Discrete-Time Optimal Control via Local Policy Iteration Adaptive Dynamic Programming

In this paper, a discrete-time optimal control scheme is developed via a novel local policy iteration adaptive dynamic programming algorithm. In the discrete-time local policy iteration algorithm, the iterative value function and iterative control law can be updated in a subset of the state space, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 47; číslo 10; s. 3367 - 3379
Hlavní autoři: Wei, Qinglai, Liu, Derong, Lin, Qiao, Song, Ruizhuo
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a discrete-time optimal control scheme is developed via a novel local policy iteration adaptive dynamic programming algorithm. In the discrete-time local policy iteration algorithm, the iterative value function and iterative control law can be updated in a subset of the state space, where the computational burden is relaxed compared with the traditional policy iteration algorithm. Convergence properties of the local policy iteration algorithm are presented to show that the iterative value function is monotonically nonincreasing and converges to the optimum under some mild conditions. The admissibility of the iterative control law is proven, which shows that the control system can be stabilized under any of the iterative control laws, even if the iterative control law is updated in a subset of the state space. Finally, two simulation examples are given to illustrate the performance of the developed method.
AbstractList In this paper, a discrete-time optimal control scheme is developed via a novel local policy iteration adaptive dynamic programming algorithm. In the discrete-time local policy iteration algorithm, the iterative value function and iterative control law can be updated in a subset of the state space, where the computational burden is relaxed compared with the traditional policy iteration algorithm. Convergence properties of the local policy iteration algorithm are presented to show that the iterative value function is monotonically nonincreasing and converges to the optimum under some mild conditions. The admissibility of the iterative control law is proven, which shows that the control system can be stabilized under any of the iterative control laws, even if the iterative control law is updated in a subset of the state space. Finally, two simulation examples are given to illustrate the performance of the developed method.
Author Qiao Lin
Derong Liu
Qinglai Wei
Ruizhuo Song
Author_xml – sequence: 1
  givenname: Qinglai
  surname: Wei
  fullname: Wei, Qinglai
– sequence: 2
  givenname: Derong
  surname: Liu
  fullname: Liu, Derong
– sequence: 3
  givenname: Qiao
  surname: Lin
  fullname: Lin, Qiao
– sequence: 4
  givenname: Ruizhuo
  surname: Song
  fullname: Song, Ruizhuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27448382$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtv2zAUhYkiRfNofkAQoBDQpYtcXlJ8aEycJg1gIBmcIRNBUVcBA0l0KTqA_33p2vGQoVxIXnznkvecU3I0hhEJuQA6A6D1z-X8-XrGKMgZE1pSzT6REwZSl4wpcXQ4S3VMzqfplealc6nWX8gxU1WluWYn5OnGTy5iwnLpByweVskPti_mYUwx9MWbt8UiuFx5DL13m-I-YbTJh7G4am2G37C42Yx28K54jOEl2mHw48tX8rmz_YTn-_2MLG9_Lee_y8XD3f38alE6XtWp5K3klna0s1rUwBtgTrcSeVspKVSlGkoVQFMDCuBV27XOyabJd9la1jX8jPzYtV3F8GeNUzJDngb73o4Y1pMBncfnTAiV0e8f0NewjmP-nIGaSyagrkWmvu2pdTNga1YxuxE35t2vDMAOcDFMU8TugAA121jMNhazjcXsY8ka9UHjfPrnYYrW9_9VXu6UHhEPLykBAirG_wJAc5h9
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TSMC_2024_3495821
crossref_primary_10_1016_j_nahs_2023_101338
crossref_primary_10_1109_TSMC_2019_2911900
crossref_primary_10_1109_TSMC_2016_2623766
crossref_primary_10_1016_j_conengprac_2023_105675
crossref_primary_10_1109_TNNLS_2020_3017762
crossref_primary_10_1016_j_neucom_2018_06_020
crossref_primary_10_1080_00207179_2022_2113438
crossref_primary_10_1109_TII_2021_3137816
crossref_primary_10_1109_TCYB_2019_2926631
crossref_primary_10_1109_TSMC_2019_2898370
crossref_primary_10_1155_2021_5549678
crossref_primary_10_1109_TCYB_2021_3085883
crossref_primary_10_1016_j_neucom_2018_10_091
crossref_primary_10_1109_TSMC_2018_2853089
crossref_primary_10_1002_rob_22053
crossref_primary_10_1002_oca_2391
crossref_primary_10_1002_rnc_4757
crossref_primary_10_1080_23307706_2021_2011792
crossref_primary_10_1109_TCYB_2021_3051035
crossref_primary_10_1016_j_ejor_2025_01_037
crossref_primary_10_1109_TAC_2018_2874707
crossref_primary_10_1109_TCYB_2022_3158898
crossref_primary_10_1109_TCYB_2019_2946122
crossref_primary_10_1109_TSMC_2017_2758849
crossref_primary_10_1109_TCYB_2020_3029825
crossref_primary_10_1016_j_ins_2019_05_071
crossref_primary_10_1109_TSMC_2018_2836194
crossref_primary_10_1002_oca_2907
crossref_primary_10_1016_j_compeleceng_2022_108015
crossref_primary_10_1109_TSMC_2018_2836952
crossref_primary_10_1016_j_ast_2020_106442
crossref_primary_10_1109_TCYB_2019_2906694
crossref_primary_10_1109_TII_2020_2972383
crossref_primary_10_1049_cth2_12520
crossref_primary_10_1016_j_oceaneng_2022_111802
crossref_primary_10_1109_TCSI_2024_3377641
crossref_primary_10_1109_TSMC_2019_2898389
crossref_primary_10_1177_1687814017751781
crossref_primary_10_1109_JAS_2024_124773
crossref_primary_10_3233_AIC_180766
crossref_primary_10_1002_rnc_70049
crossref_primary_10_1016_j_neucom_2020_05_012
crossref_primary_10_1109_TNNLS_2021_3053269
crossref_primary_10_1002_oca_2421
crossref_primary_10_1109_TNNLS_2017_2661865
crossref_primary_10_1109_TNNLS_2021_3071727
crossref_primary_10_1016_j_neucom_2019_03_029
crossref_primary_10_1109_TIE_2017_2650872
crossref_primary_10_1109_TSMC_2023_3318650
crossref_primary_10_1016_j_ins_2018_12_091
crossref_primary_10_1109_TNNLS_2016_2638863
crossref_primary_10_1109_TSMC_2018_2837899
crossref_primary_10_1007_s40998_019_00203_9
crossref_primary_10_1109_TCSII_2023_3291399
crossref_primary_10_1109_TSMC_2023_3327492
crossref_primary_10_1109_TCYB_2018_2823199
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1109_TCYB_2023_3332079
crossref_primary_10_1016_j_sysconle_2024_105819
crossref_primary_10_1016_j_neucom_2018_10_072
crossref_primary_10_1109_TCYB_2018_2818747
crossref_primary_10_1109_TSMC_2017_2748964
crossref_primary_10_1109_TSMC_2019_2962629
crossref_primary_10_1109_TCSI_2024_3492255
crossref_primary_10_1109_TSMC_2019_2962103
crossref_primary_10_1002_oca_2771
crossref_primary_10_1109_TNNLS_2023_3245980
crossref_primary_10_1016_j_neucom_2020_04_140
crossref_primary_10_1016_j_automatica_2020_109117
crossref_primary_10_1016_j_neucom_2018_12_033
crossref_primary_10_1109_TNNLS_2024_3392237
crossref_primary_10_1016_j_neucom_2020_11_014
crossref_primary_10_1002_rnc_4342
crossref_primary_10_1109_TCYB_2019_2901268
crossref_primary_10_1109_JSYST_2024_3432796
Cites_doi 10.1006/jsco.1997.0119
10.1109/72.914523
10.1109/TASE.2014.2303139
10.1109/TAC.2014.2317301
10.1109/TNNLS.2015.2461452
10.1109/TCYB.2016.2523878
10.1109/TASE.2013.2284545
10.1007/s10479-012-1128-z
10.1109/TSMCB.2008.926614
10.1109/TNNLS.2015.2401334
10.1109/TPWRD.2009.2016258
10.1109/TCYB.2015.2417170
10.1016/j.automatica.2004.11.034
10.1109/TCYB.2014.2313915
10.1109/TSG.2012.2233224
10.1109/TFUZZ.2014.2310238
10.1109/TSMCB.2012.2203336
10.1109/TASE.2013.2280974
10.1109/MCS.2012.2214134
10.1109/TIE.2013.2273477
10.1016/j.neucom.2012.11.021
10.1109/TIE.2014.2345343
10.1016/j.ins.2015.04.044
10.1109/JAS.2014.7004681
10.1109/TCYB.2014.2384016
10.1109/TSG.2014.2346740
10.1109/TCYB.2014.2354377
10.1049/iet-cta.2012.0486
10.1109/JAS.2014.7004665
10.1109/TNNLS.2015.2441712
10.1109/TIE.2016.2530789
10.1016/j.automatica.2014.10.047
10.1007/s11432-013-4954-y
10.1109/TNNLS.2015.2424971
10.1109/TCYB.2016.2542923
10.1016/j.automatica.2014.05.011
10.1109/TSMCB.2012.2216523
10.1109/TIE.2014.2388198
10.7551/mitpress/4939.003.0007
10.1007/s11432-015-5462-z
10.1109/TIE.2014.2301770
10.1109/TNNLS.2014.2358227
10.1287/moor.1110.0532
10.1109/TCYB.2014.2314612
10.1109/TNNLS.2013.2281663
10.1109/TAC.2015.2414811
10.1109/TCYB.2015.2492242
10.1109/TIE.2014.2361485
10.1016/j.automatica.2014.02.015
10.1109/TCYB.2016.2519445
10.1109/TAC.2006.878720
10.1109/TNNLS.2012.2236354
10.1109/TSMCC.2002.801727
10.1109/TNNLS.2012.2234133
10.1109/TNNLS.2015.2399020
10.1109/TNNLS.2015.2464080
10.1109/TCYB.2015.2421338
10.1016/j.automatica.2010.10.033
10.1109/TCYB.2015.2509646
10.1109/72.623201
10.1109/TNNLS.2014.2329942
10.1109/JAS.2016.7510262
10.1016/j.automatica.2015.06.001
10.1109/TNNLS.2014.2306201
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2016.2586082
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3379
ExternalDocumentID 27448382
10_1109_TCYB_2016_2586082
7515142
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61233001; 61273140; 61374105; 61503379; 61533017; 61304079; U1501251
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-3d63a0f0fa85913b12c8d6e3d4765747b00711b91e5134dfdcc6bbb916da2fb3
IEDL.DBID RIE
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409311800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
IngestDate Sat Sep 27 19:36:37 EDT 2025
Sun Nov 09 07:41:17 EST 2025
Thu Jan 02 23:09:06 EST 2025
Sat Nov 29 06:48:33 EST 2025
Tue Nov 18 21:32:53 EST 2025
Tue Aug 26 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3d63a0f0fa85913b12c8d6e3d4765747b00711b91e5134dfdcc6bbb916da2fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27448382
PQID 1936251995
PQPubID 85422
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCYB_2016_2586082
pubmed_primary_27448382
ieee_primary_7515142
crossref_citationtrail_10_1109_TCYB_2016_2586082
proquest_journals_1936251995
proquest_miscellaneous_1826732557
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref16
ref19
ref18
liu (ref34) 2013; 43
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bertsekas (ref33) 2007
watkins (ref17) 1989
ref35
ref37
ref36
werbos (ref1) 1977; 22
ref30
ref32
busoniu (ref39) 2010
ref38
bertsekas (ref31) 1996
ref71
ref70
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
sutton (ref40) 1998
ref27
ref29
werbos (ref2) 1991
ref60
liu (ref53) 2014; 25
ref62
ref61
References_xml – ident: ref63
  doi: 10.1006/jsco.1997.0119
– ident: ref62
  doi: 10.1109/72.914523
– ident: ref20
  doi: 10.1109/TASE.2014.2303139
– ident: ref25
  doi: 10.1109/TAC.2014.2317301
– ident: ref10
  doi: 10.1109/TNNLS.2015.2461452
– ident: ref60
  doi: 10.1109/TCYB.2016.2523878
– ident: ref8
  doi: 10.1109/TASE.2013.2284545
– ident: ref19
  doi: 10.1007/s10479-012-1128-z
– ident: ref32
  doi: 10.1109/TSMCB.2008.926614
– ident: ref54
  doi: 10.1109/TNNLS.2015.2401334
– ident: ref66
  doi: 10.1109/TPWRD.2009.2016258
– ident: ref52
  doi: 10.1109/TCYB.2015.2417170
– ident: ref42
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref55
  doi: 10.1109/TCYB.2014.2313915
– ident: ref4
  doi: 10.1109/TSG.2012.2233224
– ident: ref46
  doi: 10.1109/TFUZZ.2014.2310238
– ident: ref57
  doi: 10.1109/TSMCB.2012.2203336
– ident: ref38
  doi: 10.1109/TASE.2013.2280974
– ident: ref30
  doi: 10.1109/MCS.2012.2214134
– ident: ref64
  doi: 10.1109/TIE.2013.2273477
– ident: ref29
  doi: 10.1016/j.neucom.2012.11.021
– ident: ref14
  doi: 10.1109/TIE.2014.2345343
– ident: ref61
  doi: 10.1016/j.ins.2015.04.044
– ident: ref67
  doi: 10.1109/JAS.2014.7004681
– ident: ref58
  doi: 10.1109/TCYB.2014.2384016
– ident: ref9
  doi: 10.1109/TSG.2014.2346740
– ident: ref37
  doi: 10.1109/TCYB.2014.2354377
– year: 2007
  ident: ref33
  publication-title: Dynamic Programming and Optimal Control
– ident: ref28
  doi: 10.1049/iet-cta.2012.0486
– ident: ref68
  doi: 10.1109/JAS.2014.7004665
– ident: ref12
  doi: 10.1109/TNNLS.2015.2441712
– year: 1989
  ident: ref17
  article-title: Learning from delayed rewards
– ident: ref65
  doi: 10.1109/TIE.2016.2530789
– ident: ref11
  doi: 10.1016/j.automatica.2014.10.047
– ident: ref71
  doi: 10.1007/s11432-013-4954-y
– ident: ref22
  doi: 10.1109/TNNLS.2015.2424971
– ident: ref21
  doi: 10.1109/TCYB.2016.2542923
– ident: ref49
  doi: 10.1016/j.automatica.2014.05.011
– year: 1996
  ident: ref31
  publication-title: Neuro-Dynamic Programming
– volume: 43
  start-page: 779
  year: 2013
  ident: ref34
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– ident: ref24
  doi: 10.1109/TIE.2014.2388198
– start-page: 67
  year: 1991
  ident: ref2
  article-title: A menu of designs for reinforcement learning over time
  publication-title: Neural Networks for Control
  doi: 10.7551/mitpress/4939.003.0007
– ident: ref70
  doi: 10.1007/s11432-015-5462-z
– ident: ref26
  doi: 10.1109/TIE.2014.2301770
– volume: 22
  start-page: 25
  year: 1977
  ident: ref1
  article-title: Advanced forecasting methods for global crisis warning and models of intelligence
  publication-title: Gen Syst Yearbook
– year: 2010
  ident: ref39
  publication-title: Reinforcement Learning and Dynamic Programming Using Function Approximators
– ident: ref51
  doi: 10.1109/TNNLS.2014.2358227
– ident: ref18
  doi: 10.1287/moor.1110.0532
– year: 1998
  ident: ref40
  publication-title: Reinforcement Learning An Introduction
– ident: ref27
  doi: 10.1109/TCYB.2014.2314612
– volume: 25
  start-page: 621
  year: 2014
  ident: ref53
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref15
  doi: 10.1109/TAC.2015.2414811
– ident: ref36
  doi: 10.1109/TCYB.2015.2492242
– ident: ref6
  doi: 10.1109/TIE.2014.2361485
– ident: ref50
  doi: 10.1016/j.automatica.2014.02.015
– ident: ref13
  doi: 10.1109/TCYB.2016.2519445
– ident: ref35
  doi: 10.1109/TAC.2006.878720
– ident: ref48
  doi: 10.1016/j.automatica.2014.10.047
– ident: ref56
  doi: 10.1109/TNNLS.2012.2236354
– ident: ref41
  doi: 10.1109/TSMCC.2002.801727
– ident: ref5
  doi: 10.1109/TNNLS.2012.2234133
– ident: ref44
  doi: 10.1109/TNNLS.2015.2399020
– ident: ref3
  doi: 10.1109/TNNLS.2015.2464080
– ident: ref45
  doi: 10.1109/TCYB.2015.2421338
– ident: ref47
  doi: 10.1016/j.automatica.2010.10.033
– ident: ref59
  doi: 10.1109/TCYB.2015.2509646
– ident: ref16
  doi: 10.1109/72.623201
– ident: ref23
  doi: 10.1109/TNNLS.2014.2329942
– ident: ref69
  doi: 10.1109/JAS.2016.7510262
– ident: ref7
  doi: 10.1016/j.automatica.2015.06.001
– ident: ref43
  doi: 10.1109/TNNLS.2014.2306201
SSID ssj0000816898
Score 2.464164
Snippet In this paper, a discrete-time optimal control scheme is developed via a novel local policy iteration adaptive dynamic programming algorithm. In the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3367
SubjectTerms Adaptive algorithms
Adaptive control
Adaptive critic designs
adaptive dynamic programming (ADP)
Algorithms
approximate dynamic programming
Computer simulation
Convergence
Discrete-event systems
Dynamic programming
Heuristic algorithms
Iterative algorithms
Iterative methods
local policy iteration
Markov analysis
neuro-dynamic programming
Nonlinear systems
OptimAL control
Optimization
Servers
Time optimal control
Title Discrete-Time Optimal Control via Local Policy Iteration Adaptive Dynamic Programming
URI https://ieeexplore.ieee.org/document/7515142
https://www.ncbi.nlm.nih.gov/pubmed/27448382
https://www.proquest.com/docview/1936251995
https://www.proquest.com/docview/1826732557
Volume 47
WOSCitedRecordID wos000409311800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RxIFLWx5tUyhypR6gqiGOHTs-0qWolRBwWKTtKfIr0kplF7G7_H7Gjjfqoa3UW6LYSeQZe76xZ74B-FRLw0tTeSq4UFQEwajtmKSVqHXpg7eqSYnCV-r6uplM9O0GfBlyYUIIKfgsnMbLdJbv524Vt8rOFBpfJnDBfaGU6nO1hv2UVEAilb6t8IIiqlD5EJOV-mw8-vk1xnHJ06puJJq9SAKs0DVJDHy_WaRUYuXvaDNZnctX__e_r-FlRpfkvFeHHdgIs13YyfN3QY4zyfTJHtxdTHHBQMRMYxIIucGV4x57jvrIdfI0NeQqmjnSEweTH4l9GYVIzr15iGskueiL2ZPbPsTrHo3gPowvv41H32kusUAdF3pJuZfclF3Zmchjxy2rXONl4F4oWaOnYSMEYVazUDMufOedk9bivfSm6ix_A5uz-Sy8A8KCqrjhjbTaC2sQ5gSH6KerndTelaaAcj3Krcv047EKxq82uSGlbqOM2iijNsuogM9Dl4eee-NfjfeiAIaGeewLOFyLss2zc9EiaJUxY1fXBXwcHuO8ioclZhbmK2yDfpfi6HCpAt72KjC8e6057__8zQPYrqLxTyF_h7C5fFyFD7DlnpbTxeMRKu-kOUrK-wxS3ecp
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VLRJcKKVQAgWMxAEQbuNH7ORYtlStWJYeFqmcIr8irUR3q-5ufz9jxxtxACRuiWInkWfs-cae-QbgbaWMKA33VAqpqQySUdsxRbmsmtIHb3WdEoXHejKpr66ayy34OOTChBBS8Fk4ipfpLN8v3DpulR1rNL5M4oK7U0nJWZ-tNeyopBISqfgtxwuKuELnY0xWNsfT0Y9PMZJLHfGqVmj4Ig2wRuckcfD9ZpNSkZW_481kd852_--PH8HDjC_JSa8Qe7AV5o9hL8_gJXmXaabf78P30xkuGYiZaUwDId9w7bjGnqM-dp3czQwZR0NHeupgcpH4l1GM5MSbm7hKktO-nD257IO8rtEMPoHp2efp6JzmIgvUCdmsqPBKmLIrOxOZ7IRl3NVeBeGlVhX6GjaCEGYbFiompO-8c8pavFfe8M6Kp7A9X8zDMyAsaC6MqJVtvLQGgU5wiH-6yqnGu9IUUG5GuXWZgDzWwfjZJkekbNooozbKqM0yKuDD0OWmZ9_4V-P9KIChYR77Ag43omzz_Fy2CFtVzNltqgLeDI9xZsXjEjMPizW2Qc9LC3S5dAEHvQoM795ozvM_f_M13D-ffh2344vJlxfwgEcokAIAD2F7dbsOL-Geu1vNlrevkgr_Ag1k6Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete-Time+Optimal+Control+via+Local+Policy+Iteration+Adaptive+Dynamic+Programming&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wei%2C+Qinglai&rft.au=Liu%2C+Derong&rft.au=Lin%2C+Qiao&rft.au=Song%2C+Ruizhuo&rft.date=2017-10-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=47&rft.issue=10&rft.spage=3367&rft.epage=3379&rft_id=info:doi/10.1109%2FTCYB.2016.2586082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2016_2586082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon