Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks

Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 51; číslo 6; s. 3115 - 3128
Hlavní autori: Tian, Ye, Lu, Chang, Zhang, Xingyi, Tan, Kay Chen, Jin, Yaochu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations.
AbstractList Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations.
Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations.Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale multiobjective optimization problems (LMOPs) by using a limited budget of evaluations. If the Pareto-optimal subspace is approximated during the evolutionary process, the search space can be reduced and the difficulty encountered by evolutionary algorithms can be highly alleviated. Following the above idea, this article proposes an evolutionary algorithm to solve sparse LMOPs by learning the Pareto-optimal subspace. The proposed algorithm uses two unsupervised neural networks, a restricted Boltzmann machine, and a denoising autoencoder to learn a sparse distribution and a compact representation of the decision variables, where the combination of the learnt sparse distribution and compact representation is regarded as an approximation of the Pareto-optimal subspace. The genetic operators are conducted in the learnt subspace, and the resultant offspring solutions then can be mapped back to the original search space by the two neural networks. According to the experimental results on eight benchmark problems and eight real-world problems, the proposed algorithm can effectively solve sparse LMOPs with 10000 decision variables by only 100000 evaluations.
Author Lu, Chang
Zhang, Xingyi
Tan, Kay Chen
Tian, Ye
Jin, Yaochu
Author_xml – sequence: 1
  givenname: Ye
  orcidid: 0000-0002-3487-5126
  surname: Tian
  fullname: Tian, Ye
  email: field910921@gmail.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
– sequence: 2
  givenname: Chang
  surname: Lu
  fullname: Lu, Chang
  email: lucy_lc@outlook.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
– sequence: 3
  givenname: Xingyi
  orcidid: 0000-0002-5052-000X
  surname: Zhang
  fullname: Zhang, Xingyi
  email: xyzhanghust@gmail.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
– sequence: 4
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kaytan@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32217494$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNvQB0BIyBKbbib134ztJY2AVgotUlohVpbHuVMcJuPBnkkFT4_TpF10UW9sXX3n6PqcY3TQhQ4QekfJlFKiz25mP8-njDAyZVpqzckrdMRopQrGZHnw9K7kITpJaUXyUXmk1Rt0yBmjUmhxhO4Xod347g7PbbyDYuFsC_jb2A4-1Ctwg98Avu4Hv_b_bJ51-HsMdQvrhH_44Rde9DamPWFbnM3GLZXwxlt826Wxh7jxCZb4CsaYiSsY7kP8nd6i141tE5zs7wm6_fL5ZnZRzK-_Xs4-zQvHhR6KkpdU8KYipQPlKFdV3di6Lp3kpSqXjWVWgmu4Jry0goCqqQVBGiaUsiynMkGnO98-hj8jpMGsfXLQtraDMCbDuBJUPwQ4QR-foaswxi5vZ1jJlBZ5FZmpD3tqrNewNH3MP49_zWOkGZA7wMWQUoTGOD88ZDdE61tDidn2Z7b9mW1_Zt9fVtJnykfzlzTvdxoPAE-8JkIqWfH_rMGmfA
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s40747_024_01538_5
crossref_primary_10_1016_j_swevo_2025_101881
crossref_primary_10_1016_j_ins_2023_119003
crossref_primary_10_1109_TNNLS_2021_3113158
crossref_primary_10_1016_j_swevo_2022_101083
crossref_primary_10_1016_j_engappai_2025_111281
crossref_primary_10_1016_j_ins_2023_02_044
crossref_primary_10_1016_j_cie_2024_110151
crossref_primary_10_1109_TEVC_2022_3166815
crossref_primary_10_1109_TSMC_2024_3418346
crossref_primary_10_1109_TEVC_2024_3431928
crossref_primary_10_1016_j_swevo_2022_101119
crossref_primary_10_1007_s10489_022_04037_7
crossref_primary_10_3390_computers11050070
crossref_primary_10_1016_j_engappai_2024_109482
crossref_primary_10_1007_s10489_023_04500_z
crossref_primary_10_1007_s13042_024_02221_4
crossref_primary_10_1007_s40314_023_02187_z
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1016_j_ins_2025_121973
crossref_primary_10_1109_JAS_2024_124548
crossref_primary_10_1016_j_swevo_2023_101235
crossref_primary_10_1016_j_ins_2023_119899
crossref_primary_10_1145_3470971
crossref_primary_10_1016_j_swevo_2025_101892
crossref_primary_10_1007_s12293_022_00358_9
crossref_primary_10_3390_s23146303
crossref_primary_10_1016_j_eswa_2025_129328
crossref_primary_10_1016_j_swevo_2025_102061
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1109_TCYB_2020_3041325
crossref_primary_10_1007_s40747_024_01752_1
crossref_primary_10_1016_j_ins_2023_02_055
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1007_s40747_021_00553_0
crossref_primary_10_1016_j_ins_2024_121185
crossref_primary_10_1109_TEVC_2023_3256183
crossref_primary_10_1016_j_swevo_2024_101504
crossref_primary_10_1016_j_swevo_2024_101628
crossref_primary_10_1016_j_ins_2024_121347
crossref_primary_10_1109_TEVC_2021_3119933
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1016_j_eswa_2023_120110
crossref_primary_10_1109_JAS_2022_105875
crossref_primary_10_1109_TEVC_2021_3130835
crossref_primary_10_1016_j_eswa_2024_125411
crossref_primary_10_1002_int_22892
crossref_primary_10_1007_s00500_023_08825_2
crossref_primary_10_1007_s10489_025_06772_z
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TCC_2024_3450858
crossref_primary_10_1109_TCYB_2021_3109914
crossref_primary_10_1109_TETCI_2025_3526268
crossref_primary_10_3389_fnhum_2024_1400077
crossref_primary_10_1007_s00521_023_08972_5
crossref_primary_10_1007_s40747_023_01177_2
crossref_primary_10_1016_j_asoc_2025_113921
crossref_primary_10_1016_j_swevo_2025_101856
crossref_primary_10_1016_j_swevo_2025_102149
crossref_primary_10_1016_j_ins_2024_120901
crossref_primary_10_1016_j_swevo_2022_101093
crossref_primary_10_1109_TSMC_2024_3446624
crossref_primary_10_3390_rs15174178
crossref_primary_10_1016_j_eswa_2023_120290
crossref_primary_10_1109_TEVC_2022_3144675
crossref_primary_10_1016_j_swevo_2023_101393
crossref_primary_10_1080_23799927_2023_2227147
crossref_primary_10_1109_TETCI_2024_3393388
crossref_primary_10_1016_j_asoc_2020_106947
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1109_TCYB_2021_3098186
crossref_primary_10_1109_TETCI_2024_3386866
crossref_primary_10_1109_TEVC_2022_3160458
crossref_primary_10_1016_j_neucom_2023_126892
crossref_primary_10_1109_MCI_2022_3180913
crossref_primary_10_1007_s10489_025_06291_x
crossref_primary_10_1016_j_eswa_2024_126050
crossref_primary_10_1016_j_swevo_2024_101606
crossref_primary_10_1109_TETCI_2022_3220812
crossref_primary_10_1016_j_ress_2025_111622
crossref_primary_10_1016_j_undsp_2022_06_002
crossref_primary_10_1109_TCYB_2022_3180214
crossref_primary_10_1016_j_ins_2024_121569
crossref_primary_10_1109_ACCESS_2025_3541271
crossref_primary_10_1109_JAS_2022_105437
crossref_primary_10_1109_TEVC_2021_3118593
crossref_primary_10_1016_j_swevo_2025_102011
crossref_primary_10_1109_TCYB_2023_3287596
crossref_primary_10_1007_s10489_023_04596_3
crossref_primary_10_1109_TEVC_2022_3159000
crossref_primary_10_1109_TEVC_2023_3332913
crossref_primary_10_1016_j_asoc_2023_110360
crossref_primary_10_1007_s40747_022_00697_7
crossref_primary_10_1109_TETCI_2024_3369629
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_1109_TEVC_2021_3111209
crossref_primary_10_1016_j_swevo_2023_101397
crossref_primary_10_1007_s44196_025_00884_7
crossref_primary_10_1016_j_ins_2022_08_021
crossref_primary_10_1109_JAS_2023_123810
crossref_primary_10_1007_s41965_022_00111_8
crossref_primary_10_1016_j_engappai_2024_108194
crossref_primary_10_1016_j_jpdc_2022_06_016
crossref_primary_10_1109_JAS_2022_105425
crossref_primary_10_1016_j_ins_2024_120607
crossref_primary_10_3390_e25040561
crossref_primary_10_1109_JAS_2024_124341
crossref_primary_10_1007_s40747_024_01489_x
crossref_primary_10_1016_j_epsr_2025_111687
crossref_primary_10_1016_j_asoc_2023_111177
crossref_primary_10_1109_TEVC_2023_3264875
crossref_primary_10_1109_TCYB_2023_3278110
crossref_primary_10_1109_TEVC_2021_3099487
crossref_primary_10_1007_s11633_020_1253_0
crossref_primary_10_1016_j_swevo_2024_101548
crossref_primary_10_1109_TPAMI_2021_3127674
crossref_primary_10_1109_TTE_2020_2995745
crossref_primary_10_1038_s41598_025_91245_z
crossref_primary_10_1109_TASE_2023_3303915
crossref_primary_10_1109_TEVC_2023_3319640
crossref_primary_10_1016_j_ins_2025_122337
crossref_primary_10_1016_j_swevo_2024_101820
crossref_primary_10_1007_s10489_023_04574_9
crossref_primary_10_1016_j_swevo_2023_101286
crossref_primary_10_1016_j_swevo_2022_101181
crossref_primary_10_1109_TCYB_2025_3558354
crossref_primary_10_1109_JAS_2024_124377
crossref_primary_10_1109_TEVC_2025_3529938
crossref_primary_10_1007_s40747_022_00963_8
crossref_primary_10_1016_j_swevo_2025_102077
crossref_primary_10_1016_j_ins_2023_02_062
crossref_primary_10_26599_TST_2025_9010012
crossref_primary_10_32604_cmc_2024_048495
crossref_primary_10_1016_j_ins_2023_119707
crossref_primary_10_1145_3734865
crossref_primary_10_1007_s12293_023_00394_z
crossref_primary_10_1016_j_asoc_2025_112874
crossref_primary_10_1007_s40747_025_01835_7
crossref_primary_10_1016_j_ins_2022_12_020
crossref_primary_10_1109_TEVC_2021_3063606
crossref_primary_10_1007_s12065_025_01096_w
crossref_primary_10_1016_j_gsf_2023_101761
crossref_primary_10_1109_ACCESS_2021_3125622
crossref_primary_10_1016_j_swevo_2023_101453
crossref_primary_10_1016_j_ins_2022_12_021
crossref_primary_10_1109_TCYB_2021_3090769
crossref_primary_10_1109_TCYB_2022_3185554
crossref_primary_10_1371_journal_pone_0314584
crossref_primary_10_1109_TEVC_2024_3355221
crossref_primary_10_1109_TSMC_2024_3446822
crossref_primary_10_1016_j_swevo_2024_101770
crossref_primary_10_1016_j_swevo_2025_102000
crossref_primary_10_1109_TEVC_2022_3166482
crossref_primary_10_1177_16878132241227109
crossref_primary_10_1360_SSI_2024_0025
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1016_j_asoc_2023_111081
crossref_primary_10_1007_s40747_021_00433_7
crossref_primary_10_1093_bib_bbad364
crossref_primary_10_1109_TCYB_2020_3020308
crossref_primary_10_1109_TETCI_2021_3074147
crossref_primary_10_1109_TEVC_2022_3155593
crossref_primary_10_1016_j_asoc_2024_112344
crossref_primary_10_1016_j_ins_2025_122476
crossref_primary_10_1109_TETCI_2024_3358377
crossref_primary_10_1109_TEVC_2021_3110780
crossref_primary_10_1016_j_engappai_2025_110615
crossref_primary_10_1016_j_knosys_2023_110398
crossref_primary_10_1016_j_swevo_2022_101045
crossref_primary_10_1016_j_ins_2024_120950
crossref_primary_10_1016_j_swevo_2023_101462
crossref_primary_10_3390_act13060204
crossref_primary_10_1016_j_asoc_2022_109420
crossref_primary_10_1016_j_asoc_2023_110826
crossref_primary_10_1016_j_ins_2022_08_030
crossref_primary_10_1016_j_swevo_2023_101466
Cites_doi 10.1109/TEVC.2007.894202
10.1108/COMPEL-05-2018-0208
10.1109/TEVC.2003.810758
10.1016/j.ins.2014.06.002
10.1016/0893-6080(89)90014-2
10.1109/TEVC.2018.2808689
10.1109/TEVC.2019.2896002
10.1109/TNNLS.2017.2677973
10.1109/TCYB.2018.2845361
10.1007/978-3-642-33275-3_2
10.1145/3176644
10.1109/TSMCC.2008.919172
10.1109/TNNLS.2017.2695223
10.1016/j.asoc.2015.09.006
10.1016/j.asoc.2014.08.026
10.1007/s10957-004-6468-7
10.1109/TETCI.2018.2872055
10.1109/4235.797969
10.1109/TEVC.2018.2882166
10.1145/1390156.1390294
10.1109/TEVC.2017.2704782
10.1016/j.cosrev.2018.02.002
10.1109/TCYB.2017.2779450
10.1109/TFUZZ.2019.2945241
10.1080/00401706.2000.10485979
10.1109/TSMCB.2012.2227469
10.1109/TEVC.2005.851275
10.1109/MCI.2017.2708578
10.1162/089976602760128018
10.1109/TCYB.2018.2856208
10.1016/j.ins.2014.02.039
10.1109/CEC.2010.5586465
10.1109/TCYB.2017.2711038
10.1109/ACCESS.2017.2782814
10.1109/MCDM.2009.4938830
10.1109/TEVC.2015.2395073
10.1109/TEVC.2015.2455812
10.1007/978-3-540-71618-1_27
10.1007/978-3-540-24854-5_56
10.1109/TEVC.2016.2600642
10.1109/CEC.2013.6557903
10.1109/MCI.2017.2742868
10.1109/TCYB.2017.2714145
10.1109/SMC.2018.00080
10.1109/TEVC.2014.2308305
10.1109/4235.996017
10.1038/nature14539
10.1016/j.jclepro.2017.11.037
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.2979930
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
Computer Science
EISSN 2168-2275
EndPage 3128
ExternalDocumentID 32217494
10_1109_TCYB_2020_2979930
9047876
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672033; 61822301; 61876123; 61906001; U1804262
  funderid: 10.13039/501100001809
– fundername: Anhui Provincial Natural Science Foundation
  grantid: 1808085J06; 1908085QF271
  funderid: 10.13039/501100003995
– fundername: Key Project of Science and Technology Innovation 2030 supported by the Ministry of Science and Technology of China
  grantid: 2018AAA0100105
– fundername: Royal Society International Exchanges Program
  grantid: IEC\NSFC\170279
  funderid: 10.13039/501100000288
– fundername: Hong Kong Scholars Program
  grantid: XJ2019035
  funderid: 10.13039/501100005953
– fundername: State Key Laboratory of Synthetical Automation for Process Industries
  grantid: PAL-N201805
  funderid: 10.13039/501100011248
– fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  grantid: CityU11202418; CityU11209219
  funderid: 10.13039/501100002920
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-535143f605ce8c1386bfabb5c73585dfa2a7ecf39035a40e8b1ae40f2488a2993
IEDL.DBID RIE
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652065400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 06:27:41 EDT 2025
Sun Nov 09 06:36:33 EST 2025
Thu Apr 03 07:00:18 EDT 2025
Sat Nov 29 02:02:29 EST 2025
Tue Nov 18 22:27:55 EST 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-535143f605ce8c1386bfabb5c73585dfa2a7ecf39035a40e8b1ae40f2488a2993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6802-2463
0000-0003-1100-0631
0000-0002-3487-5126
0000-0002-5052-000X
PMID 32217494
PQID 2528945147
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_32217494
proquest_journals_2528945147
crossref_citationtrail_10_1109_TCYB_2020_2979930
ieee_primary_9047876
crossref_primary_10_1109_TCYB_2020_2979930
proquest_miscellaneous_2384199799
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References wang (ref39) 2017; 41
ref57
ref12
ref59
ref15
ref58
ref14
ref53
ref11
ref10
ref17
ref16
ref19
ref18
agrawal (ref56) 1994
lecun (ref46) 2015; 521
ref50
jin (ref37) 2008; 38
deb (ref52) 1996; 26
ref45
ref48
ref47
ref41
ref44
deb (ref51) 1995; 9
ref49
rossi (ref54) 2015
ref8
ref7
maaten (ref43) 2009
ref9
ref4
ref3
ref6
ref5
tian (ref42) 0
lu (ref25) 2018
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
liu (ref26) 2019
liang (ref55) 2018
qian (ref27) 2015
ref24
ref23
ref20
ref22
ref21
tian (ref13) 0
wang (ref60) 2013
ref28
qian (ref40) 2017
ref29
ref62
ref61
References_xml – start-page: 463
  year: 2015
  ident: ref27
  article-title: Pareto ensemble pruning
  publication-title: Proc 29th Conf Artif Intell (AAAI)
– ident: ref15
  doi: 10.1109/TEVC.2007.894202
– ident: ref3
  doi: 10.1108/COMPEL-05-2018-0208
– ident: ref58
  doi: 10.1109/TEVC.2003.810758
– ident: ref34
  doi: 10.1016/j.ins.2014.06.002
– ident: ref61
  doi: 10.1016/0893-6080(89)90014-2
– ident: ref62
  doi: 10.1109/TEVC.2018.2808689
– start-page: 875
  year: 2017
  ident: ref40
  article-title: Solving high-dimensional multi-objective optimization problems with low effective dimensions
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref12
  doi: 10.1109/TEVC.2019.2896002
– ident: ref18
  doi: 10.1109/TNNLS.2017.2677973
– ident: ref48
  doi: 10.1109/TCYB.2018.2845361
– ident: ref20
  doi: 10.1007/978-3-642-33275-3_2
– ident: ref31
  doi: 10.1145/3176644
– year: 2019
  ident: ref26
  publication-title: A black-box attack on neural networks based on swarm evolutionary algorithm
– volume: 38
  start-page: 397
  year: 2008
  ident: ref37
  article-title: Pareto-based multiobjective machine learning: An overview and case studies
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2008.919172
– ident: ref1
  doi: 10.1109/TNNLS.2017.2695223
– ident: ref24
  doi: 10.1016/j.asoc.2015.09.006
– ident: ref33
  doi: 10.1016/j.asoc.2014.08.026
– ident: ref14
  doi: 10.1007/s10957-004-6468-7
– ident: ref19
  doi: 10.1109/TETCI.2018.2872055
– ident: ref35
  doi: 10.1109/4235.797969
– ident: ref41
  doi: 10.1109/TEVC.2018.2882166
– ident: ref21
  doi: 10.1145/1390156.1390294
– start-page: 1778
  year: 2013
  ident: ref60
  article-title: Bayesian optimization in high dimensions via random embeddings
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– ident: ref11
  doi: 10.1109/TEVC.2017.2704782
– ident: ref29
  doi: 10.1016/j.cosrev.2018.02.002
– ident: ref9
  doi: 10.1109/TCYB.2017.2779450
– ident: ref28
  doi: 10.1109/TFUZZ.2019.2945241
– volume: 9
  start-page: 115
  year: 1995
  ident: ref51
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref49
  doi: 10.1080/00401706.2000.10485979
– ident: ref22
  doi: 10.1109/TSMCB.2012.2227469
– ident: ref59
  doi: 10.1109/TEVC.2005.851275
– ident: ref32
  doi: 10.1109/MCI.2017.2708578
– ident: ref44
  doi: 10.1162/089976602760128018
– ident: ref10
  doi: 10.1109/TCYB.2018.2856208
– volume: 41
  start-page: 4061
  year: 2017
  ident: ref39
  article-title: Power grid fault diagnosis based on immune clonal constrained multi-objective optimization method
  publication-title: Power Syst Technol
– ident: ref36
  doi: 10.1016/j.ins.2014.02.039
– year: 2018
  ident: ref55
  article-title: Problem definitions and evaluation criteria for the cec special session on evolutionary algorithms for sparse optimization
– ident: ref47
  doi: 10.1109/CEC.2010.5586465
– ident: ref38
  doi: 10.1109/TCYB.2017.2711038
– ident: ref30
  doi: 10.1109/ACCESS.2017.2782814
– ident: ref57
  doi: 10.1109/MCDM.2009.4938830
– ident: ref16
  doi: 10.1109/TEVC.2015.2395073
– ident: ref7
  doi: 10.1109/TEVC.2015.2455812
– ident: ref17
  doi: 10.1007/978-3-540-71618-1_27
– ident: ref5
  doi: 10.1007/978-3-540-24854-5_56
– start-page: 487
  year: 1994
  ident: ref56
  article-title: Fast algorithms for mining association rules
  publication-title: Proc Int Conf Very Large Data Bases
– ident: ref8
  doi: 10.1109/TEVC.2016.2600642
– ident: ref4
  doi: 10.1109/CEC.2013.6557903
– year: 0
  ident: ref13
  article-title: Efficient large-scale multi-objective optimization based on a competitive swarm optimizer
  publication-title: IEEE Trans Cybern
– ident: ref53
  doi: 10.1109/MCI.2017.2742868
– ident: ref23
  doi: 10.1109/TCYB.2017.2714145
– year: 0
  ident: ref42
  article-title: An evolutionary algorithm for large-scale sparse multi-objective optimization problems
  publication-title: IEEE Trans Evol Comput
– year: 2009
  ident: ref43
  article-title: Dimensionality reduction: A comparative review
– ident: ref45
  doi: 10.1109/SMC.2018.00080
– year: 2018
  ident: ref25
  publication-title: Nsga-net a multi-objective genetic algorithm for neural architecture search
– volume: 26
  start-page: 30
  year: 1996
  ident: ref52
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: J Inform Comput Sci
– ident: ref50
  doi: 10.1109/TEVC.2014.2308305
– start-page: 4292
  year: 2015
  ident: ref54
  article-title: The network data repository with interactive graph analytics and visualization
  publication-title: Proc 29th Conf Artif Intell (AAAI)
– ident: ref6
  doi: 10.1109/4235.996017
– volume: 521
  start-page: 436
  year: 2015
  ident: ref46
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref2
  doi: 10.1016/j.jclepro.2017.11.037
SSID ssj0000816898
Score 2.6474855
Snippet Due to the curse of dimensionality of search space, it is extremely difficult for evolutionary algorithms to approximate the optimal solutions of large-scale...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3115
SubjectTerms Approximation
Computer science
Denoising autoencoder (DAE)
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
large-scale multiobjective optimization
Machine learning
Multiple objective analysis
Neural networks
Noise reduction
Optimization
Pareto optimization
Pareto optimum
Pareto-optimal subspace
Representations
restricted Boltzmann machine (RBM)
Search problems
Searching
Sociology
sparse Pareto-optimal solutions
Statistics
Subspaces
Title Solving Large-Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks
URI https://ieeexplore.ieee.org/document/9047876
https://www.ncbi.nlm.nih.gov/pubmed/32217494
https://www.proquest.com/docview/2528945147
https://www.proquest.com/docview/2384199799
Volume 51
WOSCitedRecordID wos000652065400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FYdeKN3ySCmVkTgAIm0SO3F8hIqKA1oqbSuWU2R7x6KoJKtmt_37jB1vJCRA4mYpk8TJjD0Pz8wH8ApzaUiz2FQaY1JhnaUl5fJUO1LnZE5UaFwAm5DTaT2fq4steDfWwiBiSD7DEz8MZ_mLzq59qOxUhVYy1TZsS1kNtVpjPCUASATo24IGKVkVMh5i5pk6vTz79oGcwSI7Kfw5FvcAcCTKZI4r8ZtGChArf7c2g9Y53_u_-T6Ch9G6ZO8HcdiHLWwnsLdBbmBxIU9gP4569jr2nX4zgV1veA59mw_gftbd-FgD--xTxdMZsRJZqNbtzI9hk2RfaLv5Ges42cWATNOzr9er72y2JIc5UtCExuAbu7vW7Krt10u_R_W4YL47CFFMh3T0_jFcnX-8PPuURpCG1HKhVmnpSwG4I6_IYm1zXlfGaWNKKzl5IgunCy3ROq4yXmqRYW1yjSJzBe0cmnQhfwI7bdfiM2D0_0rEAqu6RiFdoRdcVdI41MYKI_IEsg2jGhs7mHsgjZsmeDKZajybG8_mJrI5gbfjLcuhfce_iA88D0fCyL4EjjbS0MQF3jdFSZ6qoE-XCbwcL9PS9OctusVuTTS8Fj6PR6kEng5SND57I3yHf37nc9gtfPJMCPccwc7qdo0v4IG9IzG4PSb5n9fHQf5_Ae4EAXg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgcReGOuABQYYiQdAZEti58OPMDENUcqkdmI8RbZ7FkNbUi3t-Pc5O24kJEDizVKvrZO783347n4ALzEtNVkWE5da61gYa0ilbBorS-ac3IkCtfVgE-VkUp2fy9MNeDv0wiCiLz7DA7f0d_nz1qxcquxQ-lEyxS247ZCzQrfWkFHxEBIe_DajRUx-RRmuMdNEHs6Ovr2ncDBLDjJ3k8UdBBwJMznkUvxmkzzIyt_9TW93jrf_b8f34V7wL9m7XiB2YAObEWyvsRtYUOUR7IRVx16FydOvR7DlXM9-cvMu_Jy2ly7bwMauWDyeEjOR-X7dVv_oj0n2hQ6cq9DJyU57bJqOfb1YfmfTBYXMgYI2NKTf2M2FYmdNt1q4U6rDOXPzQYhi0hekdw_g7PjD7OgkDjANseFCLuPcNQNwS3GRwcqkvCq0VVrnpuQUi8ytylSJxnKZ8FyJBCudKhSJzejsUGQN-UPYbNoG94DR-8sRMyyqCkVpMzXnsii1RaWN0CKNIFkzqjZhhrmD0risfSyTyNqxuXZsrgObI3gzfGXRD_D4F_Gu4-FAGNgXwf5aGuqg4l2d5RSrCnr0MoIXw8eknO7GRTXYroiGV8JV8kgZwaNeiobfXgvf4z__53O4ezL7PK7HHyefnsBW5kppfPJnHzaX1yt8CnfMDYnE9TOvBb8AZiAD2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Large-Scale+Multiobjective+Optimization+Problems+With+Sparse+Optimal+Solutions+via+Unsupervised+Neural+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Tian%2C+Ye&rft.au=Lu%2C+Chang&rft.au=Zhang%2C+Xingyi&rft.au=Tan%2C+Kay+Chen&rft.date=2021-06-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=6&rft.spage=3115&rft.epage=3128&rft_id=info:doi/10.1109%2FTCYB.2020.2979930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_2979930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon