Large-Scale Subspace Clustering by Independent Distributed and Parallel Coding

Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS 2 C) problem, that is, partitioning million data points with a millon di...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 52; no. 9; pp. 9090 - 9100
Main Authors: Li, Jun, Tao, Zhiqiang, Wu, Yue, Zhong, Bineng, Fu, Yun
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS 2 C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS 2 C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/<inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS 2 C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS 2 C methods, our approach achieves better clustering results in public datasets, including a million images and videos.
AbstractList Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS²C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS²C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/ℓ₁-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS²C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS²C methods, our approach achieves better clustering results in public datasets, including a million images and videos.
Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS2C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS2C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/[Formula Omitted]-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS2C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS2C methods, our approach achieves better clustering results in public datasets, including a million images and videos.
Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS 2 C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS 2 C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/<inline-formula> <tex-math notation="LaTeX">\ell _{1} </tex-math></inline-formula>-norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS 2 C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS 2 C methods, our approach achieves better clustering results in public datasets, including a million images and videos.
Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS2C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS2C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/ l1 -norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS2C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS2C methods, our approach achieves better clustering results in public datasets, including a million images and videos.Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and texts). In this article, we consider a large-scale subspace clustering (LS2C) problem, that is, partitioning million data points with a millon dimensions. To address this, we explore an independent distributed and parallel framework by dividing big data/variable matrices and regularization by both columns and rows. Specifically, LS2C is independently decomposed into many subproblems by distributing those matrices into different machines by columns since the regularization of the code matrix is equal to a sum of that of its submatrices (e.g., square-of-Frobenius/ l1 -norm). Consensus optimization is designed to solve these subproblems in a parallel way for saving communication costs. Moreover, we provide theoretical guarantees that LS2C can recover consensus subspace representations of high-dimensional data points under broad conditions. Compared with the state-of-the-art LS2C methods, our approach achieves better clustering results in public datasets, including a million images and videos.
Author Li, Jun
Fu, Yun
Tao, Zhiqiang
Wu, Yue
Zhong, Bineng
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0001-5845-8602
  surname: Li
  fullname: Li, Jun
  email: junli@njust.edu.cn
  organization: Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, USA
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0002-5639-7540
  surname: Tao
  fullname: Tao, Zhiqiang
  email: ztao@scu.edu
  organization: Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, USA
– sequence: 3
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
  email: wuyuebupt@gmail.com
  organization: Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, USA
– sequence: 4
  givenname: Bineng
  orcidid: 0000-0003-3423-1539
  surname: Zhong
  fullname: Zhong, Bineng
  email: bnzhong@gxnu.edu.cn
  organization: Department of Computer Science, Guangxi Normal University, Guilin, China
– sequence: 5
  givenname: Yun
  orcidid: 0000-0002-5098-2853
  surname: Fu
  fullname: Fu, Yun
  email: yunfu@ece.neu.edu
  organization: Department of Electrical and Computer Engineering, College of Engineering, Northeastern University, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33635812$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtrHDEUhUVwiJ8_IATCQBo3s9Fr9CiTsZMYliRgu0glNJo7Rkar2Uiawv8-WnbtwkVuoXu5-s5B6JyiozhHQOg9wStCsP581__5uqKYkhXDHcWdeINOKBGqpVR2Ry-zkMfoIudHXEvVlVbv0DFjgnWK0BP0c23TA7S3zgZobpchb62Dpg9LLpB8fGiGp-YmjrCFesTSXPlckh-WAmNj49j8tsmGAKHp57Hi5-jtZEOGi0M_Q_ffru_6H-361_eb_su6dYzr0rLJ2Y5OimA5gsJSackttp0kde8Y1VBvx04IPlA1aMGcmAbpONOuI1YJdoYu977bNP9dIBez8dlBCDbCvGRDueZUEcJxRT-9Qh_nJcX6OkMl5lhrxnbUxwO1DBsYzTb5jU1P5vmnKiD3gEtzzgkm43yxxc-xJOuDIdjsYjG7WMwuFnOIpSrJK-Wz-f80H_YaDwAvvGaCayLZPyoRlUw
CODEN ITCEB8
CitedBy_id crossref_primary_10_3390_electronics13010083
crossref_primary_10_1109_TSMC_2025_3572363
crossref_primary_10_1016_j_knosys_2024_112329
crossref_primary_10_1109_TCSVT_2023_3241172
crossref_primary_10_1016_j_knosys_2024_112302
crossref_primary_10_1109_TMM_2025_3535402
crossref_primary_10_1109_TCYB_2025_3526176
crossref_primary_10_1109_TNNLS_2025_3528470
Cites_doi 10.1109/TPAMI.2013.57
10.1080/01621459.2018.1429274
10.1109/TNN.2011.2162000
10.1016/j.patcog.2020.107627
10.24963/ijcai.2017/297
10.1109/CVPR.2017.80
10.1109/CVPR.2013.274
10.1109/TPAMI.2012.88
10.1007/s10915-016-0318-2
10.1109/CVPR.2014.134
10.7551/mitpress/7496.003.0015
10.1109/TPAMI.2015.2392779
10.1609/aaai.v32i1.11626
10.1109/CVPR.2017.461
10.1109/TCYB.2016.2536752
10.1145/3063316
10.1109/ICCV.2011.6126422
10.1109/TNNLS.2016.2541681
10.1109/TCYB.2019.2918495
10.1109/TCYB.2014.2358564
10.1609/aaai.v31i1.10782
10.1109/TNNLS.2015.2490080
10.1561/9781601984616
10.1109/CVPR.2016.425
10.1109/TPAMI.2012.230
10.1007/978-3-319-48890-5_8
10.1109/TPAMI.2015.2511748
10.1145/3240508.3240679
10.1109/ICCV.2013.440
10.1016/j.neunet.2020.05.030
10.1109/CVPR.2016.426
10.1109/TCYB.2018.2887094
10.1109/CVPR.2015.7298773
10.1145/2647868.2654999
10.1109/TIP.2020.3010631
10.1109/CVPR.2017.8
10.1109/TCYB.2018.2883566
10.1109/TNNLS.2020.3040379
10.1007/978-3-030-01240-3_5
10.1007/978-3-642-33786-4_26
10.1016/j.neunet.2020.07.014
10.1016/j.snb.2013.05.027
10.1609/aaai.v28i1.8963
10.1137/080738970
10.1145/3343031.3351023
10.1109/TNNLS.2017.2777489
10.1016/j.patcog.2020.107524
10.1609/aaai.v30i1.10473
10.24963/ijcai.2017/298
10.1109/TCYB.2020.3031666
10.1109/CVPR.2015.7298624
10.1109/ICCV.2011.6126528
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3052056
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 9100
ExternalDocumentID 33635812
10_1109_TCYB_2021_3052056
9364917
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62072242
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-3fca52f8107de8078974a0a571ca5c329e52fd5664b28b963c6fb7c439c51a863
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 10:15:16 EDT 2025
Sun Jun 29 16:38:46 EDT 2025
Thu Jan 02 22:56:27 EST 2025
Sat Nov 29 02:02:33 EST 2025
Tue Nov 18 21:32:25 EST 2025
Wed Aug 27 02:14:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3fca52f8107de8078974a0a571ca5c329e52fd5664b28b963c6fb7c439c51a863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5845-8602
0000-0003-3423-1539
0000-0002-5098-2853
0000-0002-5639-7540
PMID 33635812
PQID 2704099330
PQPubID 85422
PageCount 11
ParticipantIDs proquest_miscellaneous_2494281140
crossref_citationtrail_10_1109_TCYB_2021_3052056
crossref_primary_10_1109_TCYB_2021_3052056
ieee_primary_9364917
pubmed_primary_33635812
proquest_journals_2704099330
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref14
ref53
ref52
ref11
ref10
ref54
Vincent (ref55) 2010; 11
ref16
ref19
ref18
ref51
ref50
Wang (ref26)
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
Shen (ref15)
ref7
ref9
ref4
ref3
Abu-El-Haija (ref1) 2016
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Wang (ref17)
References_xml – ident: ref13
  doi: 10.1109/TPAMI.2013.57
– ident: ref49
  doi: 10.1080/01621459.2018.1429274
– ident: ref36
  doi: 10.1109/TNN.2011.2162000
– ident: ref28
  doi: 10.1016/j.patcog.2020.107627
– ident: ref42
  doi: 10.24963/ijcai.2017/297
– start-page: 622
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Online low-rank subspace clustering by basis dictionary pursuit
– ident: ref6
  doi: 10.1109/CVPR.2017.80
– ident: ref3
  doi: 10.1109/CVPR.2013.274
– ident: ref14
  doi: 10.1109/TPAMI.2012.88
– ident: ref52
  doi: 10.1007/s10915-016-0318-2
– ident: ref4
  doi: 10.1109/CVPR.2014.134
– ident: ref50
  doi: 10.7551/mitpress/7496.003.0015
– ident: ref57
  doi: 10.1109/TPAMI.2015.2392779
– ident: ref44
  doi: 10.1609/aaai.v32i1.11626
– ident: ref7
  doi: 10.1109/CVPR.2017.461
– ident: ref11
  doi: 10.1109/TCYB.2016.2536752
– ident: ref47
  doi: 10.1145/3063316
– ident: ref56
  doi: 10.1109/ICCV.2011.6126422
– ident: ref43
  doi: 10.1109/TNNLS.2016.2541681
– ident: ref12
  doi: 10.1109/TCYB.2019.2918495
– ident: ref35
  doi: 10.1109/TCYB.2014.2358564
– ident: ref40
  doi: 10.1609/aaai.v31i1.10782
– ident: ref37
  doi: 10.1109/TNNLS.2015.2490080
– ident: ref48
  doi: 10.1561/9781601984616
– ident: ref24
  doi: 10.1109/CVPR.2016.425
– start-page: 2153
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref26
  article-title: Iterative views agreement: An iterative low-rank based structured optimization method to multi-view spectral clustering
– ident: ref54
  doi: 10.1109/TPAMI.2012.230
– ident: ref20
  doi: 10.1007/978-3-319-48890-5_8
– ident: ref23
  doi: 10.1109/TPAMI.2015.2511748
– ident: ref9
  doi: 10.1145/3240508.3240679
– volume-title: YouTube-8m: A large-scale video classification benchmark
  year: 2016
  ident: ref1
– ident: ref45
  doi: 10.1109/ICCV.2013.440
– ident: ref34
  doi: 10.1016/j.neunet.2020.05.030
– ident: ref25
  doi: 10.1109/CVPR.2016.426
– ident: ref29
  doi: 10.1109/TCYB.2018.2887094
– ident: ref19
  doi: 10.1109/CVPR.2015.7298773
– ident: ref5
  doi: 10.1145/2647868.2654999
– ident: ref32
  doi: 10.1109/TIP.2020.3010631
– ident: ref8
  doi: 10.1109/CVPR.2017.8
– start-page: 89
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref17
  article-title: Noisy sparse subspace clustering
– ident: ref21
  doi: 10.1109/TCYB.2018.2883566
– ident: ref22
  doi: 10.1109/TNNLS.2020.3040379
– ident: ref39
  doi: 10.1007/978-3-030-01240-3_5
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref55
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1007/978-3-642-33786-4_26
– ident: ref33
  doi: 10.1016/j.neunet.2020.07.014
– ident: ref51
  doi: 10.1016/j.snb.2013.05.027
– ident: ref38
  doi: 10.1609/aaai.v28i1.8963
– ident: ref53
  doi: 10.1137/080738970
– ident: ref10
  doi: 10.1145/3343031.3351023
– ident: ref27
  doi: 10.1109/TNNLS.2017.2777489
– ident: ref31
  doi: 10.1016/j.patcog.2020.107524
– ident: ref46
  doi: 10.1609/aaai.v30i1.10473
– ident: ref41
  doi: 10.24963/ijcai.2017/298
– ident: ref30
  doi: 10.1109/TCYB.2020.3031666
– ident: ref18
  doi: 10.1109/CVPR.2015.7298624
– ident: ref2
  doi: 10.1109/ICCV.2011.6126528
SSID ssj0000816898
Score 2.3954704
Snippet Subspace clustering is a popular method to discover underlying low-dimensional structures of high-dimensional multimedia data (e.g., images, videos, and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9090
SubjectTerms Big Data
Clustering
Clustering methods
Columns (structural)
Data points
Dictionaries
Distributed and parallel computing
Distributed databases
least-squares regression (LSR)
low-rank representation (LRR)
Massive data points
Matrix decomposition
Multimedia
Optimization
over-high dimensional big data
Regularization
Sparse matrices
sparse subspace clustering (SSC)
subspace clustering
Subspaces
Video
Title Large-Scale Subspace Clustering by Independent Distributed and Parallel Coding
URI https://ieeexplore.ieee.org/document/9364917
https://www.ncbi.nlm.nih.gov/pubmed/33635812
https://www.proquest.com/docview/2704099330
https://www.proquest.com/docview/2494281140
Volume 52
WOSCitedRecordID wos000732184300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a4oMvaltrz34QwQeVbnu7yV6SRz1bFOQoWOH6tGSTWSgce-U-BP_7zmRzC4IW-hZ2Zz_ITDIzyeT3A3hPHsHWZBgZzY-UoKDxmQu5yVDXDAWtXVl2ZBN6MjHTqb3egrP-LAwixuIzPOdm3MsPc7_mpbILK0eK0ott2NZad2e1-vWUSCARqW8LamQUVei0iZkP7cXN-PYLJYNFfi658KNk5iIpRwz-VfzlkSLFyv-jzeh1rl4-7X9fwYsUXYrPnTnswha2e7Cbxu9SfEgg0x_3YfKDS8Czn6QiFDx7UO6MYjxbM3ACuTNR_xHfe4rclfjKALvMjYVBuDaIa7dgFpaZGM_Z-72GX1eXN-NvWeJWyLxUdpXJxruyaAxlfwEj5rxWbuhKndN1LwuLdDdQrKfqwtQ0Sv2oqbWn8MWXuTMjeQA77bzFQxBYB2WkzFVpgspR26CCKeu8QYodG20GMNz0b-UT8DjzX8yqmIAMbcXaqVg7VdLOAD71j9x3qBuPCe9z1_eCqdcHcLxRYpXG5bIqNE1alhdxBvCuv00jirdJXIvzNckoSzkZ5Ykk86ZTfv_ujc28_fc3j-B5wccjYg3aMeysFms8gWf-9-puuTgls52a02i2D1aB46Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFfRFrfXjatUIPqh028vXJXnU09LieRQ8oT4t2SQLwrEn91Hwv-9Mdm-hoIJvYXf2g8wkM5NMfj-AN-gRXIWGUeD8iAlKsqHwkdsimYqgoI3XuiWbMNOpvbx0Fztw1J-FSSnl4rN0TM28lx8XYUNLZSdOjhSmF7fgtlZK8Pa0Vr-ikikkMvmtwEaBcYXptjH50J3Mxj8-Yjoo-LGk0g9N3EVSjgj-S9zwSZlk5e_xZvY7pw_-748fwv0uvmQfWoPYg53UPIK9bgSv2NsOZvrdPkwnVARefEMlJUbzB2bPiY3nG4JOQIfGqt_svCfJXbNPBLFL7FgpMt9EduGXxMMyZ-MF-b_H8P3082x8VnTsCkWQyq0LWQevRW0x_4spo84b5YdeG47XgxQu4d2I0Z6qhK1wnIZRXZmAAUzQ3NuRfAK7zaJJz4ClKiorJVfaRsWTcVFFqyteJ4wea2MHMNz2bxk66HFiwJiXOQUZupK0U5J2yk47A3jfP_Krxd34l_A-dX0v2PX6AA63Siy7kbkqhcFpy9EyzgBe97dxTNFGiW_SYoMyymFWhpkiyjxtld-_e2szB3_-5iu4ezb7Oikn59Mvz-GeoMMSuSLtEHbXy016AXfC1frnavkyG-81-U_mAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Subspace+Clustering+by+Independent+Distributed+and+Parallel+Coding&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Li%2C+Jun&rft.au=Tao%2C+Zhiqiang&rft.au=Wu%2C+Yue&rft.au=Zhong%2C+Bineng&rft.date=2022-09-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=9&rft.spage=9090&rft.epage=9100&rft_id=info:doi/10.1109%2FTCYB.2021.3052056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3052056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon