Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions

Conditional Value at Risk (CVaR) has been recently used to approximate a chance constraint. In this paper, we study the convergence of stationary points, when sample average approximation (SAA) method is applied to a CVaR approximated joint chance constrained stochastic minimization problem. Specifi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 161; číslo 1; s. 257 - 284
Hlavní autoři: Sun, Hailin, Xu, Huifu, Wang, Yong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2014
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Conditional Value at Risk (CVaR) has been recently used to approximate a chance constraint. In this paper, we study the convergence of stationary points, when sample average approximation (SAA) method is applied to a CVaR approximated joint chance constrained stochastic minimization problem. Specifically, we prove under some moderate conditions that optimal solutions and stationary points, obtained from solving sample average approximated problems, converge with probability one to their true counterparts. Moreover, by exploiting the recent results on large deviation of random functions and sensitivity results for generalized equations, we derive exponential rate of convergence of stationary points. The discussion is also extended to the case, when CVaR approximation is replaced by a difference of two convex functions (DC-approximation). Some preliminary numerical test results are reported.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-012-0127-1