Large-Scale Subspace Clustering by Independent Distributed and Parallel Coding
Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS 2 C) problem, that is, partitioning million data points with a millon di...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. 52; no. 9; pp. 9090 - 9100 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS 2 C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS 2 C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/<inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS 2 C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS 2 C methods, our approach achieves better clustering results in public datasets, including a million images and videos. |
|---|---|
| AbstractList | Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS²C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS²C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/ℓ₁-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS²C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS²C methods, our approach achieves better clustering results in public datasets, including a million images and videos. Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS2C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS2C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/[Formula Omitted]-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS2C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS2C methods, our approach achieves better clustering results in public datasets, including a million images and videos. Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS 2 C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS 2 C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/<inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS 2 C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS 2 C methods, our approach achieves better clustering results in public datasets, including a million images and videos. Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS2C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS2C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/ l1 -norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS2C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS2C methods, our approach achieves better clustering results in public datasets, including a million images and videos.Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS2C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS2C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/ l1 -norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS2C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS2C methods, our approach achieves better clustering results in public datasets, including a million images and videos. |
| Author | Li, Jun Fu, Yun Tao, Zhiqiang Wu, Yue Zhong, Bineng |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0001-5845-8602 surname: Li fullname: Li, Jun email: junli@njust.edu.cn organization: Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, USA – sequence: 2 givenname: Zhiqiang orcidid: 0000-0002-5639-7540 surname: Tao fullname: Tao, Zhiqiang email: ztao@scu.edu organization: Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, USA – sequence: 3 givenname: Yue surname: Wu fullname: Wu, Yue email: wuyuebupt@gmail.com organization: Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, USA – sequence: 4 givenname: Bineng orcidid: 0000-0003-3423-1539 surname: Zhong fullname: Zhong, Bineng email: bnzhong@gxnu.edu.cn organization: Department of Computer Science, Guangxi Normal University, Guilin, China – sequence: 5 givenname: Yun orcidid: 0000-0002-5098-2853 surname: Fu fullname: Fu, Yun email: yunfu@ece.neu.edu organization: Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33635812$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTtrHDEUhUVwiJ8_IATCQBo3s9Fr9CiTsZMYliRgu0glNJo7Rkar2Uiawv8-WnbtwkVuoXu5-s5B6JyiozhHQOg9wStCsP581__5uqKYkhXDHcWdeINOKBGqpVR2Ry-zkMfoIudHXEvVlVbv0DFjgnWK0BP0c23TA7S3zgZobpchb62Dpg9LLpB8fGiGp-YmjrCFesTSXPlckh-WAmNj49j8tsmGAKHp57Hi5-jtZEOGi0M_Q_ffru_6H-361_eb_su6dYzr0rLJ2Y5OimA5gsJSackttp0kde8Y1VBvx04IPlA1aMGcmAbpONOuI1YJdoYu977bNP9dIBez8dlBCDbCvGRDueZUEcJxRT-9Qh_nJcX6OkMl5lhrxnbUxwO1DBsYzTb5jU1P5vmnKiD3gEtzzgkm43yxxc-xJOuDIdjsYjG7WMwuFnOIpSrJK-Wz-f80H_YaDwAvvGaCayLZPyoRlUw |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_3390_electronics13010083 crossref_primary_10_1109_TSMC_2025_3572363 crossref_primary_10_1016_j_knosys_2024_112329 crossref_primary_10_1109_TCSVT_2023_3241172 crossref_primary_10_1016_j_knosys_2024_112302 crossref_primary_10_1109_TMM_2025_3535402 crossref_primary_10_1109_TCYB_2025_3526176 crossref_primary_10_1109_TNNLS_2025_3528470 |
| Cites_doi | 10.1109/TPAMI.2013.57 10.1080/01621459.2018.1429274 10.1109/TNN.2011.2162000 10.1016/j.patcog.2020.107627 10.24963/ijcai.2017/297 10.1109/CVPR.2017.80 10.1109/CVPR.2013.274 10.1109/TPAMI.2012.88 10.1007/s10915-016-0318-2 10.1109/CVPR.2014.134 10.7551/mitpress/7496.003.0015 10.1109/TPAMI.2015.2392779 10.1609/aaai.v32i1.11626 10.1109/CVPR.2017.461 10.1109/TCYB.2016.2536752 10.1145/3063316 10.1109/ICCV.2011.6126422 10.1109/TNNLS.2016.2541681 10.1109/TCYB.2019.2918495 10.1109/TCYB.2014.2358564 10.1609/aaai.v31i1.10782 10.1109/TNNLS.2015.2490080 10.1561/9781601984616 10.1109/CVPR.2016.425 10.1109/TPAMI.2012.230 10.1007/978-3-319-48890-5_8 10.1109/TPAMI.2015.2511748 10.1145/3240508.3240679 10.1109/ICCV.2013.440 10.1016/j.neunet.2020.05.030 10.1109/CVPR.2016.426 10.1109/TCYB.2018.2887094 10.1109/CVPR.2015.7298773 10.1145/2647868.2654999 10.1109/TIP.2020.3010631 10.1109/CVPR.2017.8 10.1109/TCYB.2018.2883566 10.1109/TNNLS.2020.3040379 10.1007/978-3-030-01240-3_5 10.1007/978-3-642-33786-4_26 10.1016/j.neunet.2020.07.014 10.1016/j.snb.2013.05.027 10.1609/aaai.v28i1.8963 10.1137/080738970 10.1145/3343031.3351023 10.1109/TNNLS.2017.2777489 10.1016/j.patcog.2020.107524 10.1609/aaai.v30i1.10473 10.24963/ijcai.2017/298 10.1109/TCYB.2020.3031666 10.1109/CVPR.2015.7298624 10.1109/ICCV.2011.6126528 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2021.3052056 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 9100 |
| ExternalDocumentID | 33635812 10_1109_TCYB_2021_3052056 9364917 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 62072242 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-3fca52f8107de8078974a0a571ca5c329e52fd5664b28b963c6fb7c439c51a863 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Thu Oct 02 10:15:16 EDT 2025 Sun Jun 29 16:38:46 EDT 2025 Thu Jan 02 22:56:27 EST 2025 Sat Nov 29 02:02:33 EST 2025 Tue Nov 18 21:32:25 EST 2025 Wed Aug 27 02:14:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-3fca52f8107de8078974a0a571ca5c329e52fd5664b28b963c6fb7c439c51a863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5845-8602 0000-0003-3423-1539 0000-0002-5098-2853 0000-0002-5639-7540 |
| PMID | 33635812 |
| PQID | 2704099330 |
| PQPubID | 85422 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2494281140 crossref_citationtrail_10_1109_TCYB_2021_3052056 crossref_primary_10_1109_TCYB_2021_3052056 ieee_primary_9364917 pubmed_primary_33635812 proquest_journals_2704099330 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref14 ref53 ref52 ref11 ref10 ref54 Vincent (ref55) 2010; 11 ref16 ref19 ref18 ref51 ref50 Wang (ref26) ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 Shen (ref15) ref7 ref9 ref4 ref3 Abu-El-Haija (ref1) 2016 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Wang (ref17) |
| References_xml | – ident: ref13 doi: 10.1109/TPAMI.2013.57 – ident: ref49 doi: 10.1080/01621459.2018.1429274 – ident: ref36 doi: 10.1109/TNN.2011.2162000 – ident: ref28 doi: 10.1016/j.patcog.2020.107627 – ident: ref42 doi: 10.24963/ijcai.2017/297 – start-page: 622 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref15 article-title: Online low-rank subspace clustering by basis dictionary pursuit – ident: ref6 doi: 10.1109/CVPR.2017.80 – ident: ref3 doi: 10.1109/CVPR.2013.274 – ident: ref14 doi: 10.1109/TPAMI.2012.88 – ident: ref52 doi: 10.1007/s10915-016-0318-2 – ident: ref4 doi: 10.1109/CVPR.2014.134 – ident: ref50 doi: 10.7551/mitpress/7496.003.0015 – ident: ref57 doi: 10.1109/TPAMI.2015.2392779 – ident: ref44 doi: 10.1609/aaai.v32i1.11626 – ident: ref7 doi: 10.1109/CVPR.2017.461 – ident: ref11 doi: 10.1109/TCYB.2016.2536752 – ident: ref47 doi: 10.1145/3063316 – ident: ref56 doi: 10.1109/ICCV.2011.6126422 – ident: ref43 doi: 10.1109/TNNLS.2016.2541681 – ident: ref12 doi: 10.1109/TCYB.2019.2918495 – ident: ref35 doi: 10.1109/TCYB.2014.2358564 – ident: ref40 doi: 10.1609/aaai.v31i1.10782 – ident: ref37 doi: 10.1109/TNNLS.2015.2490080 – ident: ref48 doi: 10.1561/9781601984616 – ident: ref24 doi: 10.1109/CVPR.2016.425 – start-page: 2153 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref26 article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering – ident: ref54 doi: 10.1109/TPAMI.2012.230 – ident: ref20 doi: 10.1007/978-3-319-48890-5_8 – ident: ref23 doi: 10.1109/TPAMI.2015.2511748 – ident: ref9 doi: 10.1145/3240508.3240679 – volume-title: YouTube-8m: A large-scale video classification benchmark year: 2016 ident: ref1 – ident: ref45 doi: 10.1109/ICCV.2013.440 – ident: ref34 doi: 10.1016/j.neunet.2020.05.030 – ident: ref25 doi: 10.1109/CVPR.2016.426 – ident: ref29 doi: 10.1109/TCYB.2018.2887094 – ident: ref19 doi: 10.1109/CVPR.2015.7298773 – ident: ref5 doi: 10.1145/2647868.2654999 – ident: ref32 doi: 10.1109/TIP.2020.3010631 – ident: ref8 doi: 10.1109/CVPR.2017.8 – start-page: 89 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref17 article-title: Noisy sparse subspace clustering – ident: ref21 doi: 10.1109/TCYB.2018.2883566 – ident: ref22 doi: 10.1109/TNNLS.2020.3040379 – ident: ref39 doi: 10.1007/978-3-030-01240-3_5 – volume: 11 start-page: 3371 year: 2010 ident: ref55 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref16 doi: 10.1007/978-3-642-33786-4_26 – ident: ref33 doi: 10.1016/j.neunet.2020.07.014 – ident: ref51 doi: 10.1016/j.snb.2013.05.027 – ident: ref38 doi: 10.1609/aaai.v28i1.8963 – ident: ref53 doi: 10.1137/080738970 – ident: ref10 doi: 10.1145/3343031.3351023 – ident: ref27 doi: 10.1109/TNNLS.2017.2777489 – ident: ref31 doi: 10.1016/j.patcog.2020.107524 – ident: ref46 doi: 10.1609/aaai.v30i1.10473 – ident: ref41 doi: 10.24963/ijcai.2017/298 – ident: ref30 doi: 10.1109/TCYB.2020.3031666 – ident: ref18 doi: 10.1109/CVPR.2015.7298624 – ident: ref2 doi: 10.1109/ICCV.2011.6126528 |
| SSID | ssj0000816898 |
| Score | 2.3954704 |
| Snippet | Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9090 |
| SubjectTerms | Big Data Clustering Clustering methods Columns (structural) Data points Dictionaries Distributed and parallel computing Distributed databases least-squares regression (LSR) low-rank representation (LRR) Massive data points Matrix decomposition Multimedia Optimization over-high dimensional big data Regularization Sparse matrices sparse subspace clustering (SSC) subspace clustering Subspaces Video |
| Title | Large-Scale Subspace Clustering by Independent Distributed and Parallel Coding |
| URI | https://ieeexplore.ieee.org/document/9364917 https://www.ncbi.nlm.nih.gov/pubmed/33635812 https://www.proquest.com/docview/2704099330 https://www.proquest.com/docview/2494281140 |
| Volume | 52 |
| WOSCitedRecordID | wos000732184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdt6cNe-rl21y9c6MM25jaxnTh-7G4rLZSjsK7cnoLjOFA4cuM-Cv3vK_l8gUJX2FuIlQ8syZIsWT-AM22bRKVacxQOxZV1Na9cJrhU2hWFqWQdMvgPt3owKIZDc7cC37qzMN77UHzmz-ky5PLrsZvTVtmFkbnC8GIVVrXWi7Na3X5KAJAI0LcCLzh6FTomMdPEXNz3_3zHYFCk55IKPzJCLpIyp-Zf4pVFChAr__Y2g9W52vy__92CjehdssuFOGzDim93YDvq75R9jk2mv-zC4JZKwPkvZJFntHpg7OxZfzSnxglozlj1zG46iNwZ-0ENdgkby9fMtjW7sxNCYRmx_pis30f4ffXzvn_NI7YCd1KZGZeNs5loCoz-ah96zmtlE5vpFO87KYzH0Rp9PVWJokItdXlTaYfui8tSW-RyD9baces_AatERbkc9KMsjluM34wRDTXqE7ie5HUPkuX8li42Hif8i1EZApDElMSdkrhTRu704Gv3yN9F1433iHdp6jvCOOs9OFoysYx6OS2FxkXL0CZOD067YdQoSpPY1o_nSKMMxmQYJyLN_oL53buXMnPw9jcP4YOg4xGhBu0I1maTuT-Gdfc0e5xOTlBsh8VJENsXhpDi3A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_aKrQv6tlqT6tG8EGlaXeT7GbzqKdHi-dR8Czt05LNZqFw7JX7EPzvncnlFoRa8G3ZzH6QmcnMZCbzA3inbZOoVGuOwqG4sq7mlcsEl0q7ojCVrEMG_3Kkx-Pi6spcbMFxdxbGex-Kz_wJXYZcfj1zK9oqOzUyVxhebMODTCmRrk9rdTsqAUIigN8KvODoV-iYxkwTczoZXH_GcFCkJ5JKPzLCLpIyp_Zf4i-bFEBW_u1vBrszfPx_f_wEHkX_kn1aC0QPtnz7FHpRgxfsfWwz_WEfxiMqAuc_kEme0fqB0bNng-mKWiegQWPVb3begeQu2RdqsUvoWL5mtq3ZhZ0TDsuUDWZk_w7g5_DrZHDGI7oCd1KZJZeNs5loCoz_ah-6zmtlE5vpFO87KYzH0Rq9PVWJokI9dXlTaYcOjMtSW-TyGey0s9YfAqtERdkc9KQsjluM4IwRDbXqE7ii5HUfks38li62HicEjGkZQpDElMSdkrhTRu704WP3yO2678Z9xPs09R1hnPU-HG2YWEbNXJRC47JlaBunD2-7YdQpSpTY1s9WSKMMRmUYKSLN8zXzu3dvZObF3d98A7tnk--jcnQ-_vYS9gQdlggVaUews5yv_Ct46H4tbxbz10F4_wAkyeU7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Subspace+Clustering+by+Independent+Distributed+and+Parallel+Coding&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Li%2C+Jun&rft.au=Tao%2C+Zhiqiang&rft.au=Wu%2C+Yue&rft.au=Zhong%2C+Bineng&rft.date=2022-09-01&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2021.3052056&rft_id=info%3Apmid%2F33635812&rft.externalDocID=33635812 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |