start-page: 681
  issue: 5–8
  year: 2014
  ident: 10.1016/j.ijmachtools.2016.11.001_bib24
  article-title: Temperature-sensitive point selection of thermal error model of CNC machining center
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 286
  year: 2005
  ident: 10.1016/j.ijmachtools.2016.11.001_bib30
– volume: 42
  start-page: 80
  issue: 1
  year: 1970
  ident: 10.1016/j.ijmachtools.2016.11.001_bib31
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485983
– volume: 69
  start-page: 2593
  issue: 9
  year: 2013
  ident: 10.1016/j.ijmachtools.2016.11.001_bib4
  article-title: Robustness of thermal error compensation modeling models of CNC machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5229-x
– volume: 82–83
  start-page: 11
  issue: 7
  year: 2014
  ident: 10.1016/j.ijmachtools.2016.11.001_bib26
  article-title: A thermal error model for large machine tools that considers environmental thermal hysteresis effects
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2014.03.002
– volume: 50
  start-page: 386
  issue: 4
  year: 2010
  ident: 10.1016/j.ijmachtools.2016.11.001_bib10
  article-title: Analysis of thermal errors in a high-speed micro-milling spindle
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2009.11.002
– volume: 59
  start-page: 1065
  issue: 9–12
  year: 2012
  ident: 10.1016/j.ijmachtools.2016.11.001_bib20
  article-title: Machine tool thermal error modeling and prediction by gray neural network
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3564-3
– volume: 75
  start-page: 1279
  issue: 9–12
  year: 2014
  ident: 10.1016/j.ijmachtools.2016.11.001_bib36
  article-title: An improved method for thermally induced positioning errors measurement, modeling, and compensation
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6193-9
– volume: 23
  start-page: 235
  issue: 16
  year: 2007
  ident: 10.1016/j.ijmachtools.2016.11.001_bib32
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-007-0084-z
– volume: 24
  start-page: 338
  issue: 4
  year: 2000
  ident: 10.1016/j.ijmachtools.2016.11.001_bib16
  article-title: Neural network thermal error compensation of a machining center
  publication-title: Precis. Eng.
  doi: 10.1016/S0141-6359(00)00044-1
– year: 1998
  ident: 10.1016/j.ijmachtools.2016.11.001_bib5
– volume: 85
  start-page: 2761
  issue: 9
  year: 2015
  ident: 10.1016/j.ijmachtools.2016.11.001_bib28
  article-title: Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 97
  start-page: 50
  year: 2015
  ident: 10.1016/j.ijmachtools.2016.11.001_bib29
  article-title: Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2015.07.004
– volume: 36
  start-page: 527
  issue: 4
  year: 1996
  ident: 10.1016/j.ijmachtools.2016.11.001_bib12
  article-title: The improvement of thermal error modeling and compensation on machine tools by CMAC neural network
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/0890-6955(95)00040-2
– ident: 10.1016/j.ijmachtools.2016.11.001_bib37
– volume: 75
  start-page: 45
  issue: 1–3
  year: 1998
  ident: 10.1016/j.ijmachtools.2016.11.001_bib13
  article-title: Compensation for the thermal error of a multi-axis machining center
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(97)00291-4
– volume: 44
  start-page: 146
  year: 1999
  ident: 10.1016/j.ijmachtools.2016.11.001_bib14
  article-title: Linear regression and neural net models applied to thermal error compensation in machine tools
  publication-title: Eur. J. Mech. Environ. Eng.
– volume: 39
  start-page: 1837
  issue: 7
  year: 2015
  ident: 10.1016/j.ijmachtools.2016.11.001_bib27
  article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.10.016
– volume: 23
  start-page: 386
  issue: 3
  year: 2010
  ident: 10.1016/j.ijmachtools.2016.11.001_bib34
  article-title: An evaluation of bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting
  publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc.
  doi: 10.1016/j.neunet.2009.11.016
– volume: 39
  start-page: 645
  issue: 2
  year: 1990
  ident: 10.1016/j.ijmachtools.2016.11.001_bib1
  article-title: International status of thermal error research
  publication-title: Ann. Cirp.
  doi: 10.1016/S0007-8506(07)63001-7
– volume: 47
  start-page: 53
  issue: 1
  year: 2007
  ident: 10.1016/j.ijmachtools.2016.11.001_bib8
  article-title: An improved thermal model for machine tool bearings
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.02.018
– volume: 43
  start-page: 1124
  issue: 11–12
  year: 2009
  ident: 10.1016/j.ijmachtools.2016.11.001_bib22
  article-title: Application of synthetic gray correlation theory on thermal point optimization for machine tool thermal error compensation
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-008-1791-z
– volume: 87
  start-page: 178
  issue: 417
  year: 1992
  ident: 10.1016/j.ijmachtools.2016.11.001_bib38
  article-title: Generalized collinearity diagnostics
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1992.10475190
– volume: 15
  start-page: 113
  issue: 2
  year: 1996
  ident: 10.1016/j.ijmachtools.2016.11.001_bib3
  article-title: Accuracy enhancement of a horizontal machining center by real-time error compensation
  publication-title: J. Manuf. Syst.
  doi: 10.1016/0278-6125(96)82336-3
– start-page: 91
  year: 2005
  ident: 10.1016/j.ijmachtools.2016.11.001_bib40
– volume: 63
  start-page: 1167
  issue: 9–12
  year: 2012
  ident: 10.1016/j.ijmachtools.2016.11.001_bib42
  article-title: The thermal error optimization models for cnc machine tools
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 49
  start-page: 92
  issue: 1
  year: 1964
  ident: 10.1016/j.ijmachtools.2016.11.001_bib6
  article-title: Multicollinearity in regression analysis: the problem revisited
  publication-title: Rev. Econ. Stat.
  doi: 10.2307/1937887
– volume: 40
  start-page: 1257
  issue: 9
  year: 2000
  ident: 10.1016/j.ijmachtools.2016.11.001_bib17
  article-title: Error compensation in machine tools – A review. Part II: thermal errors
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(00)00010-9
– volume: 36
  start-page: 121
  issue: 1
  year: 2012
  ident: 10.1016/j.ijmachtools.2016.11.001_bib11
  article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2011.07.013
– volume: 15
  issue: 6
  year: 2004
  ident: 10.1016/j.ijmachtools.2016.11.001_bib21
  article-title: Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools
  publication-title: Chin. J. Mech. Eng.
– volume: 17
  start-page: 698
  year: 2014
  ident: 10.1016/j.ijmachtools.2016.11.001_bib25
  article-title: Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2014.01.080
– volume: 43
  start-page: 391
  issue: 4
  year: 2003
  ident: 10.1016/j.ijmachtools.2016.11.001_bib18
  article-title: Thermal error measurement and modelling in machine tools.: Part I
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(02)00263-8
– volume: 43
  start-page: 405
  issue: 4
  year: 2003
  ident: 10.1016/j.ijmachtools.2016.11.001_bib19
  article-title: Thermal error measurement and modelling in machine tools. Part II. hybrid Bayesian network - support vector machine model
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(02)00264-X
– start-page: 368
  year: 2005
  ident: 10.1016/j.ijmachtools.2016.11.001_bib39
– volume: 32
  start-page: 1089
  issue: 10
  year: 2005
  ident: 10.1016/j.ijmachtools.2016.11.001_bib35
  article-title: Robust confidence interval for a residual standard deviation
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760500165339
– volume: 24
  start-page: 1343
  issue: 5
  year: 2000
  ident: 10.1016/j.ijmachtools.2016.11.001_bib15
  article-title: Thermal error measurement and modeling techniques for the 5 degree of freedom (DOF) spindle unit drifts in CNC machine tools
  publication-title: Trans. Korean Soc. Mech. Eng. A
– start-page: 164
  year: 2006
  ident: 10.1016/j.ijmachtools.2016.11.001_bib41
SSID ssj0001831
Score 2.5484524
Snippet For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms Algorithms
CNC machine tools
Collinearity
Correlation analysis
Correlation coefficients
Error analysis
Error compensation
Error detection
Machine tools
Mathematical models
Modelling
Numerical controls
Predicted accuracy and robustness
Regression
Regression analysis
Ridge regression
Robustness (mathematics)
Seasons
Temperature
Thermal error
Three dimensional models
Title Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm
URI https://dx.doi.org/10.1016/j.ijmachtools.2016.11.001
https://www.proquest.com/docview/1937684638
Volume 113
WOSCitedRecordID wos000392353000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2170
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001831
  issn: 0890-6955
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT0QfxE88PWUF30JK87HJBnw5akXlLKKnVF9Cst3cpbTJkTbH_V3-hc7sbj6qHFTEl1DS7GbY-WW-dnaGkFeMSTDivYUdhQ44KE7m2CkIRVs4YuFJnvqp6hLx7SSczfh8Hn0aDH42Z2EuV2FR8Kur6OK_shruAbPx6OxfsLudFG7Ab2A6XIHtcN2L8Z_LtN5sdYsbjAPoHtFNOiHI4ZUlq6pUuwOT2cRaq3RK7KBRrjYWarUF7iDog1yVPNOJsoWVrM7KKt-er_v27G5AsVeGYndWxNc6KWo8RlF36bYnea1UX523fM8TFbudFtbHRqmqfSOVdDDPC-t73eH5x3ltwt34z5vSDDBBDFCM452EkPZ0TZfKpARgBK5tpMv4jqQW0DyMbHCjxjsS3PF6MthjPW2uy3j-oSd0yGI5ype4HGopMM0vGGFFV0PYbhnuL0gNEgMG7Bir4N0gB27IIj4kB8fvp_MPrf4HIan6NDbU3yIvu6zCa154nVX0m32gjJ7Te-Su8VbosUbZfTKQxQNyp1fD8iFJNN5ogzeq8UYBb9TgjSq80TKjgDdqkEEVdVThjZYFVXijHd5oi7dH5Ovb6enknW36dtjC86OtzfwscCPXwZYqKUuzNFiwlIksiRLwjqSQIvQSlP4-ePeCudJxEoyHSniWCy68x2RYlIV8Qmjmh1L63HdF4vlBwBJ_nMGD3BUeC7KAHxLerFssTFF77K2yipvsxWXcW_IYlxycXszkPCRuO_RCV3bZZ9DrhjmxMVG16RkDsvYZftQwNDaf5CYGFwp3w0ERPv232Z-R2923dUSG26qWz8lNcbnNN9ULA9NftQDJng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+modeling+method+for+thermal+error+of+CNC+machine+tools+based+on+ridge+regression+algorithm&rft.jtitle=International+journal+of+machine+tools+%26+manufacture&rft.au=Liu%2C+Hui&rft.au=Miao%2C+En+Ming&rft.au=Wei%2C+Xin+Yuan&rft.au=Zhuang%2C+Xin+Dong&rft.date=2017-02-01&rft.pub=Elsevier+Ltd&rft.issn=0890-6955&rft.eissn=1879-2170&rft.volume=113&rft.spage=35&rft.epage=48&rft_id=info:doi/10.1016%2Fj.ijmachtools.2016.11.001&rft.externalDocID=S0890695516301341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6955&client=summon