Distributed Robust Optimization in Networked System

In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of loca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 47; no. 8; pp. 2321 - 2333
Main Authors: Wang, Shengnan, Li, Chunguang
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.
AbstractList In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.
In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.
Author Shengnan Wang
Chunguang Li
Author_xml – sequence: 1
  givenname: Shengnan
  surname: Wang
  fullname: Wang, Shengnan
– sequence: 2
  givenname: Chunguang
  orcidid: 0000-0003-3147-1553
  surname: Li
  fullname: Li, Chunguang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27740509$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEYRYNUbK39ASJIwY2b1rwmkyy1PkEsaF24CskkA9HOTE0ySP31prZ10YXZJIRz7_dxDkGnbmoLwDGCY4SguJhN3q7GGCI2xgwRhMUe6GHE-AjjPOv8vVneBYMQ3mE6PH0JfgC6OM8pzKDoAXLtQvROt9Ga4XOj2xCH00V0lftW0TX10NXDJxu_Gv-RgJdliLY6Avulmgc72Nx98Hp7M5vcjx6ndw-Ty8dRQaiII6oVN7zUiJeZJoYUOSuVYVDAQitEmCYlFEZTxgrKNS-gMtQyi5kwXClmSB-cr3sXvvlsbYiycqGw87mqbdMGiTjJKKIZEgk920Hfm9bXaTuJBIZpBiU0UacbqtWVNXLhXaX8Um51JCBfA4VvQvC2lIWLvx6iV24uEZQr93LlXq7cy437lEQ7yW35f5mTdcZZa__4POMc8pz8ANUNjao
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_jfranklin_2023_09_058
crossref_primary_10_1109_TPWRS_2022_3202188
crossref_primary_10_1016_j_ijepes_2021_106996
crossref_primary_10_1109_TSMC_2019_2936829
crossref_primary_10_1002_2050_7038_12116
crossref_primary_10_1109_TSIPN_2024_3451992
crossref_primary_10_1109_TCYB_2016_2626801
crossref_primary_10_1109_TSMC_2019_2960770
crossref_primary_10_1109_TSMC_2017_2780194
crossref_primary_10_1109_TSG_2022_3185140
crossref_primary_10_1109_TSIPN_2020_2975356
crossref_primary_10_1109_TCNS_2024_3354873
crossref_primary_10_1016_j_apenergy_2023_121133
crossref_primary_10_1109_TCYB_2018_2875131
crossref_primary_10_1109_TCYB_2020_2973221
crossref_primary_10_1109_TSIPN_2017_2699923
crossref_primary_10_1007_s10957_024_02552_w
crossref_primary_10_1109_TCYB_2017_2669041
crossref_primary_10_1016_j_automatica_2023_111177
crossref_primary_10_1109_TSTE_2021_3119657
crossref_primary_10_1109_TCYB_2017_2755720
crossref_primary_10_1002_rnc_7791
crossref_primary_10_1109_TII_2020_3022412
crossref_primary_10_1007_s10957_018_1355_9
crossref_primary_10_1109_ACCESS_2021_3074629
crossref_primary_10_1109_TSIPN_2018_2832026
crossref_primary_10_1109_LSP_2025_3563722
crossref_primary_10_1109_TCYB_2018_2869249
crossref_primary_10_1016_j_ijepes_2020_106360
Cites_doi 10.1016/j.sysconle.2004.02.022
10.1109/TCYB.2015.2453167
10.1287/opre.1030.0065
10.1109/TSMCB.2011.2160394
10.1109/TSP.2013.2295055
10.1109/TAC.2008.2009515
10.1017/CBO9780511804441
10.1109/TSP.2013.2265221
10.1109/TSMC.2014.2332306
10.1109/TSP.2004.838933
10.1080/00207170701491070
10.1561/2200000016
10.1109/TSP.2011.2146776
10.1007/s11081-012-9198-y
10.1561/2200000051
10.1007/978-1-4757-3290-0
10.1287/moor.23.4.769
10.1109/TCST.2010.2045501
10.1109/TAC.2011.2167817
10.1109/TAC.2014.2308612
10.1137/0329055
10.1109/TSP.2009.2016226
10.1137/080734510
10.1007/BF00941312
10.1109/TCYB.2015.2464255
10.1109/JSTSP.2013.2246763
10.1109/TSP.2014.2327010
10.1137/S1052623401392354
10.1145/984622.984626
10.1007/BF02592073
10.1109/TSP.2012.2236830
10.1137/0324060
10.1109/CDC.2012.6425904
10.1016/S0167-6377(99)00016-4
10.1007/s10957-009-9522-7
10.1007/s11424-008-9122-x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2016.2613129
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2333
ExternalDocumentID 27740509
10_1109_TCYB_2016_2613129
7588087
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2016QNA5004
– fundername: National Natural Science Foundation of China
  grantid: 61571392; 61631003; 61471320
  funderid: 10.13039/501100001809
– fundername: National Program for Special Support of Eminent Professionals
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-4ba8d8fb18f5b3d3c76fad6090cba136b3f09db466c48b8c0ad4e6e269d8aa6d3
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405458200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 23:05:47 EDT 2025
Sun Nov 30 05:28:39 EST 2025
Mon Jul 21 05:51:30 EDT 2025
Sat Nov 29 06:48:33 EST 2025
Tue Nov 18 22:31:17 EST 2025
Tue Aug 26 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-4ba8d8fb18f5b3d3c76fad6090cba136b3f09db466c48b8c0ad4e6e269d8aa6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3147-1553
PMID 27740509
PQID 1920466434
PQPubID 85422
PageCount 13
ParticipantIDs proquest_miscellaneous_1835414519
proquest_journals_1920466434
crossref_primary_10_1109_TCYB_2016_2613129
pubmed_primary_27740509
crossref_citationtrail_10_1109_TCYB_2016_2613129
ieee_primary_7588087
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
dullerud (ref25) 2000
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
zhu (ref15) 2012; 57
ref24
ref26
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
boyd (ref29) 2003
ref5
caramanis (ref23) 2012
References_xml – ident: ref32
  doi: 10.1016/j.sysconle.2004.02.022
– year: 2003
  ident: ref29
  publication-title: Subgradient methods
– ident: ref11
  doi: 10.1109/TCYB.2015.2453167
– ident: ref33
  doi: 10.1287/opre.1030.0065
– ident: ref18
  doi: 10.1109/TSMCB.2011.2160394
– ident: ref9
  doi: 10.1109/TSP.2013.2295055
– ident: ref14
  doi: 10.1109/TAC.2008.2009515
– year: 2012
  ident: ref23
  article-title: Robust optimization in machine learning
  publication-title: Optimization for Machine Learning
– ident: ref28
  doi: 10.1017/CBO9780511804441
– ident: ref4
  doi: 10.1109/TSP.2013.2265221
– ident: ref7
  doi: 10.1109/TSMC.2014.2332306
– ident: ref24
  doi: 10.1109/TSP.2004.838933
– ident: ref34
  doi: 10.1080/00207170701491070
– ident: ref12
  doi: 10.1561/2200000016
– ident: ref16
  doi: 10.1109/TSP.2011.2146776
– ident: ref27
  doi: 10.1007/s11081-012-9198-y
– ident: ref2
  doi: 10.1561/2200000051
– year: 2000
  ident: ref25
  publication-title: A Course in Robust Control Theory A Convex Approach
  doi: 10.1007/978-1-4757-3290-0
– ident: ref22
  doi: 10.1287/moor.23.4.769
– ident: ref35
  doi: 10.1109/TCST.2010.2045501
– volume: 57
  start-page: 151
  year: 2012
  ident: ref15
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2167817
– ident: ref17
  doi: 10.1109/TAC.2014.2308612
– ident: ref37
  doi: 10.1137/0329055
– ident: ref10
  doi: 10.1109/TSP.2009.2016226
– ident: ref19
  doi: 10.1137/080734510
– ident: ref38
  doi: 10.1007/BF00941312
– ident: ref5
  doi: 10.1109/TCYB.2015.2464255
– ident: ref3
  doi: 10.1109/JSTSP.2013.2246763
– ident: ref6
  doi: 10.1109/TSP.2014.2327010
– ident: ref21
  doi: 10.1137/S1052623401392354
– ident: ref1
  doi: 10.1145/984622.984626
– ident: ref31
  doi: 10.1007/BF02592073
– ident: ref8
  doi: 10.1109/TSP.2012.2236830
– ident: ref36
  doi: 10.1137/0324060
– ident: ref13
  doi: 10.1109/CDC.2012.6425904
– ident: ref20
  doi: 10.1016/S0167-6377(99)00016-4
– ident: ref26
  doi: 10.1007/s10957-009-9522-7
– ident: ref30
  doi: 10.1007/s11424-008-9122-x
SSID ssj0000816898
Score 2.331274
Snippet In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2321
SubjectTerms Algorithm design and analysis
Algorithms
Computer simulation
Convergence
Distributed optimization
Lagrangian functions
Linear programming
Multiagent systems
networked system
Nonlinear programming
Optimization
Parameter uncertainty
Projection
robust
Robustness
Robustness (mathematics)
subgradient approach
Uncertainty
Title Distributed Robust Optimization in Networked System
URI https://ieeexplore.ieee.org/document/7588087
https://www.ncbi.nlm.nih.gov/pubmed/27740509
https://www.proquest.com/docview/1920466434
https://www.proquest.com/docview/1835414519
Volume 47
WOSCitedRecordID wos000405458200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UfPDl_Lxz_aLCPehhNduk-Xj0Ex-OVURhfSpNk4KgXXF3_fudSbMF4TzwqYFO25CZdH5JZn4D8FsJYwXTdZrViqUidyzV3uepo9JIvkbQ60Oi8F81GOjh0NzOwVGXC-O9D8Fn_pia4SzfjaopbZWdILbVTKt5mFdKtrla3X5KKCARSt9m2EgRVah4iNln5uT-_PGM4rjkMa4YOPo4IgFG5EPsJ588Uiix8jXaDF7navl7_V2BHxFdJqetOazCnG_WYDXO33FyEEmmD9eBXxBjLhW78i65G9npeJLc4O_jJeZlJk9NMmhDxFGg5TXfgIery_vz6zQWUEgrLswkFbbUTte2r-vccscrJevSSWZYZcs-l5bXzDgrpKyEtrpipRNe-kwap8tSOv4TFppR4zchQWRCdF0-d4gHMpkb5xSRt-V4FaIWPWCzQSyqyC5ORS6ei7DKYKYgFRSkgiKqoAd_ukdeW2qN_wmv0_h2gnFoe7Az01QRJ9-4QNDKiDWfY6_2u9s4begspGz8aIoytOFFVYrxzb9aDXfvnhnG1r-_uQ1LGfn2EAW4AwuTt6nfhcXqffI0fttD2xzqvWCbH2V324A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED51ZdJ4AfYDKBTIJB7GtLRu7Dj2IxSmIboyoSJ1T1EcO1IlSFF_8Pdz57iRkNgknmIpl8Ty2fFn--77AN5mQhvBVBUnVcZikVoWK-fS2JI0kqsQ9DqfKDzJplM1n-ubDly0uTDOOR985gZU9Gf5dlluaatsiNhWMZXtwYNUiIQ12VrtjoqXkPDitwkWYsQVWTjGHDE9nI1vP1AklxzgmoHjLEc0wIh9iP_krznJi6zcjTf9vHP5-P9q_AQeBXwZvW86xCF0XH0Eh2EEr6OzQDP97hj4R-LMJbkrZ6NvS7Ndb6Kv-AP5GTIzo0UdTZsgcTRomM1P4Pvlp9n4Kg4SCnHJhd7EwhTKqsqMVJUabnmZyaqwkmlWmmLEpeEV09YIKUuhjCpZYYWTLpHaqqKQlj-Fbr2s3XOIEJsQYZdLLSKCRKba2ozo21K8ClGJHrBdI-Zl4BcnmYsfuV9nMJ2TC3JyQR5c0IPz9pFfDbnGfcbH1L6tYWjaHvR3nsrD8FvnCFsZ8eZzrNVpexsHDp2GFLVbbtGGtrxIpxjf_KzxcPvuXcd48e9vvoGDq9n1JJ98nn55CQ8Tmul9TGAfupvV1r2C_fL3ZrFevfY99A_N6N3f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Robust+Optimization+in+Networked+System&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Shengnan&rft.au=Li%2C+Chunguang&rft.date=2017-08-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=47&rft.issue=8&rft.spage=2321&rft.epage=2333&rft_id=info:doi/10.1109%2FTCYB.2016.2613129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2016_2613129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon