Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm
For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studie...
Uložené v:
| Vydané v: | International journal of machine tools & manufacture Ročník 113; s. 35 - 48 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elmsford
Elsevier Ltd
01.02.2017
Elsevier BV |
| Predmet: | |
| ISSN: | 0890-6955, 1879-2170 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studies the thermal error of Leaderway V-450 type CNC machine tools during different seasons. It is found that although the commonly used temperature sensitive point selection methods can significantly reduce the collinearity between temperature sensitive points, the correlation between some of the selected temperature-sensitive points and thermal error is weak. This causes the temperature-sensitive points to be variable and the predicted accuracy and robustness of thermal error to be reduced. Therefore, in this paper, the temperature sensitive points are selected directly by their correlation with thermal error to eliminate variability. However, the experimental results also show that the collinearity between temperature sensitive points is very large. Hence, the ridge regression algorithm is used to establish a thermal error model to inhibit the bad influence of collinearity on the thermal error predicted robustness. Thus, the “robustness ridge regression machine tool thermal error modeling method” is proposed, the “RRR method” for short. In addition, in the “RRR method”, the correlation coefficient is used to measure the correlation between temperature sensitive points and thermal error instead of the commonly used gray correlation; because this paper finds that the gray correlation algorithm is essentially inapplicable for measuring a negative correlation. Based on the thermal error experiment data for the whole year, the “RRR method” is compared with two currently used methods, and the results show that the “RRR method” can significantly enhance the long-term predicted accuracy and robustness of thermal error. Finally, the application effect of practical compensation shows that the “RRR method” is usable and effective.
•The long-term prediction performance of commonly used traditional machine tool thermal error modeling methods is deeply studied.•Although the traditional methods can significantly reduce the collinearity between temperature sensitive points (Input variables of thermal error model), the correlation between some points and thermal error is weak.•The temperature sensitive points which have strong correlation with thermal error also have high collinearity between them.•The ridge regression algorithm is used to inhibit the bad influence of collinearity on the thermal error predicted robustness.•The thermal error predicted effect of proposed method is verified by 18 thermal error experiments done in different seasons. |
|---|---|
| AbstractList | For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studies the thermal error of Leaderway V-450 type CNC machine tools during different seasons. It is found that although the commonly used temperature sensitive point selection methods can significantly reduce the collinearity between temperature sensitive points, the correlation between some of the selected temperature-sensitive points and thermal error is weak. This causes the temperature-sensitive points to be variable and the predicted accuracy and robustness of thermal error to be reduced. Therefore, in this paper, the temperature sensitive points are selected directly by their correlation with thermal error to eliminate variability. However, the experimental results also show that the collinearity between temperature sensitive points is very large. Hence, the ridge regression algorithm is used to establish a thermal error model to inhibit the bad influence of collinearity on the thermal error predicted robustness. Thus, the “robustness ridge regression machine tool thermal error modeling method” is proposed, the “RRR method” for short. In addition, in the “RRR method”, the correlation coefficient is used to measure the correlation between temperature sensitive points and thermal error instead of the commonly used gray correlation; because this paper finds that the gray correlation algorithm is essentially inapplicable for measuring a negative correlation. Based on the thermal error experiment data for the whole year, the “RRR method” is compared with two currently used methods, and the results show that the “RRR method” can significantly enhance the long-term predicted accuracy and robustness of thermal error. Finally, the application effect of practical compensation shows that the “RRR method” is usable and effective.
•The long-term prediction performance of commonly used traditional machine tool thermal error modeling methods is deeply studied.•Although the traditional methods can significantly reduce the collinearity between temperature sensitive points (Input variables of thermal error model), the correlation between some points and thermal error is weak.•The temperature sensitive points which have strong correlation with thermal error also have high collinearity between them.•The ridge regression algorithm is used to inhibit the bad influence of collinearity on the thermal error predicted robustness.•The thermal error predicted effect of proposed method is verified by 18 thermal error experiments done in different seasons. For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the predicted robustness of thermal error model. The temperature sensitive points are input variables of the thermal error model. This paper studies the thermal error of Leaderway V-450 type CNC machine tools during different seasons. It is found that although the commonly used temperature sensitive point selection methods can significantly reduce the collinearity between temperature sensitive points, the correlation between some of the selected temperature-sensitive points and thermal error is weak. This causes the temperature-sensitive points to be variable and the predicted accuracy and robustness of thermal error to be reduced. Therefore, in this paper, the temperature sensitive points are selected directly by their correlation with thermal error to eliminate variability. However, the experimental results also show that the collinearity between temperature sensitive points is very large. Hence, the ridge regression algorithm is used to establish a thermal error model to inhibit the bad influence of collinearity on the thermal error predicted robustness. Thus, the "robustness ridge regression machine tool thermal error modeling method" is proposed, the "RRR method" for short. In addition, in the "RRR method", the correlation coefficient is used to measure the correlation between temperature sensitive points and thermal error instead of the commonly used gray correlation; because this paper finds that the gray correlation algorithm is essentially inapplicable for measuring a negative correlation. Based on the thermal error experiment data for the whole year, the "RRR method" is compared with two currently used methods, and the results show that the "RRR method" can significantly enhance the long-term predicted accuracy and robustness of thermal error. Finally, the application effect of practical compensation shows that the "RRR method" is usable and effective. |
| Author | Liu, Hui Wei, Xin Yuan Zhuang, Xin Dong Miao, En Ming |
| Author_xml | – sequence: 1 givenname: Hui surname: Liu fullname: Liu, Hui – sequence: 2 givenname: En Ming surname: Miao fullname: Miao, En Ming email: miaoem@163.com – sequence: 3 givenname: Xin Yuan surname: Wei fullname: Wei, Xin Yuan – sequence: 4 givenname: Xin Dong surname: Zhuang fullname: Zhuang, Xin Dong |
| BookMark | eNqNkE1r3DAQhkVIoJuk_0GlZ7say_JapxJMmhRCC6U5C1ke78rYVjLSBvrvo832UHrKaZjh_RieS3a-hhUZ-wSiBAHNl6n002LdPoUwx7LKpxKgFALO2AbarS4q2IpzthGtFkWjlfrALmOcRFa0EjbM_gr9ISa-hAFnv-74gmkfBj4G4mmPtNiZI1Hewsi7Hx0_lvkV-Vsh723EgYeVkx92yAl3hDH6fLDzLpBP--WaXYx2jvjx77xij99uf3f3xcPPu-_dzUPhZK1ToeqxqXQFIJXsVT_2zaB65UarbQsDOnRbaYVQsoZaOFUhgBVQacza1rVOXrHPp9wnCs8HjMlM4UBrrjSg5bZp60a2WfX1pHIUYiQcjfPJpvxxIutnA8IcuZrJ_MPVHLkaAJOp5QT9X8IT-cXSn3d5u5MXM4gXj2Si87g6HDyhS2YI_h0pr5Abndg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2983471 crossref_primary_10_3390_s23104916 crossref_primary_10_1088_1742_6596_2724_1_012045 crossref_primary_10_1016_j_engappai_2021_104626 crossref_primary_10_3390_mi16050563 crossref_primary_10_1109_ACCESS_2022_3197797 crossref_primary_10_1007_s00521_023_08553_6 crossref_primary_10_1007_s10845_021_01894_w crossref_primary_10_1007_s12206_022_0829_8 crossref_primary_10_1002_we_2269 crossref_primary_10_1016_j_ymssp_2024_112105 crossref_primary_10_1016_j_jmsy_2025_03_003 crossref_primary_10_1007_s00170_019_04482_8 crossref_primary_10_3390_app11125444 crossref_primary_10_1007_s00170_023_12685_3 crossref_primary_10_1016_j_mechatronics_2018_06_018 crossref_primary_10_3390_s22145085 crossref_primary_10_1177_00368504231171268 crossref_primary_10_1007_s00170_023_12038_0 crossref_primary_10_1007_s00170_024_13560_5 crossref_primary_10_3390_ma12193113 crossref_primary_10_1007_s40430_020_02538_5 crossref_primary_10_1109_TIM_2025_3551844 crossref_primary_10_1016_j_ijmecsci_2020_105531 crossref_primary_10_1088_1757_899X_322_7_072052 crossref_primary_10_1007_s00170_023_11998_7 crossref_primary_10_3390_machines10020132 crossref_primary_10_1016_j_csite_2025_106745 crossref_primary_10_1007_s00170_023_12778_z crossref_primary_10_1007_s00170_023_11877_1 crossref_primary_10_1016_j_ijmachtools_2017_11_002 crossref_primary_10_1007_s11044_024_09966_4 crossref_primary_10_1016_j_ymssp_2022_109682 crossref_primary_10_1007_s10845_023_02095_3 crossref_primary_10_3390_s22062325 crossref_primary_10_1007_s00170_018_1593_x crossref_primary_10_3390_s23239450 crossref_primary_10_1016_j_ijmachtools_2023_104003 crossref_primary_10_1063_5_0280256 crossref_primary_10_3390_machines10060427 crossref_primary_10_1016_j_precisioneng_2022_05_008 crossref_primary_10_1016_j_asoc_2021_107094 crossref_primary_10_1007_s00170_023_10831_5 crossref_primary_10_1016_j_precisioneng_2024_07_013 crossref_primary_10_1007_s00170_021_06680_9 crossref_primary_10_1088_1742_6596_2787_1_012051 crossref_primary_10_1016_j_applthermaleng_2018_05_063 crossref_primary_10_1016_j_jmapro_2023_12_026 crossref_primary_10_1007_s00170_021_07066_7 crossref_primary_10_1016_j_jestch_2023_101359 crossref_primary_10_1016_j_applthermaleng_2025_128071 crossref_primary_10_1016_j_mechmachtheory_2020_104009 crossref_primary_10_1007_s00170_018_2994_6 crossref_primary_10_1016_j_aei_2022_101618 crossref_primary_10_1016_j_matpr_2021_09_182 crossref_primary_10_1007_s00170_018_2559_8 crossref_primary_10_1007_s00170_023_11616_6 crossref_primary_10_7736_KSPE_2018_35_3_279 crossref_primary_10_1109_TII_2024_3424287 crossref_primary_10_1007_s00170_025_16239_7 crossref_primary_10_1016_j_measurement_2025_118416 crossref_primary_10_1007_s12541_019_00206_w crossref_primary_10_1016_j_asoc_2023_110221 crossref_primary_10_1016_j_aei_2024_102741 crossref_primary_10_1016_j_jmsy_2022_04_015 crossref_primary_10_1016_j_ijmachtools_2025_104298 crossref_primary_10_1016_j_jhazmat_2023_131541 crossref_primary_10_1016_j_knosys_2021_107704 crossref_primary_10_1016_j_measurement_2024_116341 crossref_primary_10_1016_j_csite_2025_106009 crossref_primary_10_1016_j_jmapro_2024_01_024 crossref_primary_10_1016_j_mechmachtheory_2021_104639 crossref_primary_10_1177_09544062211066243 crossref_primary_10_1093_jom_ufad042 crossref_primary_10_1007_s00170_021_08241_6 crossref_primary_10_1007_s00170_018_2918_5 crossref_primary_10_1007_s11071_025_10898_7 crossref_primary_10_3390_s20102777 crossref_primary_10_1007_s00170_018_1595_8 crossref_primary_10_1016_j_jmapro_2019_10_018 crossref_primary_10_1016_j_ymssp_2023_110240 crossref_primary_10_1007_s00170_025_15188_5 crossref_primary_10_1007_s00170_022_09052_z crossref_primary_10_1016_j_aei_2022_101759 crossref_primary_10_1007_s00170_024_13192_9 crossref_primary_10_1007_s40430_020_02514_z crossref_primary_10_1016_j_aei_2024_103005 crossref_primary_10_1007_s00170_022_09533_1 crossref_primary_10_1016_j_aei_2024_102844 crossref_primary_10_1007_s12206_019_0635_0 crossref_primary_10_1007_s12206_023_0539_x crossref_primary_10_1007_s00170_024_13445_7 crossref_primary_10_1007_s12541_025_01302_w crossref_primary_10_1016_j_precisioneng_2019_08_003 crossref_primary_10_2478_amns_2024_3246 crossref_primary_10_1007_s00170_018_2259_4 crossref_primary_10_3390_machines10080624 crossref_primary_10_1007_s00170_025_16329_6 crossref_primary_10_1007_s00170_019_03650_0 crossref_primary_10_1016_j_ymssp_2025_112792 crossref_primary_10_5194_ms_14_15_2023 crossref_primary_10_1007_s00170_018_1992_z crossref_primary_10_1016_j_jmapro_2025_03_011 crossref_primary_10_1007_s00170_022_09563_9 crossref_primary_10_1016_j_sna_2019_06_055 crossref_primary_10_1007_s40436_020_00293_3 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125083 crossref_primary_10_1016_j_precisioneng_2023_06_002 crossref_primary_10_1016_j_precisioneng_2025_01_021 crossref_primary_10_3390_app7080791 crossref_primary_10_1007_s00170_019_04767_y crossref_primary_10_1007_s00170_021_07560_y crossref_primary_10_1007_s00170_022_09260_7 crossref_primary_10_1016_j_eswa_2023_120122 crossref_primary_10_1007_s12206_022_1230_3 crossref_primary_10_1016_j_jmsy_2021_01_013 crossref_primary_10_1016_j_jksuci_2017_12_004 crossref_primary_10_3390_lubricants13060269 crossref_primary_10_1007_s00170_020_05752_6 crossref_primary_10_1007_s00170_024_13021_z crossref_primary_10_1007_s00170_021_08462_9 crossref_primary_10_1007_s10845_021_01821_z crossref_primary_10_1007_s00170_023_12227_x crossref_primary_10_1177_1687814019839513 crossref_primary_10_1016_j_ymssp_2023_110599 crossref_primary_10_1007_s00170_025_15021_z crossref_primary_10_1007_s00170_020_04932_8 crossref_primary_10_1016_j_ijthermalsci_2022_108095 crossref_primary_10_1007_s00170_022_09158_4 crossref_primary_10_1139_tcsme_2022_0116 |
| Cites_doi | 10.1016/j.ijmachtools.2011.04.001 10.1007/s00170-013-4998-6 10.1016/0167-8191(90)90086-O 10.1016/j.ijmachtools.2006.06.018 10.1080/00401706.2000.10485983 10.1007/s00170-013-5229-x 10.1016/j.ijmachtools.2014.03.002 10.1016/j.ijmachtools.2009.11.002 10.1007/s00170-011-3564-3 10.1007/s00170-014-6193-9 10.1007/s00521-007-0084-z 10.1016/S0141-6359(00)00044-1 10.1016/j.ijmachtools.2015.07.004 10.1016/0890-6955(95)00040-2 10.1016/S0924-0136(97)00291-4 10.1016/j.apm.2014.10.016 10.1016/j.neunet.2009.11.016 10.1016/S0007-8506(07)63001-7 10.1016/j.ijmachtools.2006.02.018 10.1007/s00170-008-1791-z 10.1080/01621459.1992.10475190 10.1016/0278-6125(96)82336-3 10.2307/1937887 10.1016/S0890-6955(00)00010-9 10.1016/j.precisioneng.2011.07.013 10.1016/j.procir.2014.01.080 10.1016/S0890-6955(02)00263-8 10.1016/S0890-6955(02)00264-X 10.1080/02664760500165339 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Feb 2017 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2017 |
| DBID | AAYXX CITATION 7TB 8BQ 8FD F28 FR3 JG9 |
| DOI | 10.1016/j.ijmachtools.2016.11.001 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ANTE: Abstracts in New Technology & Engineering METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2170 |
| EndPage | 48 |
| ExternalDocumentID | 10_1016_j_ijmachtools_2016_11_001 S0890695516301341 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XFK ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8BQ 8FD AFXIZ AGCQF AGRNS F28 FR3 JG9 SSH |
| ID | FETCH-LOGICAL-c349t-54f629211353b5bfb6d5b5cfa9a81decec73a00534140c52e11a0129e5bf8c8c3 |
| ISICitedReferencesCount | 143 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392353000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0890-6955 |
| IngestDate | Mon Jul 14 10:06:46 EDT 2025 Tue Nov 18 22:18:37 EST 2025 Sat Nov 29 02:33:06 EST 2025 Fri Feb 23 02:33:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ridge regression Thermal error Collinearity Predicted accuracy and robustness CNC machine tools |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-54f629211353b5bfb6d5b5cfa9a81decec73a00534140c52e11a0129e5bf8c8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1937684638 |
| PQPubID | 2045462 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_1937684638 crossref_citationtrail_10_1016_j_ijmachtools_2016_11_001 crossref_primary_10_1016_j_ijmachtools_2016_11_001 elsevier_sciencedirect_doi_10_1016_j_ijmachtools_2016_11_001 |
| PublicationCentury | 2000 |
| PublicationDate | February 2017 2017-02-00 20170201 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Elmsford |
| PublicationPlace_xml | – name: Elmsford |
| PublicationTitle | International journal of machine tools & manufacture |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Mize, Ziegert (bib16) 2000; 24 Creighton, Honegger, Tulsian, Mukhopadhyay (bib10) 2010; 50 Vyroubal (bib11) 2012; 36 Zhang, Ye, Shan (bib28) 2015; 85 Yang, Yuan, Ni (bib3) 1996; 15 Ramesh, Mannan, Poo (bib17) 2000; 40 Yang (bib5) 1998 Miao, Liu, Liu, Gao, Li (bib29) 2015; 97 Socha, Blum (bib32) 2007; 23 Wang, Wang, Li (bib23) 2013; 69 ISO 230-3, Test Code for Machine Tools Part 3: Determination of Thermal Effects, ISO Copyright Office, Switzerland, 2007. Whitley, Starkweather, Bogart (bib33) 1990; 14 Xu, Jiang, Cai (bib8) 2007; 47 Farrar, Glauber (bib6) 1964; 49 Tan, Mao, Liu (bib26) 2014; 82–83 Hippert, Taylor (bib34) 2010; 23 Yan, Yang (bib22) 2009; 43 Raymond (bib39) 2005 Fox, Monette (bib38) 1992; 87 Ramesh, Mannan, Poo (bib18) 2003; 43 Park, Lee, Gwon (bib15) 2000; 24 Douglas Bonett (bib35) 2005; 32 Miao, Gong, Dang (bib24) 2014; 74 Yang, Shi, Feng (bib25) 2014; 17 Jiang, Fan, Yang (bib36) 2014; 75 Raymond (bib30) 2005 Abdulshahed, Longstaff, Fletcher (bib27) 2015; 39 Yang, Deng, Ren, Li, Dou (bib21) 2004; 15 Yang, Yuan, Ni (bib12) 1996; 36 Xu, Liu, Kim, Shin, Lyu (bib7) 2011; 51 Liang, Ye, Zhang, Yang (bib42) 2012; 63 Zhang, Yang, Jiang (bib20) 2012; 59 Yang, Van, Vanherck (bib14) 1999; 44 Kumar (bib41) 2006 Raymond (bib40) 2005 Aronson (bib2) 1996; 116 Bryan (bib1) 1990; 39 Ramesh, Mannan, Poo (bib19) 2003; 43 Miao, Gong, Niu, Ji, Chen (bib4) 2013; 69 Wang, Zhang, Moon (bib13) 1998; 75 Hoerl, Kennard (bib31) 1970; 42 Zhao, Yang, Shen (bib9) 2007; 47 Raymond (10.1016/j.ijmachtools.2016.11.001_bib30) 2005 Raymond (10.1016/j.ijmachtools.2016.11.001_bib40) 2005 Miao (10.1016/j.ijmachtools.2016.11.001_bib4) 2013; 69 Wang (10.1016/j.ijmachtools.2016.11.001_bib23) 2013; 69 Park (10.1016/j.ijmachtools.2016.11.001_bib15) 2000; 24 Yang (10.1016/j.ijmachtools.2016.11.001_bib12) 1996; 36 Xu (10.1016/j.ijmachtools.2016.11.001_bib8) 2007; 47 Hippert (10.1016/j.ijmachtools.2016.11.001_bib34) 2010; 23 Yan (10.1016/j.ijmachtools.2016.11.001_bib22) 2009; 43 Yang (10.1016/j.ijmachtools.2016.11.001_bib3) 1996; 15 Creighton (10.1016/j.ijmachtools.2016.11.001_bib10) 2010; 50 Kumar (10.1016/j.ijmachtools.2016.11.001_bib41) 2006 Ramesh (10.1016/j.ijmachtools.2016.11.001_bib18) 2003; 43 Whitley (10.1016/j.ijmachtools.2016.11.001_bib33) 1990; 14 Ramesh (10.1016/j.ijmachtools.2016.11.001_bib17) 2000; 40 Zhang (10.1016/j.ijmachtools.2016.11.001_bib28) 2015; 85 Socha (10.1016/j.ijmachtools.2016.11.001_bib32) 2007; 23 Yang (10.1016/j.ijmachtools.2016.11.001_bib21) 2004; 15 Fox (10.1016/j.ijmachtools.2016.11.001_bib38) 1992; 87 Liang (10.1016/j.ijmachtools.2016.11.001_bib42) 2012; 63 Yang (10.1016/j.ijmachtools.2016.11.001_bib5) 1998 Vyroubal (10.1016/j.ijmachtools.2016.11.001_bib11) 2012; 36 Mize (10.1016/j.ijmachtools.2016.11.001_bib16) 2000; 24 Douglas Bonett (10.1016/j.ijmachtools.2016.11.001_bib35) 2005; 32 Miao (10.1016/j.ijmachtools.2016.11.001_bib24) 2014; 74 Miao (10.1016/j.ijmachtools.2016.11.001_bib29) 2015; 97 Farrar (10.1016/j.ijmachtools.2016.11.001_bib6) 1964; 49 Ramesh (10.1016/j.ijmachtools.2016.11.001_bib19) 2003; 43 Zhang (10.1016/j.ijmachtools.2016.11.001_bib20) 2012; 59 Abdulshahed (10.1016/j.ijmachtools.2016.11.001_bib27) 2015; 39 Yang (10.1016/j.ijmachtools.2016.11.001_bib25) 2014; 17 Raymond (10.1016/j.ijmachtools.2016.11.001_bib39) 2005 Zhao (10.1016/j.ijmachtools.2016.11.001_bib9) 2007; 47 Aronson (10.1016/j.ijmachtools.2016.11.001_bib2) 1996; 116 Tan (10.1016/j.ijmachtools.2016.11.001_bib26) 2014; 82–83 Bryan (10.1016/j.ijmachtools.2016.11.001_bib1) 1990; 39 Wang (10.1016/j.ijmachtools.2016.11.001_bib13) 1998; 75 Hoerl (10.1016/j.ijmachtools.2016.11.001_bib31) 1970; 42 Xu (10.1016/j.ijmachtools.2016.11.001_bib7) 2011; 51 Jiang (10.1016/j.ijmachtools.2016.11.001_bib36) 2014; 75 10.1016/j.ijmachtools.2016.11.001_bib37 Yang (10.1016/j.ijmachtools.2016.11.001_bib14) 1999; 44 |
| References_xml | – start-page: 164 year: 2006 end-page: 204 ident: bib41 article-title: Neural Networks – volume: 36 start-page: 121 year: 2012 end-page: 127 ident: bib11 article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method publication-title: Precis. Eng. – volume: 39 start-page: 1837 year: 2015 end-page: 1852 ident: bib27 article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera publication-title: Appl. Math. Model. – start-page: 91 year: 2005 end-page: 93 ident: bib40 publication-title: Classical and Modern Regression with Applications – volume: 47 start-page: 53 year: 2007 end-page: 62 ident: bib8 article-title: An improved thermal model for machine tool bearings publication-title: Int. J. Mach. Tools Manuf. – volume: 85 start-page: 2761 year: 2015 end-page: 2771 ident: bib28 article-title: Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool publication-title: Int. J. Adv. Manuf. Technol. – volume: 69 start-page: 121 year: 2013 end-page: 126 ident: bib23 article-title: Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method publication-title: Int. J. Adv. Manuf. Technol. – volume: 43 start-page: 1124 year: 2009 end-page: 1132 ident: bib22 article-title: Application of synthetic gray correlation theory on thermal point optimization for machine tool thermal error compensation publication-title: Int. J. Adv. Manuf. Technol. – volume: 44 start-page: 146 year: 1999 end-page: 152 ident: bib14 article-title: Linear regression and neural net models applied to thermal error compensation in machine tools publication-title: Eur. J. Mech. Environ. Eng. – volume: 42 start-page: 80 year: 1970 end-page: 86 ident: bib31 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics – start-page: 368 year: 2005 end-page: 370 ident: bib39 publication-title: Classical and Modern Regression with Applications – volume: 116 start-page: 45 year: 1996 end-page: 50 ident: bib2 article-title: War against thermal expansion publication-title: Manuf. Eng. – volume: 47 start-page: 1003 year: 2007 end-page: 1010 ident: bib9 article-title: Simulation of thermal behavior of a cnc machine tool spindle publication-title: Int. J. Mach. Tools Manuf. – volume: 43 start-page: 391 year: 2003 end-page: 404 ident: bib18 article-title: Thermal error measurement and modelling in machine tools.: Part I publication-title: Int. J. Mach. Tools Manuf. – volume: 74 start-page: 681 year: 2014 end-page: 691 ident: bib24 article-title: Temperature-sensitive point selection of thermal error model of CNC machining center publication-title: Int. J. Adv. Manuf. Technol. – volume: 23 start-page: 235 year: 2007 end-page: 247 ident: bib32 article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training publication-title: Neural Comput. Appl. – year: 1998 ident: bib5 article-title: Error Synthetic Compensation Technique and Application for NC Machine Tools – volume: 59 start-page: 1065 year: 2012 end-page: 1072 ident: bib20 article-title: Machine tool thermal error modeling and prediction by gray neural network publication-title: Int. J. Adv. Manuf. Technol. – volume: 51 start-page: 605 year: 2011 end-page: 611 ident: bib7 article-title: Thermal error forecast and performance evaluation for an air-cooling ball screw system publication-title: Int. J. Mach. Tools Manuf. – volume: 97 start-page: 50 year: 2015 end-page: 59 ident: bib29 article-title: Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool publication-title: Int. J. Mach. Tools Manuf. – reference: ISO 230-3, Test Code for Machine Tools Part 3: Determination of Thermal Effects, ISO Copyright Office, Switzerland, 2007. – volume: 82–83 start-page: 11 year: 2014 end-page: 20 ident: bib26 article-title: A thermal error model for large machine tools that considers environmental thermal hysteresis effects publication-title: Int. J. Mach. Tools Manuf. – volume: 17 start-page: 698 year: 2014 end-page: 703 ident: bib25 article-title: Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine publication-title: Procedia Cirp – volume: 75 start-page: 45 year: 1998 end-page: 53 ident: bib13 article-title: Compensation for the thermal error of a multi-axis machining center publication-title: J. Mater. Process. Technol. – volume: 14 start-page: 347 year: 1990 end-page: 361 ident: bib33 article-title: Genetic algorithms and neural networks: optimizing connections and connectivity publication-title: Parallel Comput. – volume: 75 start-page: 1279 year: 2014 end-page: 1289 ident: bib36 article-title: An improved method for thermally induced positioning errors measurement, modeling, and compensation publication-title: Int. J. Adv. Manuf. Technol. – volume: 24 start-page: 338 year: 2000 end-page: 346 ident: bib16 article-title: Neural network thermal error compensation of a machining center publication-title: Precis. Eng. – volume: 23 start-page: 386 year: 2010 end-page: 395 ident: bib34 article-title: An evaluation of bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc. – volume: 39 start-page: 645 year: 1990 end-page: 656 ident: bib1 article-title: International status of thermal error research publication-title: Ann. Cirp. – volume: 40 start-page: 1257 year: 2000 end-page: 1284 ident: bib17 article-title: Error compensation in machine tools – A review. Part II: thermal errors publication-title: Int. J. Mach. Tools Manuf. – volume: 32 start-page: 1089 year: 2005 end-page: 1094 ident: bib35 article-title: Robust confidence interval for a residual standard deviation publication-title: J. Appl. Stat. – volume: 63 start-page: 1167 year: 2012 end-page: 1176 ident: bib42 article-title: The thermal error optimization models for cnc machine tools publication-title: Int. J. Adv. Manuf. Technol. – volume: 49 start-page: 92 year: 1964 end-page: 107 ident: bib6 article-title: Multicollinearity in regression analysis: the problem revisited publication-title: Rev. Econ. Stat. – volume: 36 start-page: 527 year: 1996 end-page: 537 ident: bib12 article-title: The improvement of thermal error modeling and compensation on machine tools by CMAC neural network publication-title: Int. J. Mach. Tools Manuf. – volume: 15 year: 2004 ident: bib21 article-title: Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools publication-title: Chin. J. Mech. Eng. – start-page: 286 year: 2005 end-page: 289 ident: bib30 publication-title: Classical and Modern Regression with Applications – volume: 15 start-page: 113 year: 1996 end-page: 124 ident: bib3 article-title: Accuracy enhancement of a horizontal machining center by real-time error compensation publication-title: J. Manuf. Syst. – volume: 87 start-page: 178 year: 1992 end-page: 183 ident: bib38 article-title: Generalized collinearity diagnostics publication-title: J. Am. Stat. Assoc. – volume: 43 start-page: 405 year: 2003 end-page: 419 ident: bib19 article-title: Thermal error measurement and modelling in machine tools. Part II. hybrid Bayesian network - support vector machine model publication-title: Int. J. Mach. Tools Manuf. – volume: 69 start-page: 2593 year: 2013 end-page: 2603 ident: bib4 article-title: Robustness of thermal error compensation modeling models of CNC machine tools publication-title: Int. J. Adv. Manuf. Technol. – volume: 24 start-page: 1343 year: 2000 end-page: 1351 ident: bib15 article-title: Thermal error measurement and modeling techniques for the 5 degree of freedom (DOF) spindle unit drifts in CNC machine tools publication-title: Trans. Korean Soc. Mech. Eng. A – volume: 50 start-page: 386 year: 2010 end-page: 393 ident: bib10 article-title: Analysis of thermal errors in a high-speed micro-milling spindle publication-title: Int. J. Mach. Tools Manuf. – volume: 51 start-page: 605 issue: 7–8 year: 2011 ident: 10.1016/j.ijmachtools.2016.11.001_bib7 article-title: Thermal error forecast and performance evaluation for an air-cooling ball screw system publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2011.04.001 – volume: 69 start-page: 121 issue: 1–4 year: 2013 ident: 10.1016/j.ijmachtools.2016.11.001_bib23 article-title: Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-4998-6 – volume: 14 start-page: 347 issue: 3 year: 1990 ident: 10.1016/j.ijmachtools.2016.11.001_bib33 article-title: Genetic algorithms and neural networks: optimizing connections and connectivity publication-title: Parallel Comput. doi: 10.1016/0167-8191(90)90086-O – volume: 116 start-page: 45 issue: 6 year: 1996 ident: 10.1016/j.ijmachtools.2016.11.001_bib2 article-title: War against thermal expansion publication-title: Manuf. Eng. – volume: 47 start-page: 1003 issue: 6 year: 2007 ident: 10.1016/j.ijmachtools.2016.11.001_bib9 article-title: Simulation of thermal behavior of a cnc machine tool spindle publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2006.06.018 – volume: 74 start-page: 681 issue: 5–8 year: 2014 ident: 10.1016/j.ijmachtools.2016.11.001_bib24 article-title: Temperature-sensitive point selection of thermal error model of CNC machining center publication-title: Int. J. Adv. Manuf. Technol. – start-page: 286 year: 2005 ident: 10.1016/j.ijmachtools.2016.11.001_bib30 – volume: 42 start-page: 80 issue: 1 year: 1970 ident: 10.1016/j.ijmachtools.2016.11.001_bib31 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.2000.10485983 – volume: 69 start-page: 2593 issue: 9 year: 2013 ident: 10.1016/j.ijmachtools.2016.11.001_bib4 article-title: Robustness of thermal error compensation modeling models of CNC machine tools publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5229-x – volume: 82–83 start-page: 11 issue: 7 year: 2014 ident: 10.1016/j.ijmachtools.2016.11.001_bib26 article-title: A thermal error model for large machine tools that considers environmental thermal hysteresis effects publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2014.03.002 – volume: 50 start-page: 386 issue: 4 year: 2010 ident: 10.1016/j.ijmachtools.2016.11.001_bib10 article-title: Analysis of thermal errors in a high-speed micro-milling spindle publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2009.11.002 – volume: 59 start-page: 1065 issue: 9–12 year: 2012 ident: 10.1016/j.ijmachtools.2016.11.001_bib20 article-title: Machine tool thermal error modeling and prediction by gray neural network publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3564-3 – volume: 75 start-page: 1279 issue: 9–12 year: 2014 ident: 10.1016/j.ijmachtools.2016.11.001_bib36 article-title: An improved method for thermally induced positioning errors measurement, modeling, and compensation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6193-9 – volume: 23 start-page: 235 issue: 16 year: 2007 ident: 10.1016/j.ijmachtools.2016.11.001_bib32 article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training publication-title: Neural Comput. Appl. doi: 10.1007/s00521-007-0084-z – volume: 24 start-page: 338 issue: 4 year: 2000 ident: 10.1016/j.ijmachtools.2016.11.001_bib16 article-title: Neural network thermal error compensation of a machining center publication-title: Precis. Eng. doi: 10.1016/S0141-6359(00)00044-1 – year: 1998 ident: 10.1016/j.ijmachtools.2016.11.001_bib5 – volume: 85 start-page: 2761 issue: 9 year: 2015 ident: 10.1016/j.ijmachtools.2016.11.001_bib28 article-title: Application of sliced inverse regression with fuzzy clustering for thermal error modeling of CNC machine tool publication-title: Int. J. Adv. Manuf. Technol. – volume: 97 start-page: 50 year: 2015 ident: 10.1016/j.ijmachtools.2016.11.001_bib29 article-title: Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2015.07.004 – volume: 36 start-page: 527 issue: 4 year: 1996 ident: 10.1016/j.ijmachtools.2016.11.001_bib12 article-title: The improvement of thermal error modeling and compensation on machine tools by CMAC neural network publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/0890-6955(95)00040-2 – ident: 10.1016/j.ijmachtools.2016.11.001_bib37 – volume: 75 start-page: 45 issue: 1–3 year: 1998 ident: 10.1016/j.ijmachtools.2016.11.001_bib13 article-title: Compensation for the thermal error of a multi-axis machining center publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(97)00291-4 – volume: 44 start-page: 146 year: 1999 ident: 10.1016/j.ijmachtools.2016.11.001_bib14 article-title: Linear regression and neural net models applied to thermal error compensation in machine tools publication-title: Eur. J. Mech. Environ. Eng. – volume: 39 start-page: 1837 issue: 7 year: 2015 ident: 10.1016/j.ijmachtools.2016.11.001_bib27 article-title: Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.10.016 – volume: 23 start-page: 386 issue: 3 year: 2010 ident: 10.1016/j.ijmachtools.2016.11.001_bib34 article-title: An evaluation of bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc. doi: 10.1016/j.neunet.2009.11.016 – volume: 39 start-page: 645 issue: 2 year: 1990 ident: 10.1016/j.ijmachtools.2016.11.001_bib1 article-title: International status of thermal error research publication-title: Ann. Cirp. doi: 10.1016/S0007-8506(07)63001-7 – volume: 47 start-page: 53 issue: 1 year: 2007 ident: 10.1016/j.ijmachtools.2016.11.001_bib8 article-title: An improved thermal model for machine tool bearings publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2006.02.018 – volume: 43 start-page: 1124 issue: 11–12 year: 2009 ident: 10.1016/j.ijmachtools.2016.11.001_bib22 article-title: Application of synthetic gray correlation theory on thermal point optimization for machine tool thermal error compensation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1791-z – volume: 87 start-page: 178 issue: 417 year: 1992 ident: 10.1016/j.ijmachtools.2016.11.001_bib38 article-title: Generalized collinearity diagnostics publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1992.10475190 – volume: 15 start-page: 113 issue: 2 year: 1996 ident: 10.1016/j.ijmachtools.2016.11.001_bib3 article-title: Accuracy enhancement of a horizontal machining center by real-time error compensation publication-title: J. Manuf. Syst. doi: 10.1016/0278-6125(96)82336-3 – start-page: 91 year: 2005 ident: 10.1016/j.ijmachtools.2016.11.001_bib40 – volume: 63 start-page: 1167 issue: 9–12 year: 2012 ident: 10.1016/j.ijmachtools.2016.11.001_bib42 article-title: The thermal error optimization models for cnc machine tools publication-title: Int. J. Adv. Manuf. Technol. – volume: 49 start-page: 92 issue: 1 year: 1964 ident: 10.1016/j.ijmachtools.2016.11.001_bib6 article-title: Multicollinearity in regression analysis: the problem revisited publication-title: Rev. Econ. Stat. doi: 10.2307/1937887 – volume: 40 start-page: 1257 issue: 9 year: 2000 ident: 10.1016/j.ijmachtools.2016.11.001_bib17 article-title: Error compensation in machine tools – A review. Part II: thermal errors publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(00)00010-9 – volume: 36 start-page: 121 issue: 1 year: 2012 ident: 10.1016/j.ijmachtools.2016.11.001_bib11 article-title: Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2011.07.013 – volume: 15 issue: 6 year: 2004 ident: 10.1016/j.ijmachtools.2016.11.001_bib21 article-title: Grouping optimization modeling by selection of temperature variables for the thermal error compensation on machine tools publication-title: Chin. J. Mech. Eng. – volume: 17 start-page: 698 year: 2014 ident: 10.1016/j.ijmachtools.2016.11.001_bib25 article-title: Applying neural network based on fuzzy cluster pre-processing to thermal error modeling for coordinate boring machine publication-title: Procedia Cirp doi: 10.1016/j.procir.2014.01.080 – volume: 43 start-page: 391 issue: 4 year: 2003 ident: 10.1016/j.ijmachtools.2016.11.001_bib18 article-title: Thermal error measurement and modelling in machine tools.: Part I publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(02)00263-8 – volume: 43 start-page: 405 issue: 4 year: 2003 ident: 10.1016/j.ijmachtools.2016.11.001_bib19 article-title: Thermal error measurement and modelling in machine tools. Part II. hybrid Bayesian network - support vector machine model publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(02)00264-X – start-page: 368 year: 2005 ident: 10.1016/j.ijmachtools.2016.11.001_bib39 – volume: 32 start-page: 1089 issue: 10 year: 2005 ident: 10.1016/j.ijmachtools.2016.11.001_bib35 article-title: Robust confidence interval for a residual standard deviation publication-title: J. Appl. Stat. doi: 10.1080/02664760500165339 – volume: 24 start-page: 1343 issue: 5 year: 2000 ident: 10.1016/j.ijmachtools.2016.11.001_bib15 article-title: Thermal error measurement and modeling techniques for the 5 degree of freedom (DOF) spindle unit drifts in CNC machine tools publication-title: Trans. Korean Soc. Mech. Eng. A – start-page: 164 year: 2006 ident: 10.1016/j.ijmachtools.2016.11.001_bib41 |
| SSID | ssj0001831 |
| Score | 2.5485172 |
| Snippet | For thermal error compensation technology of CNC machine tools, the collinearity between temperature sensitive points is the main factor for determining the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms CNC machine tools Collinearity Correlation analysis Correlation coefficients Error analysis Error compensation Error detection Machine tools Mathematical models Modelling Numerical controls Predicted accuracy and robustness Regression Regression analysis Ridge regression Robustness (mathematics) Seasons Temperature Thermal error Three dimensional models |
| Title | Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm |
| URI | https://dx.doi.org/10.1016/j.ijmachtools.2016.11.001 https://www.proquest.com/docview/1937684638 |
| Volume | 113 |
| WOSCitedRecordID | wos000392353000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2170 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001831 issn: 0890-6955 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT0QfxE88PWUF30LKNR9NFnw5akVFi-gJ1Zew2ezepbTJkTbH_V3-hc7sbj6qHFTEl1DS7nbY-e187ewMIa-UH_rK97ib8TBwA5XBlkqVcj0vlWGWgRErTbOJaD6PFwv2eTD42dyFuVxFRRFfXbGL_8pqeAfMxquzf8HudlJ4AZ-B6fAEtsNzL8Z_KdN6szUtbjAOYHpEN-mEIIdXjqyqUp8OTOdTZ63TKbGDRrnaOKjVMjxBMBe5KnlmEmULh6_Oyirfnq_79uxuQLFXhmJ3VsTXmhc1XqOou3Tbj3mtVV-dt3zPuY7dzgrnU6NU9bmRTjpY5IXzve7w_OO8tuFu_OZNaQfYIAYoxuOdhJD2dk2XyqQFIAPXlpkyviNpBHQcMRfcqOMdCT72ezLYD3va3JTx_ENPmJDFcpQvcTn0UmCa32SEFV0tYbtluL8iNUgMGLDHWAXvBjnwopDFQ3Jw8n62-NDqfxCSuk9jQ_0t8rLLKrzmD6-zin6zD7TRc3qP3LXeCj0xKLtPBrJ4QO70alg-JNzgjTZ4owZvFPBGLd6oxhstFQW8UYsMqqmjGm-0LKjGG-3wRlu8PSLf3s5Op-9c27fDFX7Atm4YqInHvDG2VEnDVKWTLExDoTjj4B1JIUXkc5T-AXj3IvTkeMwxHirht7GIhf-YDIuykE8I9YNMxUHgc4nV92PBWDBmgUrTiMdSTKJDEjfrlghb1B57q6ySJntxmfSWPMElB6cXMzkPidcOvTCVXfYZ9LphTmJNVGN6JoCsfYYfNQxN7JbcJOBC4Wk4KMKn_zb7M3K721tHZLitavmc3BSX23xTvbAw_QWHzcse |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+modeling+method+for+thermal+error+of+CNC+machine+tools+based+on+ridge+regression+algorithm&rft.jtitle=International+journal+of+machine+tools+%26+manufacture&rft.au=Liu%2C+Hui&rft.au=Miao%2C+En+Ming&rft.au=Wei%2C+Xin+Yuan&rft.au=Zhuang%2C+Xin+Dong&rft.date=2017-02-01&rft.pub=Elsevier+Ltd&rft.issn=0890-6955&rft.eissn=1879-2170&rft.volume=113&rft.spage=35&rft.epage=48&rft_id=info:doi/10.1016%2Fj.ijmachtools.2016.11.001&rft.externalDocID=S0890695516301341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6955&client=summon |