Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks
Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during t...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 51; číslo 6; s. 3115 - 3128 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations. |
|---|---|
| AbstractList | Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations. Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations.Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations. |
| Author | Lu, Chang Zhang, Xingyi Tan, Kay Chen Tian, Ye Jin, Yaochu |
| Author_xml | – sequence: 1 givenname: Ye orcidid: 0000-0002-3487-5126 surname: Tian fullname: Tian, Ye email: field910921@gmail.com organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China – sequence: 2 givenname: Chang surname: Lu fullname: Lu, Chang email: lucy_lc@outlook.com organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China – sequence: 3 givenname: Xingyi orcidid: 0000-0002-5052-000X surname: Zhang fullname: Zhang, Xingyi email: xyzhanghust@gmail.com organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China – sequence: 4 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kaytan@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 5 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32217494$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEUhS1URNvQB0BIyBKbbib134ztJY2AVgotUlohVpbHuVMcJuPBnkkFT4_TpF10UW9sXX3n6PqcY3TQhQ4QekfJlFKiz25mP8-njDAyZVpqzckrdMRopQrGZHnw9K7kITpJaUXyUXmk1Rt0yBmjUmhxhO4Xod347g7PbbyDYuFsC_jb2A4-1Ctwg98Avu4Hv_b_bJ51-HsMdQvrhH_44Rde9DamPWFbnM3GLZXwxlt826Wxh7jxCZb4CsaYiSsY7kP8nd6i141tE5zs7wm6_fL5ZnZRzK-_Xs4-zQvHhR6KkpdU8KYipQPlKFdV3di6Lp3kpSqXjWVWgmu4Jry0goCqqQVBGiaUsiynMkGnO98-hj8jpMGsfXLQtraDMCbDuBJUPwQ4QR-foaswxi5vZ1jJlBZ5FZmpD3tqrNewNH3MP49_zWOkGZA7wMWQUoTGOD88ZDdE61tDidn2Z7b9mW1_Zt9fVtJnykfzlzTvdxoPAE-8JkIqWfH_rMGmfA |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1007_s40747_024_01538_5 crossref_primary_10_1016_j_swevo_2025_101881 crossref_primary_10_1016_j_ins_2023_119003 crossref_primary_10_1109_TNNLS_2021_3113158 crossref_primary_10_1016_j_swevo_2022_101083 crossref_primary_10_1016_j_engappai_2025_111281 crossref_primary_10_1016_j_ins_2023_02_044 crossref_primary_10_1016_j_cie_2024_110151 crossref_primary_10_1109_TEVC_2022_3166815 crossref_primary_10_1109_TSMC_2024_3418346 crossref_primary_10_1109_TEVC_2024_3431928 crossref_primary_10_1016_j_swevo_2022_101119 crossref_primary_10_1007_s10489_022_04037_7 crossref_primary_10_3390_computers11050070 crossref_primary_10_1016_j_engappai_2024_109482 crossref_primary_10_1007_s10489_023_04500_z crossref_primary_10_1007_s13042_024_02221_4 crossref_primary_10_1007_s40314_023_02187_z crossref_primary_10_1109_TCYB_2022_3178929 crossref_primary_10_1016_j_ins_2025_121973 crossref_primary_10_1109_JAS_2024_124548 crossref_primary_10_1016_j_swevo_2023_101235 crossref_primary_10_1016_j_ins_2023_119899 crossref_primary_10_1145_3470971 crossref_primary_10_1016_j_swevo_2025_101892 crossref_primary_10_1007_s12293_022_00358_9 crossref_primary_10_3390_s23146303 crossref_primary_10_1016_j_eswa_2025_129328 crossref_primary_10_1016_j_swevo_2025_102061 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1109_TCYB_2020_3041325 crossref_primary_10_1007_s40747_024_01752_1 crossref_primary_10_1016_j_ins_2023_02_055 crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1007_s40747_021_00553_0 crossref_primary_10_1016_j_ins_2024_121185 crossref_primary_10_1109_TEVC_2023_3256183 crossref_primary_10_1016_j_swevo_2024_101504 crossref_primary_10_1016_j_swevo_2024_101628 crossref_primary_10_1016_j_ins_2024_121347 crossref_primary_10_1109_TEVC_2021_3119933 crossref_primary_10_1109_TEVC_2022_3155533 crossref_primary_10_1016_j_eswa_2023_120110 crossref_primary_10_1109_JAS_2022_105875 crossref_primary_10_1109_TEVC_2021_3130835 crossref_primary_10_1016_j_eswa_2024_125411 crossref_primary_10_1002_int_22892 crossref_primary_10_1007_s00500_023_08825_2 crossref_primary_10_1007_s10489_025_06772_z crossref_primary_10_1109_TCYB_2022_3225341 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_TCC_2024_3450858 crossref_primary_10_1109_TCYB_2021_3109914 crossref_primary_10_1109_TETCI_2025_3526268 crossref_primary_10_3389_fnhum_2024_1400077 crossref_primary_10_1007_s00521_023_08972_5 crossref_primary_10_1007_s40747_023_01177_2 crossref_primary_10_1016_j_asoc_2025_113921 crossref_primary_10_1016_j_swevo_2025_101856 crossref_primary_10_1016_j_swevo_2025_102149 crossref_primary_10_1016_j_ins_2024_120901 crossref_primary_10_1016_j_swevo_2022_101093 crossref_primary_10_1109_TSMC_2024_3446624 crossref_primary_10_3390_rs15174178 crossref_primary_10_1016_j_eswa_2023_120290 crossref_primary_10_1109_TEVC_2022_3144675 crossref_primary_10_1016_j_swevo_2023_101393 crossref_primary_10_1080_23799927_2023_2227147 crossref_primary_10_1109_TETCI_2024_3393388 crossref_primary_10_1016_j_asoc_2020_106947 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1109_TCYB_2021_3098186 crossref_primary_10_1109_TETCI_2024_3386866 crossref_primary_10_1109_TEVC_2022_3160458 crossref_primary_10_1016_j_neucom_2023_126892 crossref_primary_10_1109_MCI_2022_3180913 crossref_primary_10_1007_s10489_025_06291_x crossref_primary_10_1016_j_eswa_2024_126050 crossref_primary_10_1016_j_swevo_2024_101606 crossref_primary_10_1109_TETCI_2022_3220812 crossref_primary_10_1016_j_ress_2025_111622 crossref_primary_10_1016_j_undsp_2022_06_002 crossref_primary_10_1109_TCYB_2022_3180214 crossref_primary_10_1016_j_ins_2024_121569 crossref_primary_10_1109_ACCESS_2025_3541271 crossref_primary_10_1109_JAS_2022_105437 crossref_primary_10_1109_TEVC_2021_3118593 crossref_primary_10_1016_j_swevo_2025_102011 crossref_primary_10_1109_TCYB_2023_3287596 crossref_primary_10_1007_s10489_023_04596_3 crossref_primary_10_1109_TEVC_2022_3159000 crossref_primary_10_1109_TEVC_2023_3332913 crossref_primary_10_1016_j_asoc_2023_110360 crossref_primary_10_1007_s40747_022_00697_7 crossref_primary_10_1109_TETCI_2024_3369629 crossref_primary_10_1109_TEVC_2023_3292527 crossref_primary_10_1109_TEVC_2021_3111209 crossref_primary_10_1016_j_swevo_2023_101397 crossref_primary_10_1007_s44196_025_00884_7 crossref_primary_10_1016_j_ins_2022_08_021 crossref_primary_10_1109_JAS_2023_123810 crossref_primary_10_1007_s41965_022_00111_8 crossref_primary_10_1016_j_engappai_2024_108194 crossref_primary_10_1016_j_jpdc_2022_06_016 crossref_primary_10_1109_JAS_2022_105425 crossref_primary_10_1016_j_ins_2024_120607 crossref_primary_10_3390_e25040561 crossref_primary_10_1109_JAS_2024_124341 crossref_primary_10_1007_s40747_024_01489_x crossref_primary_10_1016_j_epsr_2025_111687 crossref_primary_10_1016_j_asoc_2023_111177 crossref_primary_10_1109_TEVC_2023_3264875 crossref_primary_10_1109_TCYB_2023_3278110 crossref_primary_10_1109_TEVC_2021_3099487 crossref_primary_10_1007_s11633_020_1253_0 crossref_primary_10_1016_j_swevo_2024_101548 crossref_primary_10_1109_TPAMI_2021_3127674 crossref_primary_10_1109_TTE_2020_2995745 crossref_primary_10_1038_s41598_025_91245_z crossref_primary_10_1109_TASE_2023_3303915 crossref_primary_10_1109_TEVC_2023_3319640 crossref_primary_10_1016_j_ins_2025_122337 crossref_primary_10_1016_j_swevo_2024_101820 crossref_primary_10_1007_s10489_023_04574_9 crossref_primary_10_1016_j_swevo_2023_101286 crossref_primary_10_1016_j_swevo_2022_101181 crossref_primary_10_1109_TCYB_2025_3558354 crossref_primary_10_1109_JAS_2024_124377 crossref_primary_10_1109_TEVC_2025_3529938 crossref_primary_10_1007_s40747_022_00963_8 crossref_primary_10_1016_j_swevo_2025_102077 crossref_primary_10_1016_j_ins_2023_02_062 crossref_primary_10_26599_TST_2025_9010012 crossref_primary_10_32604_cmc_2024_048495 crossref_primary_10_1016_j_ins_2023_119707 crossref_primary_10_1145_3734865 crossref_primary_10_1007_s12293_023_00394_z crossref_primary_10_1016_j_asoc_2025_112874 crossref_primary_10_1007_s40747_025_01835_7 crossref_primary_10_1016_j_ins_2022_12_020 crossref_primary_10_1109_TEVC_2021_3063606 crossref_primary_10_1007_s12065_025_01096_w crossref_primary_10_1016_j_gsf_2023_101761 crossref_primary_10_1109_ACCESS_2021_3125622 crossref_primary_10_1016_j_swevo_2023_101453 crossref_primary_10_1016_j_ins_2022_12_021 crossref_primary_10_1109_TCYB_2021_3090769 crossref_primary_10_1109_TCYB_2022_3185554 crossref_primary_10_1371_journal_pone_0314584 crossref_primary_10_1109_TEVC_2024_3355221 crossref_primary_10_1109_TSMC_2024_3446822 crossref_primary_10_1016_j_swevo_2024_101770 crossref_primary_10_1016_j_swevo_2025_102000 crossref_primary_10_1109_TEVC_2022_3166482 crossref_primary_10_1177_16878132241227109 crossref_primary_10_1360_SSI_2024_0025 crossref_primary_10_1007_s00521_023_08505_0 crossref_primary_10_1016_j_asoc_2023_111081 crossref_primary_10_1007_s40747_021_00433_7 crossref_primary_10_1093_bib_bbad364 crossref_primary_10_1109_TCYB_2020_3020308 crossref_primary_10_1109_TETCI_2021_3074147 crossref_primary_10_1109_TEVC_2022_3155593 crossref_primary_10_1016_j_asoc_2024_112344 crossref_primary_10_1016_j_ins_2025_122476 crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_1109_TEVC_2021_3110780 crossref_primary_10_1016_j_engappai_2025_110615 crossref_primary_10_1016_j_knosys_2023_110398 crossref_primary_10_1016_j_swevo_2022_101045 crossref_primary_10_1016_j_ins_2024_120950 crossref_primary_10_1016_j_swevo_2023_101462 crossref_primary_10_3390_act13060204 crossref_primary_10_1016_j_asoc_2022_109420 crossref_primary_10_1016_j_asoc_2023_110826 crossref_primary_10_1016_j_ins_2022_08_030 crossref_primary_10_1016_j_swevo_2023_101466 |
| Cites_doi | 10.1109/TEVC.2007.894202 10.1108/COMPEL-05-2018-0208 10.1109/TEVC.2003.810758 10.1016/j.ins.2014.06.002 10.1016/0893-6080(89)90014-2 10.1109/TEVC.2018.2808689 10.1109/TEVC.2019.2896002 10.1109/TNNLS.2017.2677973 10.1109/TCYB.2018.2845361 10.1007/978-3-642-33275-3_2 10.1145/3176644 10.1109/TSMCC.2008.919172 10.1109/TNNLS.2017.2695223 10.1016/j.asoc.2015.09.006 10.1016/j.asoc.2014.08.026 10.1007/s10957-004-6468-7 10.1109/TETCI.2018.2872055 10.1109/4235.797969 10.1109/TEVC.2018.2882166 10.1145/1390156.1390294 10.1109/TEVC.2017.2704782 10.1016/j.cosrev.2018.02.002 10.1109/TCYB.2017.2779450 10.1109/TFUZZ.2019.2945241 10.1080/00401706.2000.10485979 10.1109/TSMCB.2012.2227469 10.1109/TEVC.2005.851275 10.1109/MCI.2017.2708578 10.1162/089976602760128018 10.1109/TCYB.2018.2856208 10.1016/j.ins.2014.02.039 10.1109/CEC.2010.5586465 10.1109/TCYB.2017.2711038 10.1109/ACCESS.2017.2782814 10.1109/MCDM.2009.4938830 10.1109/TEVC.2015.2395073 10.1109/TEVC.2015.2455812 10.1007/978-3-540-71618-1_27 10.1007/978-3-540-24854-5_56 10.1109/TEVC.2016.2600642 10.1109/CEC.2013.6557903 10.1109/MCI.2017.2742868 10.1109/TCYB.2017.2714145 10.1109/SMC.2018.00080 10.1109/TEVC.2014.2308305 10.1109/4235.996017 10.1038/nature14539 10.1016/j.jclepro.2017.11.037 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.2979930 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Sciences (General) Computer Science |
| EISSN | 2168-2275 |
| EndPage | 3128 |
| ExternalDocumentID | 32217494 10_1109_TCYB_2020_2979930 9047876 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61672033; 61822301; 61876123; 61906001; U1804262 funderid: 10.13039/501100001809 – fundername: Anhui Provincial Natural Science Foundation grantid: 1808085J06; 1908085QF271 funderid: 10.13039/501100003995 – fundername: Key Project of Science and Technology Innovation 2030 supported by the Ministry of Science and Technology of China grantid: 2018AAA0100105 – fundername: Royal Society International Exchanges Program grantid: IEC\NSFC\170279 funderid: 10.13039/501100000288 – fundername: Hong Kong Scholars Program grantid: XJ2019035 funderid: 10.13039/501100005953 – fundername: State Key Laboratory of Synthetical Automation for Process Industries grantid: PAL-N201805 funderid: 10.13039/501100011248 – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China grantid: CityU11202418; CityU11209219 funderid: 10.13039/501100002920 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-535143f605ce8c1386bfabb5c73585dfa2a7ecf39035a40e8b1ae40f2488a2993 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 223 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652065400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 06:27:41 EDT 2025 Sun Nov 09 06:36:33 EST 2025 Thu Apr 03 07:00:18 EDT 2025 Sat Nov 29 02:02:29 EST 2025 Tue Nov 18 22:27:55 EST 2025 Wed Aug 27 02:30:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-535143f605ce8c1386bfabb5c73585dfa2a7ecf39035a40e8b1ae40f2488a2993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6802-2463 0000-0003-1100-0631 0000-0002-3487-5126 0000-0002-5052-000X |
| PMID | 32217494 |
| PQID | 2528945147 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_32217494 proquest_journals_2528945147 crossref_citationtrail_10_1109_TCYB_2020_2979930 ieee_primary_9047876 crossref_primary_10_1109_TCYB_2020_2979930 proquest_miscellaneous_2384199799 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | wang (ref39) 2017; 41 ref57 ref12 ref59 ref15 ref58 ref14 ref53 ref11 ref10 ref17 ref16 ref19 ref18 agrawal (ref56) 1994 lecun (ref46) 2015; 521 ref50 jin (ref37) 2008; 38 deb (ref52) 1996; 26 ref45 ref48 ref47 ref41 ref44 deb (ref51) 1995; 9 ref49 rossi (ref54) 2015 ref8 ref7 maaten (ref43) 2009 ref9 ref4 ref3 ref6 ref5 tian (ref42) 0 lu (ref25) 2018 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 liu (ref26) 2019 liang (ref55) 2018 qian (ref27) 2015 ref24 ref23 ref20 ref22 ref21 tian (ref13) 0 wang (ref60) 2013 ref28 qian (ref40) 2017 ref29 ref62 ref61 |
| References_xml | – start-page: 463 year: 2015 ident: ref27 article-title: Pareto ensemble pruning publication-title: Proc 29th Conf Artif Intell (AAAI) – ident: ref15 doi: 10.1109/TEVC.2007.894202 – ident: ref3 doi: 10.1108/COMPEL-05-2018-0208 – ident: ref58 doi: 10.1109/TEVC.2003.810758 – ident: ref34 doi: 10.1016/j.ins.2014.06.002 – ident: ref61 doi: 10.1016/0893-6080(89)90014-2 – ident: ref62 doi: 10.1109/TEVC.2018.2808689 – start-page: 875 year: 2017 ident: ref40 article-title: Solving high-dimensional multi-objective optimization problems with low effective dimensions publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref12 doi: 10.1109/TEVC.2019.2896002 – ident: ref18 doi: 10.1109/TNNLS.2017.2677973 – ident: ref48 doi: 10.1109/TCYB.2018.2845361 – ident: ref20 doi: 10.1007/978-3-642-33275-3_2 – ident: ref31 doi: 10.1145/3176644 – year: 2019 ident: ref26 publication-title: A black-box attack on neural networks based on swarm evolutionary algorithm – volume: 38 start-page: 397 year: 2008 ident: ref37 article-title: Pareto-based multiobjective machine learning: An overview and case studies publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2008.919172 – ident: ref1 doi: 10.1109/TNNLS.2017.2695223 – ident: ref24 doi: 10.1016/j.asoc.2015.09.006 – ident: ref33 doi: 10.1016/j.asoc.2014.08.026 – ident: ref14 doi: 10.1007/s10957-004-6468-7 – ident: ref19 doi: 10.1109/TETCI.2018.2872055 – ident: ref35 doi: 10.1109/4235.797969 – ident: ref41 doi: 10.1109/TEVC.2018.2882166 – ident: ref21 doi: 10.1145/1390156.1390294 – start-page: 1778 year: 2013 ident: ref60 article-title: Bayesian optimization in high dimensions via random embeddings publication-title: Proc 23rd Int Joint Conf Artif Intell – ident: ref11 doi: 10.1109/TEVC.2017.2704782 – ident: ref29 doi: 10.1016/j.cosrev.2018.02.002 – ident: ref9 doi: 10.1109/TCYB.2017.2779450 – ident: ref28 doi: 10.1109/TFUZZ.2019.2945241 – volume: 9 start-page: 115 year: 1995 ident: ref51 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref49 doi: 10.1080/00401706.2000.10485979 – ident: ref22 doi: 10.1109/TSMCB.2012.2227469 – ident: ref59 doi: 10.1109/TEVC.2005.851275 – ident: ref32 doi: 10.1109/MCI.2017.2708578 – ident: ref44 doi: 10.1162/089976602760128018 – ident: ref10 doi: 10.1109/TCYB.2018.2856208 – volume: 41 start-page: 4061 year: 2017 ident: ref39 article-title: Power grid fault diagnosis based on immune clonal constrained multi-objective optimization method publication-title: Power Syst Technol – ident: ref36 doi: 10.1016/j.ins.2014.02.039 – year: 2018 ident: ref55 article-title: Problem definitions and evaluation criteria for the cec special session on evolutionary algorithms for sparse optimization – ident: ref47 doi: 10.1109/CEC.2010.5586465 – ident: ref38 doi: 10.1109/TCYB.2017.2711038 – ident: ref30 doi: 10.1109/ACCESS.2017.2782814 – ident: ref57 doi: 10.1109/MCDM.2009.4938830 – ident: ref16 doi: 10.1109/TEVC.2015.2395073 – ident: ref7 doi: 10.1109/TEVC.2015.2455812 – ident: ref17 doi: 10.1007/978-3-540-71618-1_27 – ident: ref5 doi: 10.1007/978-3-540-24854-5_56 – start-page: 487 year: 1994 ident: ref56 article-title: Fast algorithms for mining association rules publication-title: Proc Int Conf Very Large Data Bases – ident: ref8 doi: 10.1109/TEVC.2016.2600642 – ident: ref4 doi: 10.1109/CEC.2013.6557903 – year: 0 ident: ref13 article-title: Efficient large-scale multi-objective optimization based on a competitive swarm optimizer publication-title: IEEE Trans Cybern – ident: ref53 doi: 10.1109/MCI.2017.2742868 – ident: ref23 doi: 10.1109/TCYB.2017.2714145 – year: 0 ident: ref42 article-title: An evolutionary algorithm for large-scale sparse multi-objective optimization problems publication-title: IEEE Trans Evol Comput – year: 2009 ident: ref43 article-title: Dimensionality reduction: A comparative review – ident: ref45 doi: 10.1109/SMC.2018.00080 – year: 2018 ident: ref25 publication-title: Nsga-net a multi-objective genetic algorithm for neural architecture search – volume: 26 start-page: 30 year: 1996 ident: ref52 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: J Inform Comput Sci – ident: ref50 doi: 10.1109/TEVC.2014.2308305 – start-page: 4292 year: 2015 ident: ref54 article-title: The network data repository with interactive graph analytics and visualization publication-title: Proc 29th Conf Artif Intell (AAAI) – ident: ref6 doi: 10.1109/4235.996017 – volume: 521 start-page: 436 year: 2015 ident: ref46 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref2 doi: 10.1016/j.jclepro.2017.11.037 |
| SSID | ssj0000816898 |
| Score | 2.6474855 |
| Snippet | Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3115 |
| SubjectTerms | Approximation Computer science Denoising autoencoder (DAE) Evolutionary algorithms Evolutionary computation Genetic algorithms large-scale multiobjective optimization Machine learning Multiple objective analysis Neural networks Noise reduction Optimization Pareto optimization Pareto optimum Pareto-optimal subspace Representations restricted Boltzmann machine (RBM) Search problems Searching Sociology sparse Pareto-optimal solutions Statistics Subspaces |
| Title | Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks |
| URI | https://ieeexplore.ieee.org/document/9047876 https://www.ncbi.nlm.nih.gov/pubmed/32217494 https://www.proquest.com/docview/2528945147 https://www.proquest.com/docview/2384199799 |
| Volume | 51 |
| WOSCitedRecordID | wos000652065400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FYdeKN3ySCmVkTgAIm0SO3F8hIqKA1oqbSuWU2R7x6KoJKtmt_37jB1vJCRA4mYpk8TJjD0Pz8wH8ApzaUiz2FQaY1JhnaUl5fJUO1LnZE5UaFwAm5DTaT2fq4steDfWwiBiSD7DEz8MZ_mLzq59qOxUhVYy1TZsS1kNtVpjPCUASATo24IGKVkVMh5i5pk6vTz79oGcwSI7Kfw5FvcAcCTKZI4r8ZtGChArf7c2g9Y53_u_-T6Ch9G6ZO8HcdiHLWwnsLdBbmBxIU9gP4569jr2nX4zgV1veA59mw_gftbd-FgD--xTxdMZsRJZqNbtzI9hk2RfaLv5Ges42cWATNOzr9er72y2JIc5UtCExuAbu7vW7Krt10u_R_W4YL47CFFMh3T0_jFcnX-8PPuURpCG1HKhVmnpSwG4I6_IYm1zXlfGaWNKKzl5IgunCy3ROq4yXmqRYW1yjSJzBe0cmnQhfwI7bdfiM2D0_0rEAqu6RiFdoRdcVdI41MYKI_IEsg2jGhs7mHsgjZsmeDKZajybG8_mJrI5gbfjLcuhfce_iA88D0fCyL4EjjbS0MQF3jdFSZ6qoE-XCbwcL9PS9OctusVuTTS8Fj6PR6kEng5SND57I3yHf37nc9gtfPJMCPccwc7qdo0v4IG9IzG4PSb5n9fHQf5_Ae4EAXg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcReGOuABQYYiQdAZEti58OPMDENUcqkdmI8RbZ7FkNbUi3t-Pc5O24kJEDizVKvrZO783347n4ALzEtNVkWE5da61gYa0ilbBorS-ac3IkCtfVgE-VkUp2fy9MNeDv0wiCiLz7DA7f0d_nz1qxcquxQ-lEyxS247ZCzQrfWkFHxEBIe_DajRUx-RRmuMdNEHs6Ovr2ncDBLDjJ3k8UdBBwJMznkUvxmkzzIyt_9TW93jrf_b8f34V7wL9m7XiB2YAObEWyvsRtYUOUR7IRVx16FydOvR7DlXM9-cvMu_Jy2ly7bwMauWDyeEjOR-X7dVv_oj0n2hQ6cq9DJyU57bJqOfb1YfmfTBYXMgYI2NKTf2M2FYmdNt1q4U6rDOXPzQYhi0hekdw_g7PjD7OgkDjANseFCLuPcNQNwS3GRwcqkvCq0VVrnpuQUi8ytylSJxnKZ8FyJBCudKhSJzejsUGQN-UPYbNoG94DR-8sRMyyqCkVpMzXnsii1RaWN0CKNIFkzqjZhhrmD0risfSyTyNqxuXZsrgObI3gzfGXRD_D4F_Gu4-FAGNgXwf5aGuqg4l2d5RSrCnr0MoIXw8eknO7GRTXYroiGV8JV8kgZwaNeiobfXgvf4z__53O4ezL7PK7HHyefnsBW5kppfPJnHzaX1yt8CnfMDYnE9TOvBb8AZiAD2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Large-Scale+Multiobjective+Optimization+Problems+With+Sparse+Optimal+Solutions+via+Unsupervised+Neural+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Tian%2C+Ye&rft.au=Lu%2C+Chang&rft.au=Zhang%2C+Xingyi&rft.au=Tan%2C+Kay+Chen&rft.date=2021-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=6&rft.spage=3115&rft.epage=3128&rft_id=info:doi/10.1109%2FTCYB.2020.2979930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_2979930 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |