Distributed Robust Optimization in Networked System
In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of loca...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. 47; no. 8; pp. 2321 - 2333 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided. |
|---|---|
| AbstractList | In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided.In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided. In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex objective function with respect to a global variable under the global constraints. The objective function can be represented by a sum of local objective functions. The global constraints contain some uncertain parameters which are partially known, and can be characterized by some inequality constraints. After problem transformation, we adopt the Lagrangian primal-dual method to solve this problem. We prove that the primal and dual optimal solutions of the problem are restricted in some specific sets, and we give a method to construct these sets. Then, we propose a DRO algorithm to find the primal-dual optimal solutions of the Lagrangian function, which consists of a subgradient step, a projection step, and a diffusion step, and in the projection step of the algorithm, the optimized variables are projected onto the specific sets to guarantee the boundedness of the subgradients. Convergence analysis and numerical simulations verifying the performance of the proposed algorithm are then provided. Further, for nonconvex DRO problem, the corresponding approach and algorithm framework are also provided. |
| Author | Shengnan Wang Chunguang Li |
| Author_xml | – sequence: 1 givenname: Shengnan surname: Wang fullname: Wang, Shengnan – sequence: 2 givenname: Chunguang orcidid: 0000-0003-3147-1553 surname: Li fullname: Li, Chunguang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27740509$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEtLAzEYRYNUbK39ASJIwY2b1rwmkyy1PkEsaF24CskkA9HOTE0ySP31prZ10YXZJIRz7_dxDkGnbmoLwDGCY4SguJhN3q7GGCI2xgwRhMUe6GHE-AjjPOv8vVneBYMQ3mE6PH0JfgC6OM8pzKDoAXLtQvROt9Ga4XOj2xCH00V0lftW0TX10NXDJxu_Gv-RgJdliLY6Avulmgc72Nx98Hp7M5vcjx6ndw-Ty8dRQaiII6oVN7zUiJeZJoYUOSuVYVDAQitEmCYlFEZTxgrKNS-gMtQyi5kwXClmSB-cr3sXvvlsbYiycqGw87mqbdMGiTjJKKIZEgk920Hfm9bXaTuJBIZpBiU0UacbqtWVNXLhXaX8Um51JCBfA4VvQvC2lIWLvx6iV24uEZQr93LlXq7cy437lEQ7yW35f5mTdcZZa__4POMc8pz8ANUNjao |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2023_09_058 crossref_primary_10_1109_TPWRS_2022_3202188 crossref_primary_10_1016_j_ijepes_2021_106996 crossref_primary_10_1109_TSMC_2019_2936829 crossref_primary_10_1002_2050_7038_12116 crossref_primary_10_1109_TSIPN_2024_3451992 crossref_primary_10_1109_TCYB_2016_2626801 crossref_primary_10_1109_TSMC_2019_2960770 crossref_primary_10_1109_TSMC_2017_2780194 crossref_primary_10_1109_TSG_2022_3185140 crossref_primary_10_1109_TSIPN_2020_2975356 crossref_primary_10_1109_TCNS_2024_3354873 crossref_primary_10_1016_j_apenergy_2023_121133 crossref_primary_10_1109_TCYB_2018_2875131 crossref_primary_10_1109_TCYB_2020_2973221 crossref_primary_10_1109_TSIPN_2017_2699923 crossref_primary_10_1007_s10957_024_02552_w crossref_primary_10_1109_TCYB_2017_2669041 crossref_primary_10_1016_j_automatica_2023_111177 crossref_primary_10_1109_TSTE_2021_3119657 crossref_primary_10_1109_TCYB_2017_2755720 crossref_primary_10_1002_rnc_7791 crossref_primary_10_1109_TII_2020_3022412 crossref_primary_10_1007_s10957_018_1355_9 crossref_primary_10_1109_ACCESS_2021_3074629 crossref_primary_10_1109_TSIPN_2018_2832026 crossref_primary_10_1109_LSP_2025_3563722 crossref_primary_10_1109_TCYB_2018_2869249 crossref_primary_10_1016_j_ijepes_2020_106360 |
| Cites_doi | 10.1016/j.sysconle.2004.02.022 10.1109/TCYB.2015.2453167 10.1287/opre.1030.0065 10.1109/TSMCB.2011.2160394 10.1109/TSP.2013.2295055 10.1109/TAC.2008.2009515 10.1017/CBO9780511804441 10.1109/TSP.2013.2265221 10.1109/TSMC.2014.2332306 10.1109/TSP.2004.838933 10.1080/00207170701491070 10.1561/2200000016 10.1109/TSP.2011.2146776 10.1007/s11081-012-9198-y 10.1561/2200000051 10.1007/978-1-4757-3290-0 10.1287/moor.23.4.769 10.1109/TCST.2010.2045501 10.1109/TAC.2011.2167817 10.1109/TAC.2014.2308612 10.1137/0329055 10.1109/TSP.2009.2016226 10.1137/080734510 10.1007/BF00941312 10.1109/TCYB.2015.2464255 10.1109/JSTSP.2013.2246763 10.1109/TSP.2014.2327010 10.1137/S1052623401392354 10.1145/984622.984626 10.1007/BF02592073 10.1109/TSP.2012.2236830 10.1137/0324060 10.1109/CDC.2012.6425904 10.1016/S0167-6377(99)00016-4 10.1007/s10957-009-9522-7 10.1007/s11424-008-9122-x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2016.2613129 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 2333 |
| ExternalDocumentID | 27740509 10_1109_TCYB_2016_2613129 7588087 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2016QNA5004 – fundername: National Natural Science Foundation of China grantid: 61571392; 61631003; 61471320 funderid: 10.13039/501100001809 – fundername: National Program for Special Support of Eminent Professionals |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-4ba8d8fb18f5b3d3c76fad6090cba136b3f09db466c48b8c0ad4e6e269d8aa6d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405458200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 23:05:47 EDT 2025 Sun Nov 30 05:28:39 EST 2025 Mon Jul 21 05:51:30 EDT 2025 Sat Nov 29 06:48:33 EST 2025 Tue Nov 18 22:31:17 EST 2025 Tue Aug 26 16:38:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-4ba8d8fb18f5b3d3c76fad6090cba136b3f09db466c48b8c0ad4e6e269d8aa6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3147-1553 |
| PMID | 27740509 |
| PQID | 1920466434 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1835414519 proquest_journals_1920466434 crossref_primary_10_1109_TCYB_2016_2613129 pubmed_primary_27740509 crossref_citationtrail_10_1109_TCYB_2016_2613129 ieee_primary_7588087 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref36 ref14 dullerud (ref25) 2000 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 zhu (ref15) 2012; 57 ref24 ref26 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 boyd (ref29) 2003 ref5 caramanis (ref23) 2012 |
| References_xml | – ident: ref32 doi: 10.1016/j.sysconle.2004.02.022 – year: 2003 ident: ref29 publication-title: Subgradient methods – ident: ref11 doi: 10.1109/TCYB.2015.2453167 – ident: ref33 doi: 10.1287/opre.1030.0065 – ident: ref18 doi: 10.1109/TSMCB.2011.2160394 – ident: ref9 doi: 10.1109/TSP.2013.2295055 – ident: ref14 doi: 10.1109/TAC.2008.2009515 – year: 2012 ident: ref23 article-title: Robust optimization in machine learning publication-title: Optimization for Machine Learning – ident: ref28 doi: 10.1017/CBO9780511804441 – ident: ref4 doi: 10.1109/TSP.2013.2265221 – ident: ref7 doi: 10.1109/TSMC.2014.2332306 – ident: ref24 doi: 10.1109/TSP.2004.838933 – ident: ref34 doi: 10.1080/00207170701491070 – ident: ref12 doi: 10.1561/2200000016 – ident: ref16 doi: 10.1109/TSP.2011.2146776 – ident: ref27 doi: 10.1007/s11081-012-9198-y – ident: ref2 doi: 10.1561/2200000051 – year: 2000 ident: ref25 publication-title: A Course in Robust Control Theory A Convex Approach doi: 10.1007/978-1-4757-3290-0 – ident: ref22 doi: 10.1287/moor.23.4.769 – ident: ref35 doi: 10.1109/TCST.2010.2045501 – volume: 57 start-page: 151 year: 2012 ident: ref15 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2167817 – ident: ref17 doi: 10.1109/TAC.2014.2308612 – ident: ref37 doi: 10.1137/0329055 – ident: ref10 doi: 10.1109/TSP.2009.2016226 – ident: ref19 doi: 10.1137/080734510 – ident: ref38 doi: 10.1007/BF00941312 – ident: ref5 doi: 10.1109/TCYB.2015.2464255 – ident: ref3 doi: 10.1109/JSTSP.2013.2246763 – ident: ref6 doi: 10.1109/TSP.2014.2327010 – ident: ref21 doi: 10.1137/S1052623401392354 – ident: ref1 doi: 10.1145/984622.984626 – ident: ref31 doi: 10.1007/BF02592073 – ident: ref8 doi: 10.1109/TSP.2012.2236830 – ident: ref36 doi: 10.1137/0324060 – ident: ref13 doi: 10.1109/CDC.2012.6425904 – ident: ref20 doi: 10.1016/S0167-6377(99)00016-4 – ident: ref26 doi: 10.1007/s10957-009-9522-7 – ident: ref30 doi: 10.1007/s11424-008-9122-x |
| SSID | ssj0000816898 |
| Score | 2.331274 |
| Snippet | In this paper, we consider a distributed robust optimization (DRO) problem, where multiple agents in a networked system cooperatively minimize a global convex... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2321 |
| SubjectTerms | Algorithm design and analysis Algorithms Computer simulation Convergence Distributed optimization Lagrangian functions Linear programming Multiagent systems networked system Nonlinear programming Optimization Parameter uncertainty Projection robust Robustness Robustness (mathematics) subgradient approach Uncertainty |
| Title | Distributed Robust Optimization in Networked System |
| URI | https://ieeexplore.ieee.org/document/7588087 https://www.ncbi.nlm.nih.gov/pubmed/27740509 https://www.proquest.com/docview/1920466434 https://www.proquest.com/docview/1835414519 |
| Volume | 47 |
| WOSCitedRecordID | wos000405458200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UfPDl_Lxz_aLCPehhNduk-Xj0Ex-OVURhfSpNk4KgXXF3_fudSbMF4TzwqYFO25CZdH5JZn4D8FsJYwXTdZrViqUidyzV3uepo9JIvkbQ60Oi8F81GOjh0NzOwVGXC-O9D8Fn_pia4SzfjaopbZWdILbVTKt5mFdKtrla3X5KKCARSt9m2EgRVah4iNln5uT-_PGM4rjkMa4YOPo4IgFG5EPsJ588Uiix8jXaDF7navl7_V2BHxFdJqetOazCnG_WYDXO33FyEEmmD9eBXxBjLhW78i65G9npeJLc4O_jJeZlJk9NMmhDxFGg5TXfgIery_vz6zQWUEgrLswkFbbUTte2r-vccscrJevSSWZYZcs-l5bXzDgrpKyEtrpipRNe-kwap8tSOv4TFppR4zchQWRCdF0-d4gHMpkb5xSRt-V4FaIWPWCzQSyqyC5ORS6ei7DKYKYgFRSkgiKqoAd_ukdeW2qN_wmv0_h2gnFoe7Az01QRJ9-4QNDKiDWfY6_2u9s4begspGz8aIoytOFFVYrxzb9aDXfvnhnG1r-_uQ1LGfn2EAW4AwuTt6nfhcXqffI0fttD2xzqvWCbH2V324A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED51ZdJ4AfYDKBTIJB7GtLRu7Dj2IxSmIboyoSJ1T1EcO1IlSFF_8Pdz57iRkNgknmIpl8Ty2fFn--77AN5mQhvBVBUnVcZikVoWK-fS2JI0kqsQ9DqfKDzJplM1n-ubDly0uTDOOR985gZU9Gf5dlluaatsiNhWMZXtwYNUiIQ12VrtjoqXkPDitwkWYsQVWTjGHDE9nI1vP1AklxzgmoHjLEc0wIh9iP_krznJi6zcjTf9vHP5-P9q_AQeBXwZvW86xCF0XH0Eh2EEr6OzQDP97hj4R-LMJbkrZ6NvS7Ndb6Kv-AP5GTIzo0UdTZsgcTRomM1P4Pvlp9n4Kg4SCnHJhd7EwhTKqsqMVJUabnmZyaqwkmlWmmLEpeEV09YIKUuhjCpZYYWTLpHaqqKQlj-Fbr2s3XOIEJsQYZdLLSKCRKba2ozo21K8ClGJHrBdI-Zl4BcnmYsfuV9nMJ2TC3JyQR5c0IPz9pFfDbnGfcbH1L6tYWjaHvR3nsrD8FvnCFsZ8eZzrNVpexsHDp2GFLVbbtGGtrxIpxjf_KzxcPvuXcd48e9vvoGDq9n1JJ98nn55CQ8Tmul9TGAfupvV1r2C_fL3ZrFevfY99A_N6N3f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Robust+Optimization+in+Networked+System&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Shengnan&rft.au=Li%2C+Chunguang&rft.date=2017-08-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=47&rft.issue=8&rft.spage=2321&rft.epage=2333&rft_id=info:doi/10.1109%2FTCYB.2016.2613129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2016_2613129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |