Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling

In this study, an investigation on the effects of stent geometry on blood flow in a stented human coronary artery 2D and 3D computational fluid dynamics (CFD) models with different stent geometries is reported. Blood velocity profiles and shear stress values were computed in three different sites, i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology Vol. 197; no. 1; pp. 174 - 181
Main Authors: Dehlaghi, Vahab, Shadpoor, Mohammad Tafazoli, Najarian, Siamak
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2008
Subjects:
ISSN:0924-0136
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, an investigation on the effects of stent geometry on blood flow in a stented human coronary artery 2D and 3D computational fluid dynamics (CFD) models with different stent geometries is reported. Blood velocity profiles and shear stress values were computed in three different sites, including stented arterial segment, pre-stent, and post-stent regions. Blood flow was assumed as a fully developed incompressible Newtonian flow. Rigid boundary conditions were assumed for all models. The governing Navier–Stokes equations were solved using commercial software. The arterial wall shear stress distribution was investigated in three major regions and critical sites were located. It is concluded that shear stress is influenced by three stent design parameters, i.e., strut spacing, strut profile, and number of struts. To achieve the most secure shear stress value, the optimum stent geometry can be obtained with respect to the mentioned parameters for a specific arterial segment. Different stents may be used for different arteries and arterial branches due to the dependency of the shear stress value to the geometry of the artery. It is shown that analyses of wall shear stress profile between stent struts, and in pre-stent and post-stent regions are essential in stent design. Additionally, it is shown that by application of a flow divider, the wall shear stress in stented segment increases markedly.
AbstractList In this study, an investigation on the effects of stent geometry on blood flow in a stented human coronary artery 2D and 3D computational fluid dynamics (CFD) models with different stent geometries is reported. Blood velocity profiles and shear stress values were computed in three different sites, including stented arterial segment, pre-stent, and post-stent regions. Blood flow was assumed as a fully developed incompressible Newtonian flow. Rigid boundary conditions were assumed for all models. The governing Navier-Stokes equations were solved using commercial software. The arterial wall shear stress distribution was investigated in three major regions and critical sites were located. It is concluded that shear stress is influenced by three stent design parameters, i.e., strut spacing, strut profile, and number of struts. To achieve the most secure shear stress value, the optimum stent geometry can be obtained with respect to the mentioned parameters for a specific arterial segment. Different stents may be used for different arteries and arterial branches due to the dependency of the shear stress value to the geometry of the artery. It is shown that analyses of wall shear stress profile between stent struts, and in pre-stent and post-stent regions are essential in stent design. Additionally, it is shown that by application of a flow divider, the wall shear stress in stented segment increases markedly.
Author Shadpoor, Mohammad Tafazoli
Najarian, Siamak
Dehlaghi, Vahab
Author_xml – sequence: 1
  givenname: Vahab
  surname: Dehlaghi
  fullname: Dehlaghi, Vahab
– sequence: 2
  givenname: Mohammad Tafazoli
  surname: Shadpoor
  fullname: Shadpoor, Mohammad Tafazoli
– sequence: 3
  givenname: Siamak
  surname: Najarian
  fullname: Najarian, Siamak
  email: najarian@aut.ac.ir
BookMark eNqNkE2LFDEQhnNYwd3V_5CTt2krnZ6ezEVYV12FBS96DrVJZc2QTsZUWpl_b5YRBC96egveD6jnSlzkkkkIqWBQoObXh-GwYDvW0sgNI8BugHkABRfiEvbjtAGl5-fiivkAoHZgzKV4vMmYThxZliB_YkqSvxFWya0Ss4y5X5QbeelKLRnrSWJt1GXlmB-lfteN5bg2bLHbSYa0Ri_9KeMSHculeEo9-EI8C5iYXv7Wa_H1w_svtx8395_vPt3e3G-cnvZtM4XtTA_TDs2DCYrCFrdIkx9NwJECjHs_haCc8-Mu-KCMDnpSYNSE3iOMqK_Fq_Nup_B9JW52iewoJcxUVrZaabMFo3vwzTnoamGuFKyL5ydaxZisAvvE1B7sH6b2iamF2XamfcD8NXCscemA_qf69lylTuJHpGrZRcqOfKzkmvUl_nvkF8mqoBo
CitedBy_id crossref_primary_10_1111_j_1540_8183_2010_00571_x
crossref_primary_10_3901_CJME_2016_0125_013
crossref_primary_10_1080_10255842_2017_1289374
crossref_primary_10_1007_s40430_024_05308_9
crossref_primary_10_1007_s00380_009_1203_9
crossref_primary_10_1016_j_cmpb_2025_108762
crossref_primary_10_1016_j_bbe_2020_02_010
crossref_primary_10_1016_j_medengphy_2014_05_011
crossref_primary_10_1016_j_medengphy_2015_05_016
crossref_primary_10_1063_1_4919937
crossref_primary_10_1111_j_1540_8183_2010_00572_x
crossref_primary_10_3390_polym9110618
crossref_primary_10_1007_s10973_024_13961_4
crossref_primary_10_1088_1757_899X_644_1_012015
crossref_primary_10_1177_1045389X211026380
crossref_primary_10_1007_s11517_016_1488_7
crossref_primary_10_1002_cnm_2557
crossref_primary_10_1186_1475_925X_8_8
crossref_primary_10_1002_cnm_2934
crossref_primary_10_1016_j_medengphy_2018_07_014
crossref_primary_10_3390_ma14237354
crossref_primary_10_1016_j_euromechflu_2012_01_011
crossref_primary_10_1186_s43088_023_00382_9
crossref_primary_10_1016_j_jbiomech_2017_09_016
crossref_primary_10_1007_s11517_014_1155_9
Cites_doi 10.1161/01.CIR.0000019071.72887.BD
10.1115/1.2895545
10.1115/1.2895740
10.1016/S1051-0443(07)60015-3
10.1152/ajpheart.01107.2004
10.1115/1.2796008
10.1157/13083641
10.1161/01.CIR.0000018168.15904.BB
10.1016/S0002-9149(00)01268-6
10.1161/01.CIR.103.13.1740
10.1097/00019501-200409000-00003
10.1016/0021-9290(95)00024-0
10.1253/circj.66.489
10.1152/japplphysiol.00872.2004
10.1114/1.276
10.1016/S0021-9290(00)00066-X
10.1115/1.2794191
10.1016/S0021-9290(02)00446-3
10.1161/01.CIR.0000066914.95878.6D
10.1115/1.2891384
10.1152/japplphysiol.01329.2003
10.1115/1.2796007
10.1016/j.jbiomech.2004.09.011
ContentType Journal Article
Copyright 2007 Elsevier B.V.
Copyright_xml – notice: 2007 Elsevier B.V.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.jmatprotec.2007.06.010
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 181
ExternalDocumentID 10_1016_j_jmatprotec_2007_06_010
S092401360700605X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
WUQ
XFK
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c349t-4f56eb47a8b8f1ef5a5ae4d28fa2ef029d4ff1ccd27fdf183f3410814adda02a3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252514600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-0136
IngestDate Sun Sep 28 06:56:40 EDT 2025
Sat Nov 29 06:19:34 EST 2025
Tue Nov 18 22:31:06 EST 2025
Fri Feb 23 02:28:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Restenosis
Shear stress
Computational fluid dynamics
Stent
Coronary artery
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-4f56eb47a8b8f1ef5a5ae4d28fa2ef029d4ff1ccd27fdf183f3410814adda02a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 31385083
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_31385083
crossref_citationtrail_10_1016_j_jmatprotec_2007_06_010
crossref_primary_10_1016_j_jmatprotec_2007_06_010
elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2007_06_010
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of materials processing technology
PublicationYear 2008
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Carlier, Wentzel, Serruys, Krams (bib5) 2003; 107
LaDisa, Olson, Molthen, Hettrick, Pratt, Hardel, Kersten, Warltier, Pagel (bib14) 2004; 97
Lee, Chiu (bib19) 1996; 29
Glogov, Zarins, Giddens (bib9) 1998; 112
Wentzel, Krams, Schuurbiers, Serruys (bib28) 2001; 103
Berry, Manoach, Mekkaoui, Moore (bib3) 2002; 13
Wentzel, Whelan, Vandergiessen, Serruys (bib27) 2000; 33
Farb, Weber, Kolodgie, Burke, Virmani (bib7) 2002; 105
LaDisa, Olson, Molthen, Hettrick, Pratt, Hardel, Kersten, Warltier, Pagel (bib18) 2006; 40
Kastrati, Mehilli, Dirsschinger, Pachejulm, Schuhlen, Seyforth (bib12) 2001; 877
Giddens, Zarins (bib8) 1993; 115
Berry, Moore, Routh (bib2) 2000; 28
Virmani, Farb, Guagliumi, Kolodgie (bib26) 2004; 15
Nerem (bib24) 1992; 114
Danenberg, Welt, Walker, Seifert, Toegel, Edelman (bib6) 2002; 105
LaDisa, Olson, Molthen, Hettrick, Pratt, Hardel, Kersten, Warltier, Pagel (bib16) 2005; 98
LaDisa, Olson, Hettrick, Pratt, Hardel, Kersten, Warltier, Pagel (bib17) 2005; 59
Mongrain, Rodés-Cabau (bib21) 2006; 59
LaDisa, Olson, Molthen, Hettrick, Pratt, Hardel, Kersten, Warltier, Pagel (bib15) 2005; 288
Bluestein, Schoephoerster, Dewanjee (bib4) 1996; 118
Henry (bib11) 2001
Nicoud, Vernhet, Dauzat (bib25) 2005; 38
Hayashi, Yanai, Naiki (bib10) 1996; 118
Barakat (bib1) 2001
Lei, Kleinstreuer, Truskey (bib20) 1995; 117
Moore, Ku (bib22) 1994; 116
Kumar, Cotran, Robbins (bib13) 1992
Murata, Hiro, Fujii, Yasumoto, Murashige, Kohno, Yamada, Miura, Matsuzaki (bib23) 2002; 66
Wentzel, Gijsen, Stergiopulos, Serruys (bib29) 2003; 36
Bluestein (10.1016/j.jmatprotec.2007.06.010_bib4) 1996; 118
LaDisa (10.1016/j.jmatprotec.2007.06.010_bib15) 2005; 288
Wentzel (10.1016/j.jmatprotec.2007.06.010_bib29) 2003; 36
Glogov (10.1016/j.jmatprotec.2007.06.010_bib9) 1998; 112
Berry (10.1016/j.jmatprotec.2007.06.010_bib3) 2002; 13
Lee (10.1016/j.jmatprotec.2007.06.010_bib19) 1996; 29
Hayashi (10.1016/j.jmatprotec.2007.06.010_bib10) 1996; 118
Nerem (10.1016/j.jmatprotec.2007.06.010_bib24) 1992; 114
Henry (10.1016/j.jmatprotec.2007.06.010_bib11) 2001
Giddens (10.1016/j.jmatprotec.2007.06.010_bib8) 1993; 115
Kastrati (10.1016/j.jmatprotec.2007.06.010_bib12) 2001; 877
Danenberg (10.1016/j.jmatprotec.2007.06.010_bib6) 2002; 105
Lei (10.1016/j.jmatprotec.2007.06.010_bib20) 1995; 117
Farb (10.1016/j.jmatprotec.2007.06.010_bib7) 2002; 105
Nicoud (10.1016/j.jmatprotec.2007.06.010_bib25) 2005; 38
Mongrain (10.1016/j.jmatprotec.2007.06.010_bib21) 2006; 59
Kumar (10.1016/j.jmatprotec.2007.06.010_bib13) 1992
Carlier (10.1016/j.jmatprotec.2007.06.010_bib5) 2003; 107
Wentzel (10.1016/j.jmatprotec.2007.06.010_bib28) 2001; 103
LaDisa (10.1016/j.jmatprotec.2007.06.010_bib14) 2004; 97
Wentzel (10.1016/j.jmatprotec.2007.06.010_bib27) 2000; 33
LaDisa (10.1016/j.jmatprotec.2007.06.010_bib17) 2005; 59
LaDisa (10.1016/j.jmatprotec.2007.06.010_bib16) 2005; 98
Berry (10.1016/j.jmatprotec.2007.06.010_bib2) 2000; 28
Moore (10.1016/j.jmatprotec.2007.06.010_bib22) 1994; 116
Murata (10.1016/j.jmatprotec.2007.06.010_bib23) 2002; 66
Barakat (10.1016/j.jmatprotec.2007.06.010_bib1) 2001
LaDisa (10.1016/j.jmatprotec.2007.06.010_bib18) 2006; 40
Virmani (10.1016/j.jmatprotec.2007.06.010_bib26) 2004; 15
References_xml – volume: 117
  start-page: 350
  year: 1995
  end-page: 356
  ident: bib20
  article-title: Numerical investigation and prediction of atherogenic sites in branching arteries
  publication-title: ASME J. Biomech. Eng.
– volume: 105
  start-page: 2917
  year: 2002
  end-page: 2922
  ident: bib6
  article-title: Systemic inflammation induced by lipopolysaccharide increases neointimal formation after balloon and stent injury in rabbits
  publication-title: Circulation
– start-page: 877
  year: 2001
  end-page: 878
  ident: bib1
  article-title: Computational study of arterial flow disturbance induced by intravascular stents
  publication-title: Proceedings of the ASME Summer Bioengineering Conference, vol. 50
– volume: 118
  start-page: 280
  year: 1996
  end-page: 286
  ident: bib4
  article-title: Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition
  publication-title: ASME J. Biomech. Eng.
– volume: 877
  start-page: 34
  year: 2001
  end-page: 39
  ident: bib12
  article-title: Restenosis after coronary placement of various stent types
  publication-title: Am. J. Cardiol.
– volume: 105
  start-page: 2974
  year: 2002
  end-page: 2980
  ident: bib7
  article-title: Morphological predictors of restenosis after coronary stenting in humans
  publication-title: Circulation
– volume: 116
  start-page: 337
  year: 1994
  end-page: 346
  ident: bib22
  article-title: Pulsatile velocity measurements in a model of the abdominal aorta under resting condition
  publication-title: ASME J. Biomech. Eng.
– volume: 38
  start-page: 2019
  year: 2005
  end-page: 2027
  ident: bib25
  article-title: A numerical assessment of wall shear stress changes after endovascular stenting
  publication-title: J. Biomech.
– volume: 40
  start-page: 5
  year: 2006
  ident: bib18
  article-title: Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
  publication-title: J. Biomed. Eng.
– volume: 118
  start-page: 273
  year: 1996
  end-page: 279
  ident: bib10
  article-title: A 3D-LDV study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation
  publication-title: ASME J. Biomech. Eng.
– volume: 15
  start-page: 313
  year: 2004
  end-page: 318
  ident: bib26
  article-title: Drug-eluting stents: caution and concerns for long-term outcome
  publication-title: Coron. Artery Dis.
– year: 1992
  ident: bib13
  article-title: Basic Pathology
– volume: 98
  start-page: 947
  year: 2005
  end-page: 957
  ident: bib16
  article-title: Circumferential vascular deformation after stent implantation alters wall shear stress evaluated using time-dependent 3D computational fluid dynamics models
  publication-title: J. Appl. Physiol.
– volume: 28
  start-page: 386
  year: 2000
  end-page: 398
  ident: bib2
  article-title: Experimental and computational flow evaluation of coronary stents
  publication-title: Ann. Biomed. Eng.
– volume: 13
  start-page: 97
  year: 2002
  end-page: 105
  ident: bib3
  article-title: Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis
  publication-title: J. Vasc. Intervent. Radiol.
– volume: 112
  start-page: 1018
  year: 1998
  end-page: 1031
  ident: bib9
  article-title: Hemodynamics and atherosclerosis
  publication-title: Arch. Pathol. Lab. Med.
– start-page: 329
  year: 2001
  end-page: 330
  ident: bib11
  article-title: Simulation of flow through model stented arteries
  publication-title: Proceedings of the ASME BED Bioengineering Conference vol. 50
– volume: 115
  start-page: 588
  year: 1993
  end-page: 593
  ident: bib8
  article-title: The role of fluid mechanics in the localization and detection of atherosclerosis
  publication-title: ASME J. Biomech. Eng.
– volume: 59
  start-page: 4
  year: 2005
  ident: bib17
  article-title: Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening
  publication-title: J. Biomed. Eng.
– volume: 288
  start-page: 2465
  year: 2005
  end-page: 2475
  ident: bib15
  article-title: Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 33
  start-page: 1287
  year: 2000
  end-page: 1295
  ident: bib27
  article-title: Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution
  publication-title: J. Biomech.
– volume: 103
  start-page: 1740
  year: 2001
  end-page: 1745
  ident: bib28
  article-title: Relationship between neointimal thickness and shear stress after wall stent implantation in human coronary arteries
  publication-title: Circulation
– volume: 36
  start-page: 681
  year: 2003
  end-page: 688
  ident: bib29
  article-title: Shear stress, vascular remodeling and neointimal formation
  publication-title: J. Biomech.
– volume: 97
  start-page: 424
  year: 2004
  end-page: 430
  ident: bib14
  article-title: Stent design properties and deployment ratio influence indexes of wall shear stress: a 3D computational fluid dynamics investigation within a normal artery
  publication-title: J. Appl. Physiol.
– volume: 59
  start-page: 1
  year: 2006
  end-page: 4
  ident: bib21
  article-title: Role of shear stress in atherosclerosis and restenosis after coronary stent implantation
  publication-title: Rev. Esp. Cardiol.
– volume: 29
  start-page: 1
  year: 1996
  end-page: 11
  ident: bib19
  article-title: Intimal thickening under shear stress in a carotid bifurcation, a numerical study
  publication-title: J. Biomech.
– volume: 66
  start-page: 489
  year: 2002
  end-page: 493
  ident: bib23
  article-title: Impact of the cross-sectional geometry of the post-deployment coronary stent on in-stent neointimal hyperplasia: an intravascular ultrasound study
  publication-title: Circulation
– volume: 114
  start-page: 247
  year: 1992
  end-page: 282
  ident: bib24
  article-title: Vascular fluid mechanics, the arterial wall and atherosclerosis
  publication-title: ASME J. Biomech. Eng.
– volume: 107
  start-page: 2741
  year: 2003
  end-page: 2746
  ident: bib5
  article-title: Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation
  publication-title: Circulation
– volume: 105
  start-page: 2974
  year: 2002
  ident: 10.1016/j.jmatprotec.2007.06.010_bib7
  article-title: Morphological predictors of restenosis after coronary stenting in humans
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000019071.72887.BD
– volume: 115
  start-page: 588
  year: 1993
  ident: 10.1016/j.jmatprotec.2007.06.010_bib8
  article-title: The role of fluid mechanics in the localization and detection of atherosclerosis
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2895545
– start-page: 877
  year: 2001
  ident: 10.1016/j.jmatprotec.2007.06.010_bib1
  article-title: Computational study of arterial flow disturbance induced by intravascular stents
– volume: 116
  start-page: 337
  year: 1994
  ident: 10.1016/j.jmatprotec.2007.06.010_bib22
  article-title: Pulsatile velocity measurements in a model of the abdominal aorta under resting condition
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2895740
– volume: 13
  start-page: 97
  year: 2002
  ident: 10.1016/j.jmatprotec.2007.06.010_bib3
  article-title: Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis
  publication-title: J. Vasc. Intervent. Radiol.
  doi: 10.1016/S1051-0443(07)60015-3
– volume: 288
  start-page: 2465
  year: 2005
  ident: 10.1016/j.jmatprotec.2007.06.010_bib15
  article-title: Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01107.2004
– volume: 118
  start-page: 280
  year: 1996
  ident: 10.1016/j.jmatprotec.2007.06.010_bib4
  article-title: Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2796008
– volume: 59
  start-page: 4
  year: 2005
  ident: 10.1016/j.jmatprotec.2007.06.010_bib17
  article-title: Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening
  publication-title: J. Biomed. Eng.
– year: 1992
  ident: 10.1016/j.jmatprotec.2007.06.010_bib13
– volume: 59
  start-page: 1
  year: 2006
  ident: 10.1016/j.jmatprotec.2007.06.010_bib21
  article-title: Role of shear stress in atherosclerosis and restenosis after coronary stent implantation
  publication-title: Rev. Esp. Cardiol.
  doi: 10.1157/13083641
– volume: 105
  start-page: 2917
  year: 2002
  ident: 10.1016/j.jmatprotec.2007.06.010_bib6
  article-title: Systemic inflammation induced by lipopolysaccharide increases neointimal formation after balloon and stent injury in rabbits
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000018168.15904.BB
– volume: 877
  start-page: 34
  year: 2001
  ident: 10.1016/j.jmatprotec.2007.06.010_bib12
  article-title: Restenosis after coronary placement of various stent types
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(00)01268-6
– volume: 103
  start-page: 1740
  year: 2001
  ident: 10.1016/j.jmatprotec.2007.06.010_bib28
  article-title: Relationship between neointimal thickness and shear stress after wall stent implantation in human coronary arteries
  publication-title: Circulation
  doi: 10.1161/01.CIR.103.13.1740
– volume: 40
  start-page: 5
  year: 2006
  ident: 10.1016/j.jmatprotec.2007.06.010_bib18
  article-title: Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
  publication-title: J. Biomed. Eng.
– volume: 15
  start-page: 313
  year: 2004
  ident: 10.1016/j.jmatprotec.2007.06.010_bib26
  article-title: Drug-eluting stents: caution and concerns for long-term outcome
  publication-title: Coron. Artery Dis.
  doi: 10.1097/00019501-200409000-00003
– volume: 29
  start-page: 1
  year: 1996
  ident: 10.1016/j.jmatprotec.2007.06.010_bib19
  article-title: Intimal thickening under shear stress in a carotid bifurcation, a numerical study
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00024-0
– volume: 66
  start-page: 489
  year: 2002
  ident: 10.1016/j.jmatprotec.2007.06.010_bib23
  article-title: Impact of the cross-sectional geometry of the post-deployment coronary stent on in-stent neointimal hyperplasia: an intravascular ultrasound study
  publication-title: Circulation
  doi: 10.1253/circj.66.489
– volume: 98
  start-page: 947
  year: 2005
  ident: 10.1016/j.jmatprotec.2007.06.010_bib16
  article-title: Circumferential vascular deformation after stent implantation alters wall shear stress evaluated using time-dependent 3D computational fluid dynamics models
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00872.2004
– volume: 28
  start-page: 386
  year: 2000
  ident: 10.1016/j.jmatprotec.2007.06.010_bib2
  article-title: Experimental and computational flow evaluation of coronary stents
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.276
– volume: 33
  start-page: 1287
  year: 2000
  ident: 10.1016/j.jmatprotec.2007.06.010_bib27
  article-title: Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00066-X
– volume: 117
  start-page: 350
  year: 1995
  ident: 10.1016/j.jmatprotec.2007.06.010_bib20
  article-title: Numerical investigation and prediction of atherogenic sites in branching arteries
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2794191
– volume: 36
  start-page: 681
  year: 2003
  ident: 10.1016/j.jmatprotec.2007.06.010_bib29
  article-title: Shear stress, vascular remodeling and neointimal formation
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00446-3
– volume: 107
  start-page: 2741
  year: 2003
  ident: 10.1016/j.jmatprotec.2007.06.010_bib5
  article-title: Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000066914.95878.6D
– volume: 114
  start-page: 247
  year: 1992
  ident: 10.1016/j.jmatprotec.2007.06.010_bib24
  article-title: Vascular fluid mechanics, the arterial wall and atherosclerosis
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2891384
– start-page: 329
  year: 2001
  ident: 10.1016/j.jmatprotec.2007.06.010_bib11
  article-title: Simulation of flow through model stented arteries
– volume: 97
  start-page: 424
  year: 2004
  ident: 10.1016/j.jmatprotec.2007.06.010_bib14
  article-title: Stent design properties and deployment ratio influence indexes of wall shear stress: a 3D computational fluid dynamics investigation within a normal artery
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01329.2003
– volume: 112
  start-page: 1018
  year: 1998
  ident: 10.1016/j.jmatprotec.2007.06.010_bib9
  article-title: Hemodynamics and atherosclerosis
  publication-title: Arch. Pathol. Lab. Med.
– volume: 118
  start-page: 273
  year: 1996
  ident: 10.1016/j.jmatprotec.2007.06.010_bib10
  article-title: A 3D-LDV study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation
  publication-title: ASME J. Biomech. Eng.
  doi: 10.1115/1.2796007
– volume: 38
  start-page: 2019
  year: 2005
  ident: 10.1016/j.jmatprotec.2007.06.010_bib25
  article-title: A numerical assessment of wall shear stress changes after endovascular stenting
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.09.011
SSID ssj0017088
Score 2.0302558
Snippet In this study, an investigation on the effects of stent geometry on blood flow in a stented human coronary artery 2D and 3D computational fluid dynamics (CFD)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 174
SubjectTerms Computational fluid dynamics
Coronary artery
Restenosis
Shear stress
Stent
Title Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling
URI https://dx.doi.org/10.1016/j.jmatprotec.2007.06.010
https://www.proquest.com/docview/31385083
Volume 197
WOSCitedRecordID wos000252514600025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0924-0136
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017088
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xPH3gFmWVOEmTiNOKLgIkVkgU1Fvk-EHTTZOqbZaFv8MfZfzKbilIRYhLFEVy6ni-2uPPM_Mh9CKUvOQZEz4f5dKPiUh8ddrmlwFlJJEjJYOkxSbS09NsOs0_DAY_XC7MeZ02TXZxkS__q6nhGRhbpc7-hbn7l8IDuAejwxXMDte9DH-1zMhXdfC8VqLVLimkauBO1eFU2WyrVifj6rDOb16naYNorMPMu41jCWXdVdzjRrneSue49W7XqwUH2HyktzQpCDoda4e_H4tZTY2gsPeZzmjZMz0zypet4RDetzO6WFDuTaik39u66plrOoctvqVuK7qgZ1vkRebinR2jtpNVY6hJoiJjTGGUfpY2YbxbcDRzbmhkfuzyHRoFmJ2VwZAU86M5jIMpgWHrV46OAhtYu113-6PqhuoFTIoBbPqm19ABSZM8G6KD47cn03f9YVUaaHnTvts2YMyEEf7-9_7kBf3iD2gnZ3Ib3bJ2xMcGVXfQQDR30c0rNSvvoS8OX7iVWOELa3xhgy9cNdjiCzt8YYMvrPGFozHewhfW-MIOX9jh6z769Ppk8uqNb9U6fBbF-caPZTISZZzSrMxkKGRCEypiTjJJiZAByXksZcgYJ6nkElYSCQ4UOKQxrLA0IDR6gIZN24iHMHqlkIyFnDDFSrIcVmxK4hQ21yHlkSwPUepGr2C2lL1SVKkLF7M4Ly7HXSmtpoUK3wyDQxT2LZemnMsebV46AxXWLTXuZgHY2qP1c2fTAmZudRxHG9F26yIKo0yJMTz6p_c_Rjcu_1hP0HCz6sRTdJ2db6r16pmF6k8sx8yt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+wall+shear+stress+in+stented+coronary+artery+using+3D+computational+fluid+dynamics+modeling&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Dehlaghi%2C+Vahab&rft.au=Shadpoor%2C+Mohammad+Tafazoli&rft.au=Najarian%2C+Siamak&rft.date=2008-02-01&rft.pub=Elsevier+B.V&rft.issn=0924-0136&rft.volume=197&rft.issue=1&rft.spage=174&rft.epage=181&rft_id=info:doi/10.1016%2Fj.jmatprotec.2007.06.010&rft.externalDocID=S092401360700605X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon