D-optimal sensor selection in the presence of correlated measurement noise

•A relaxation technique to sensor selection for ordinary least squares is proposed.•The problem is reduced to a sequence of convex optimum experimental design problems.•A simple technique to convert the relaxed solutions to sensor locations is exposed.•An example demonstrates that the method is high...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Measurement : journal of the International Measurement Confederation Ročník 164; s. 107873
Hlavný autor: Uciński, Dariusz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Elsevier Ltd 01.11.2020
Elsevier Science Ltd
Predmet:
ISSN:0263-2241, 1873-412X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A relaxation technique to sensor selection for ordinary least squares is proposed.•The problem is reduced to a sequence of convex optimum experimental design problems.•A simple technique to convert the relaxed solutions to sensor locations is exposed.•An example demonstrates that the method is highly competitive with traditional ones. A sensor selection technique is developed for maximizing the parameter estimation accuracy of spatiotemporal systems when the system in question is modeled by a partial differential equation and the measurement noise is correlated. Since the exact correlation structure may not be known exactly, the ordinary least squares method is supposed to be used for estimation and the determinant of the covariance matrix of the resulting estimator is the measure of estimation accuracy. To make the sensor selection computationally tractable, a relaxed formulation is considered. Owing to its nonconvexity, a majorization-minimization algorithm is employed. At each of its iterations, a convex tangent surrogate function that majorizes the original nonconvex design criterion is minimized using extremely efficient simplicial decomposition. As the resulting relaxed solution is a measure on the set of candidate measurements and not a specific subset of selected sensors, randomization and a restricted exchange algorithm are used to convert it to a nearly-optimal subset. A simulation experiment is reported to demonstrate that the proposed approach is highly competitive with the exchange algorithm which has been the only technique available so far. The generality of the proposed technique makes it suitable for other measurement selection problems for least-squares estimation subject to correlated observations.
AbstractList •A relaxation technique to sensor selection for ordinary least squares is proposed.•The problem is reduced to a sequence of convex optimum experimental design problems.•A simple technique to convert the relaxed solutions to sensor locations is exposed.•An example demonstrates that the method is highly competitive with traditional ones. A sensor selection technique is developed for maximizing the parameter estimation accuracy of spatiotemporal systems when the system in question is modeled by a partial differential equation and the measurement noise is correlated. Since the exact correlation structure may not be known exactly, the ordinary least squares method is supposed to be used for estimation and the determinant of the covariance matrix of the resulting estimator is the measure of estimation accuracy. To make the sensor selection computationally tractable, a relaxed formulation is considered. Owing to its nonconvexity, a majorization-minimization algorithm is employed. At each of its iterations, a convex tangent surrogate function that majorizes the original nonconvex design criterion is minimized using extremely efficient simplicial decomposition. As the resulting relaxed solution is a measure on the set of candidate measurements and not a specific subset of selected sensors, randomization and a restricted exchange algorithm are used to convert it to a nearly-optimal subset. A simulation experiment is reported to demonstrate that the proposed approach is highly competitive with the exchange algorithm which has been the only technique available so far. The generality of the proposed technique makes it suitable for other measurement selection problems for least-squares estimation subject to correlated observations.
A sensor selection technique is developed for maximizing the parameter estimation accuracy of spatiotemporal systems when the system in question is modeled by a partial differential equation and the measurement noise is correlated. Since the exact correlation structure may not be known exactly, the ordinary least squares method is supposed to be used for estimation and the determinant of the covariance matrix of the resulting estimator is the measure of estimation accuracy. To make the sensor selection computationally tractable, a relaxed formulation is considered. Owing to its nonconvexity, a majorization-minimization algorithm is employed. At each of its iterations, a convex tangent surrogate function that majorizes the original nonconvex design criterion is minimized using extremely efficient simplicial decomposition. As the resulting relaxed solution is a measure on the set of candidate measurements and not a specific subset of selected sensors, randomization and a restricted exchange algorithm are used to convert it to a nearly-optimal subset. A simulation experiment is reported to demonstrate that the proposed approach is highly competitive with the exchange algorithm which has been the only technique available so far. The generality of the proposed technique makes it suitable for other measurement selection problems for least-squares estimation subject to correlated observations.
ArticleNumber 107873
Author Uciński, Dariusz
Author_xml – sequence: 1
  givenname: Dariusz
  surname: Uciński
  fullname: Uciński, Dariusz
  email: d.ucinski@issi.uz.zgora.pl
  organization: Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland
BookMark eNqNkF1LwzAYhYNMcJv-h4jXnWnSJu2VyPxm4I2CdyFN32BK18wkE_z3ptSL4dWuDrwf53CeBZoNbgCELnOyyknOr7vVFlTYe9jCEFeU0HEuKsFO0DxPkhU5_ZihOaGcZZQW-RlahNARQjir-Ry93GVuF-1W9TjAEJxP0oOO1g3YDjh-At55SCsN2BmsnffQqwgtPsjFg7MBztGpUX2Aiz9doveH-7f1U7Z5fXxe324yzYo6ZkwXlWpVzahQqjTaVLxSvBGtEarWpWl4rXVFoWkbTZQpQXBmKCimeEsZCLZEV5PvzruvPYQoO7f3Q4qUtCi4oGVdVOmqnq60dyF4MHLnU03_I3MiR3SykwcV5IhOTujS782_X22jGplEr2x_lMN6coAE4tuCl0HbEWJrfaIrW2ePcPkFYiWXYQ
CitedBy_id crossref_primary_10_1016_j_carbpol_2024_123101
crossref_primary_10_1016_j_ymssp_2021_107619
crossref_primary_10_1109_TIM_2024_3461788
crossref_primary_10_1038_s41598_025_14124_7
crossref_primary_10_2514_1_G008324
crossref_primary_10_1137_21M1418666
crossref_primary_10_1016_j_dche_2022_100039
crossref_primary_10_1109_TAC_2024_3504257
crossref_primary_10_48084_etasr_11616
crossref_primary_10_1088_1361_6420_abe10c
crossref_primary_10_1109_ACCESS_2022_3194250
crossref_primary_10_1007_s40430_023_04568_1
crossref_primary_10_1016_j_ymssp_2022_109957
crossref_primary_10_1016_j_measurement_2021_110286
crossref_primary_10_1016_j_measurement_2025_117794
crossref_primary_10_1515_jiip_2024_0017
Cites_doi 10.1214/12-AOS1079
10.1016/j.jprocont.2017.03.011
10.1109/TSP.2016.2550005
10.1093/biomet/90.2.423
10.1109/CDC40024.2019.9029354
10.1109/TSP.2008.2007095
10.1137/130933381
10.1016/S0167-7152(00)00201-7
10.2478/amcs-2018-0003
10.1088/0266-5611/26/2/025002
10.1007/978-3-540-68111-3_49
10.2478/v10006-012-0022-9
10.1007/s11081-018-9391-8
10.1088/0266-5611/24/5/055012
10.1016/j.measurement.2014.05.028
10.1016/j.jcp.2011.03.039
10.1016/j.measurement.2015.06.012
10.1007/978-3-319-97142-1_3
10.1109/TAC.1983.1103183
10.1137/140992564
10.1109/TSP.2016.2601299
10.1016/j.measurement.2016.05.089
10.2202/1558-3708.1217
10.1137/110825121
10.1007/s40305-013-0004-0
10.1080/00207178108922583
10.2478/v10006-012-0002-0
10.1109/TSP.2014.2379662
10.1080/00207178608933550
10.1109/JPROC.2010.2044010
10.1007/s10898-007-9139-z
10.1007/s00477-009-0334-y
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Nov 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Nov 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.107873
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_107873
S0263224120304115
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-3c48ada9327aa5fcf868a6b7df7a9c5fb69cc82ebdbc0af5e763f2ea3a6d23e73
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548651300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Mon Nov 10 02:50:12 EST 2025
Sat Nov 29 07:24:53 EST 2025
Tue Nov 18 20:55:34 EST 2025
Fri Feb 23 02:47:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ordinary least squares
Correlated observations
Sensor selection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-3c48ada9327aa5fcf868a6b7df7a9c5fb69cc82ebdbc0af5e763f2ea3a6d23e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2446725948
PQPubID 2047460
ParticipantIDs proquest_journals_2446725948
crossref_primary_10_1016_j_measurement_2020_107873
crossref_citationtrail_10_1016_j_measurement_2020_107873
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107873
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Alexanderian, Petra, Stadler, Ghattas (b0085) 2014; 36
Müller, Pázman (b0160) 2003; 90
Rafajłowicz (b0065) 1986; 43
Tropp, Wright (b0280) 2010; 98
Fedorov, Müller (b0145) 2007
Bertsekas, Gafni (b0275) 1983; 28
Yu, Zavala, Anitescu (b0095) 2018; 67
Jacobson (b0230) 1999
Joshi, Boyd (b0170) 2009; 57
Cressie, Wikle (b0005) 2011
Cacuci, Navon, Ionescu-Bujor (b0025) 2014
Pepelyshev (b0185) 2013
I. Gejadze, G. Copeland, F.-X.L. Dimet, V. Shutyaev, Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics, J. Comput. Phys. 230 (22) (2011) 7923–7943, ISSN 0021–9991, doi: 10.1016/j.jcp.2011.03.039.
Pázman (b0240) 2007; 43
Uspenskii, Fedorov (b0055) 1975
Baranowski, Uciński (b0140) 2008; 4967
D’Antona, Seifnaraghi (b0035) 2014; 56
Müller (b0120) 2007
Khapalov (b0225) 2017
Bertsekas (b0195) 2015
Patriksson (b0250) 2001; vol. 5
Patan, Kowalów (b0215) 2018; 28
Liu, Chepuri, Fardad, Masazade, Leus, Varshney (b0165) 2016; 64
Chepuri, Leus (b0175) 2015; 63
Herzog, Riedel, Uciński (b0110) 2018; 19
Bard (b0235) 1974
Esward, Wright (b0015) 2016; 79
Brimkulov, Krug, Savanov (b0125) 1986
Bernstein, Mathematics, Theory (b0255) 2005
Vazirani (b0295) 2003
Tricaud, Chen (b0020) 2012
D. Uciński, M. Patan, Sensor Location for Parameter Estimation of Spatiotemporal Systems with Correlated Observations, in: 2019 IEEE 58th Conference on Decision and Control (CDC), 1189–1194, 2019.
D. Uciński, A.C. Atkinson, Experimental design for time-dependent models with correlated observations, Stud. Nonlinear Dynam. Econ. 8 (2), article No. 13.
Uciński (b0205) 2012; 21
Lu, Wen, Teng, Li, Li (b0115) 2016; 91
Sun, Babu, Palomar (b0190) 2017; 65
Alexanderian, Petra, Stadler, Ghattas (b0090) 2016; 38
Pázman (b0265) 1986
Pázman, Müller (b0155) 2001; 52
Dette, Pepelyshev, Zhigljavsky (b0180) 2013; 41
G. Scutari, Y. Sun, Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization, Springer-Verlag, Cham, 141–308, 2018.
Langtangen, Logg (b0290) 2016
Uciński (b0010) 2005
Uciński, Patan (b0200) 2007; 39
Patan (b0210) 2012; 22
Rafajłowicz (b0060) 1981; 34
Magnus, Neudecker (b0270) 1999
Näther (b0130) 1985
Patan (b0070) 2012
Haber, Horesh, Tenorio (b0080) 2010; 26
Sun, Zheng, Li (b0285) 2013; 1
Marshall, Olkin, Arnold (b0300) 2011
Pronzato, Pàzman (b0045) 2013
Fedorov, Leonov (b0050) 2014
Haber, Horesh, Tenorio (b0075) 2008; 24
Atkinson, Donev, Tobias (b0040) 2007
Spöck, Pilz (b0150) 2010; 24
Sun, Sun (b0030) 2015
Fasshauer (b0260) 2011; 4
Gejadze, Shutyaev (b0100) 2012; 34
Patriksson (10.1016/j.measurement.2020.107873_b0250) 2001; vol. 5
Uciński (10.1016/j.measurement.2020.107873_b0200) 2007; 39
Atkinson (10.1016/j.measurement.2020.107873_b0040) 2007
Cressie (10.1016/j.measurement.2020.107873_b0005) 2011
Tricaud (10.1016/j.measurement.2020.107873_b0020) 2012
Joshi (10.1016/j.measurement.2020.107873_b0170) 2009; 57
Fedorov (10.1016/j.measurement.2020.107873_b0050) 2014
Fedorov (10.1016/j.measurement.2020.107873_b0145) 2007
Sun (10.1016/j.measurement.2020.107873_b0030) 2015
Müller (10.1016/j.measurement.2020.107873_b0120) 2007
Patan (10.1016/j.measurement.2020.107873_b0215) 2018; 28
Bard (10.1016/j.measurement.2020.107873_b0235) 1974
Spöck (10.1016/j.measurement.2020.107873_b0150) 2010; 24
Haber (10.1016/j.measurement.2020.107873_b0080) 2010; 26
Uspenskii (10.1016/j.measurement.2020.107873_b0055) 1975
Rafajłowicz (10.1016/j.measurement.2020.107873_b0065) 1986; 43
Haber (10.1016/j.measurement.2020.107873_b0075) 2008; 24
Lu (10.1016/j.measurement.2020.107873_b0115) 2016; 91
Sun (10.1016/j.measurement.2020.107873_b0190) 2017; 65
Cacuci (10.1016/j.measurement.2020.107873_b0025) 2014
Patan (10.1016/j.measurement.2020.107873_b0070) 2012
Brimkulov (10.1016/j.measurement.2020.107873_b0125) 1986
10.1016/j.measurement.2020.107873_b0245
Liu (10.1016/j.measurement.2020.107873_b0165) 2016; 64
Baranowski (10.1016/j.measurement.2020.107873_b0140) 2008; 4967
Pázman (10.1016/j.measurement.2020.107873_b0265) 1986
Tropp (10.1016/j.measurement.2020.107873_b0280) 2010; 98
Näther (10.1016/j.measurement.2020.107873_b0130) 1985
Dette (10.1016/j.measurement.2020.107873_b0180) 2013; 41
Pázman (10.1016/j.measurement.2020.107873_b0240) 2007; 43
Bertsekas (10.1016/j.measurement.2020.107873_b0275) 1983; 28
10.1016/j.measurement.2020.107873_b0220
Esward (10.1016/j.measurement.2020.107873_b0015) 2016; 79
Magnus (10.1016/j.measurement.2020.107873_b0270) 1999
10.1016/j.measurement.2020.107873_b0135
Uciński (10.1016/j.measurement.2020.107873_b0205) 2012; 21
Chepuri (10.1016/j.measurement.2020.107873_b0175) 2015; 63
Vazirani (10.1016/j.measurement.2020.107873_b0295) 2003
Gejadze (10.1016/j.measurement.2020.107873_b0100) 2012; 34
Bernstein (10.1016/j.measurement.2020.107873_b0255) 2005
Uciński (10.1016/j.measurement.2020.107873_b0010) 2005
Bertsekas (10.1016/j.measurement.2020.107873_b0195) 2015
Khapalov (10.1016/j.measurement.2020.107873_b0225) 2017
Langtangen (10.1016/j.measurement.2020.107873_b0290) 2016
Fasshauer (10.1016/j.measurement.2020.107873_b0260) 2011; 4
Pázman (10.1016/j.measurement.2020.107873_b0155) 2001; 52
Alexanderian (10.1016/j.measurement.2020.107873_b0090) 2016; 38
Müller (10.1016/j.measurement.2020.107873_b0160) 2003; 90
D’Antona (10.1016/j.measurement.2020.107873_b0035) 2014; 56
Pronzato (10.1016/j.measurement.2020.107873_b0045) 2013
Herzog (10.1016/j.measurement.2020.107873_b0110) 2018; 19
Sun (10.1016/j.measurement.2020.107873_b0285) 2013; 1
Marshall (10.1016/j.measurement.2020.107873_b0300) 2011
10.1016/j.measurement.2020.107873_b0105
Alexanderian (10.1016/j.measurement.2020.107873_b0085) 2014; 36
Yu (10.1016/j.measurement.2020.107873_b0095) 2018; 67
Patan (10.1016/j.measurement.2020.107873_b0210) 2012; 22
Rafajłowicz (10.1016/j.measurement.2020.107873_b0060) 1981; 34
Jacobson (10.1016/j.measurement.2020.107873_b0230) 1999
Pepelyshev (10.1016/j.measurement.2020.107873_b0185) 2013
References_xml – reference: I. Gejadze, G. Copeland, F.-X.L. Dimet, V. Shutyaev, Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics, J. Comput. Phys. 230 (22) (2011) 7923–7943, ISSN 0021–9991, doi: 10.1016/j.jcp.2011.03.039.
– volume: 22
  start-page: 299
  year: 2012
  end-page: 311
  ident: b0210
  article-title: Distributed Scheduling of Sensor Networks for Identification of Spatio-Temporal Processes
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 64
  start-page: 3509
  year: 2016
  end-page: 3522
  ident: b0165
  article-title: Sensor selection for estimation with correlated measurement noise
  publication-title: IEEE Trans. Signal Process.
– volume: 1
  start-page: 55
  year: 2013
  end-page: 77
  ident: b0285
  article-title: Recent Advances in Mathematical Programming with Semi-continuous Variables and Cardinality Constraint
  publication-title: J. Oper. Res. Soc. China
– reference: D. Uciński, M. Patan, Sensor Location for Parameter Estimation of Spatiotemporal Systems with Correlated Observations, in: 2019 IEEE 58th Conference on Decision and Control (CDC), 1189–1194, 2019.
– year: 1999
  ident: b0230
  article-title: Fundamentals of Atmospheric Modeling
– start-page: 57
  year: 2007
  end-page: 66
  ident: b0145
  article-title: Optimum Design for Correlated Fields via Covariance Kernel Expansions
  publication-title: mODa 8 - Advances in Model-Oriented Design and Analysis
– year: 2007
  ident: b0040
  article-title: Optimum Experimental Designs, with SAS
– volume: 24
  start-page: 463
  year: 2010
  end-page: 482
  ident: b0150
  article-title: Spatial sampling design and covariance-robust minimax prediction based on convex design ideas
  publication-title: Stoch. Env. Res. Risk Assess.
– volume: vol. 5
  start-page: 205
  year: 2001
  end-page: 212
  ident: b0250
  article-title: Simplicial Decomposition Algorithms
  publication-title: Encyclopedia of Optimization
– volume: 41
  start-page: 143
  year: 2013
  end-page: 176
  ident: b0180
  article-title: Optimal design for linear models with correlated observations
  publication-title: Annals Stat.
– volume: 65
  start-page: 794
  year: 2017
  end-page: 816
  ident: b0190
  article-title: Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning
  publication-title: IEEE Trans. Signal Process.
– volume: 28
  start-page: 1090
  year: 1983
  end-page: 1096
  ident: b0275
  article-title: Projected Newton methods and optimization of multicommodity flows
  publication-title: IEEE Trans. Autom. Control
– year: 2016
  ident: b0290
  article-title: Solving PDEs in Python. The FEniCS Tutorial I
– volume: 26
  start-page: 025002
  year: 2010
  ident: b0080
  article-title: Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems
  publication-title: Inverse Prob.
– year: 1974
  ident: b0235
  article-title: Nonlinear Parameter Estimation
– volume: 39
  start-page: 291
  year: 2007
  end-page: 322
  ident: b0200
  article-title: D-Optimal Design of a Monitoring Network for Parameter Estimation of Distributed Systems
  publication-title: J. Global Optim.
– year: 2011
  ident: b0300
  article-title: Inequalities: Theory of Majorization and Its Applications
– year: 2011
  ident: b0005
  article-title: Statistics for Spatio-Temporal Data
– year: 2012
  ident: b0070
  article-title: Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems
– volume: 38
  start-page: A243
  year: 2016
  end-page: A272
  ident: b0090
  article-title: A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems
  publication-title: SIAM J. Scient. Comput.
– volume: 79
  start-page: 267
  year: 2016
  end-page: 275
  ident: b0015
  article-title: Efficient Updating of PDE Models for Metrology
  publication-title: Measurement
– volume: 36
  start-page: A2122
  year: 2014
  end-page: A2148
  ident: b0085
  article-title: A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ_0-Sparsification
  publication-title: SIAM J. Scient. Comput.
– volume: 63
  start-page: 684
  year: 2015
  end-page: 698
  ident: b0175
  article-title: Sparsity-promoting sensor selection for non-linear measurement models
  publication-title: IEEE Trans. Signal Process.
– year: 2005
  ident: b0255
  article-title: Formulas with Application to Linear Systems Theory
– year: 2005
  ident: b0010
  article-title: Optimal Measurement Methods for Distributed-Parameter System Identification
– volume: 91
  start-page: 509
  year: 2016
  end-page: 518
  ident: b0115
  article-title: Data correlation analysis for optimal sensor placement using a bond energy algorithm
  publication-title: Measurement
– volume: 43
  start-page: 1441
  year: 1986
  end-page: 1451
  ident: b0065
  article-title: Optimum Choice of Moving Sensor Trajectories for Distributed Parameter System Identification
  publication-title: Int. J. Control
– year: 1999
  ident: b0270
  article-title: Matrix Differential Calculus with Applications in Statistics and Econometrics
– volume: 4
  start-page: 21
  year: 2011
  end-page: 63
  ident: b0260
  article-title: Positive Definite Kernels: Past, Present and Future
  publication-title: Dolomites Research Notes on Approximation
– volume: 90
  start-page: 423
  year: 2003
  end-page: 434
  ident: b0160
  article-title: Measures for Designs in Experiments with Correlated Errors
  publication-title: Biometrika
– reference: G. Scutari, Y. Sun, Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization, Springer-Verlag, Cham, 141–308, 2018.
– year: 1975
  ident: b0055
  article-title: Computational Aspects of the Least-Squares Method in the Analysis and Design of Regression Experiments
– year: 2015
  ident: b0195
  article-title: Convex Optimization Algorithms
– volume: 28
  start-page: 39
  year: 2018
  end-page: 54
  ident: b0215
  article-title: Distributed Scheduling of Measurements in a Sensor Network for Parameter Estimation of Spatio-Temporal Systems
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 24
  start-page: 055012
  year: 2008
  ident: b0075
  article-title: Numerical methods for experimental design of large-scale linear ill-posed inverse problems
  publication-title: Inverse Prob.
– volume: 19
  start-page: 591
  year: 2018
  end-page: 627
  ident: b0110
  article-title: Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics
  publication-title: Optim. Eng.
– volume: 21
  start-page: 25
  year: 2012
  end-page: 40
  ident: b0205
  article-title: Sensor Network Scheduling for Identification of Spatially Distributed Processes
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 56
  start-page: 58
  year: 2014
  end-page: 69
  ident: b0035
  article-title: Analysis of the sensor placement for optimal temperature distribution reconstruction
  publication-title: Measurement
– year: 1986
  ident: b0125
  article-title: Design of Experiments in Investigating Random Fields and Processes
– year: 1986
  ident: b0265
  article-title: Foundations of Optimum Experimental Design, Mathematics and Its Applications
– volume: 34
  start-page: 1079
  year: 1981
  end-page: 1094
  ident: b0060
  article-title: Design of experiments for eigenvalue identification in distributed-parameter systems
  publication-title: Int. J. Control
– volume: 52
  start-page: 29
  year: 2001
  end-page: 34
  ident: b0155
  article-title: Optimal design of experiments subject to correlated errors
  publication-title: Stat. Probab. Lett.
– year: 2017
  ident: b0225
  article-title: Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations
– year: 2013
  ident: b0045
  article-title: Design of Experiments in Nonlinear Models. Asymptotic Normality, Optimality Criteria amd Small-Sample Properties
– year: 2014
  ident: b0050
  article-title: Optimal Design for Nonlinear Response Models
– reference: D. Uciński, A.C. Atkinson, Experimental design for time-dependent models with correlated observations, Stud. Nonlinear Dynam. Econ. 8 (2), article No. 13.
– year: 2007
  ident: b0120
  article-title: Collecting Spatial Data. Optimum Design of Experiments for Random Fields, Contributions to Statistics
– start-page: 203
  year: 2013
  end-page: 210
  ident: b0185
  article-title: Optimal Design for Multivariate Models with Correlated Observations
  publication-title: mODa 10 – Advances in Model-Oriented Design and Analysis
– year: 2012
  ident: b0020
  article-title: Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems
– volume: 43
  start-page: 453
  year: 2007
  end-page: 462
  ident: b0240
  article-title: Criteria for Optimal Design of Small-Sample Experiments with Correlated Observations
  publication-title: Kybernetika
– year: 2015
  ident: b0030
  article-title: Model Calibration and Parameter Estimation for Environmental and Water Resource Systems
– volume: 98
  start-page: 948
  year: 2010
  end-page: 958
  ident: b0280
  article-title: Computational Methods for Sparse Solution of Linear Inverse Problems
  publication-title: Proc. IEEE
– volume: 67
  start-page: 44
  year: 2018
  end-page: 55
  ident: b0095
  article-title: A scalable design of experiments framework for optimal sensor placement
  publication-title: J. Process Control
– year: 2014
  ident: b0025
  article-title: Computational Methods for Data Evaluation and Assimilation
– volume: 34
  start-page: B127
  year: 2012
  end-page: B147
  ident: b0100
  article-title: On Computation of the Design Function Gradient for the Sensor-Location Problem in Variational Data Assimilation
  publication-title: SIAM J. Scient. Comput.
– volume: 4967
  start-page: 469
  year: 2008
  end-page: 478
  ident: b0140
  article-title: A Parallel Sensor Selection Technique for Identification of Distributed Parameter Systems Subject to Correlated Observations
  publication-title: Lect. Notes Comput. Sci.
– volume: 57
  start-page: 451
  year: 2009
  end-page: 462
  ident: b0170
  article-title: Sensor selection via convex optimization
  publication-title: IEEE Trans. Signal Process.
– year: 1985
  ident: b0130
  article-title: Effective Observation of Random Fields
– year: 2003
  ident: b0295
  article-title: Approximation Algorithms
– volume: 41
  start-page: 143
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.107873_b0180
  article-title: Optimal design for linear models with correlated observations
  publication-title: Annals Stat.
  doi: 10.1214/12-AOS1079
– volume: 67
  start-page: 44
  year: 2018
  ident: 10.1016/j.measurement.2020.107873_b0095
  article-title: A scalable design of experiments framework for optimal sensor placement
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.03.011
– volume: 64
  start-page: 3509
  issue: 13
  year: 2016
  ident: 10.1016/j.measurement.2020.107873_b0165
  article-title: Sensor selection for estimation with correlated measurement noise
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2550005
– volume: 90
  start-page: 423
  issue: 2
  year: 2003
  ident: 10.1016/j.measurement.2020.107873_b0160
  article-title: Measures for Designs in Experiments with Correlated Errors
  publication-title: Biometrika
  doi: 10.1093/biomet/90.2.423
– ident: 10.1016/j.measurement.2020.107873_b0220
  doi: 10.1109/CDC40024.2019.9029354
– year: 1974
  ident: 10.1016/j.measurement.2020.107873_b0235
– volume: 57
  start-page: 451
  issue: 2
  year: 2009
  ident: 10.1016/j.measurement.2020.107873_b0170
  article-title: Sensor selection via convex optimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007095
– volume: 36
  start-page: A2122
  issue: 5
  year: 2014
  ident: 10.1016/j.measurement.2020.107873_b0085
  article-title: A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ_0-Sparsification
  publication-title: SIAM J. Scient. Comput.
  doi: 10.1137/130933381
– volume: 52
  start-page: 29
  year: 2001
  ident: 10.1016/j.measurement.2020.107873_b0155
  article-title: Optimal design of experiments subject to correlated errors
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(00)00201-7
– volume: 28
  start-page: 39
  issue: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107873_b0215
  article-title: Distributed Scheduling of Measurements in a Sensor Network for Parameter Estimation of Spatio-Temporal Systems
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2018-0003
– year: 2012
  ident: 10.1016/j.measurement.2020.107873_b0020
– year: 2014
  ident: 10.1016/j.measurement.2020.107873_b0025
– volume: 26
  start-page: 025002
  issue: 2
  year: 2010
  ident: 10.1016/j.measurement.2020.107873_b0080
  article-title: Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/26/2/025002
– volume: 4967
  start-page: 469
  year: 2008
  ident: 10.1016/j.measurement.2020.107873_b0140
  article-title: A Parallel Sensor Selection Technique for Identification of Distributed Parameter Systems Subject to Correlated Observations
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-68111-3_49
– volume: 22
  start-page: 299
  issue: 2
  year: 2012
  ident: 10.1016/j.measurement.2020.107873_b0210
  article-title: Distributed Scheduling of Sensor Networks for Identification of Spatio-Temporal Processes
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/v10006-012-0022-9
– year: 1975
  ident: 10.1016/j.measurement.2020.107873_b0055
– volume: 19
  start-page: 591
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2020.107873_b0110
  article-title: Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-018-9391-8
– start-page: 203
  year: 2013
  ident: 10.1016/j.measurement.2020.107873_b0185
  article-title: Optimal Design for Multivariate Models with Correlated Observations
– year: 1986
  ident: 10.1016/j.measurement.2020.107873_b0125
– year: 1986
  ident: 10.1016/j.measurement.2020.107873_b0265
– volume: 24
  start-page: 055012
  issue: 5
  year: 2008
  ident: 10.1016/j.measurement.2020.107873_b0075
  article-title: Numerical methods for experimental design of large-scale linear ill-posed inverse problems
  publication-title: Inverse Prob.
  doi: 10.1088/0266-5611/24/5/055012
– volume: 56
  start-page: 58
  year: 2014
  ident: 10.1016/j.measurement.2020.107873_b0035
  article-title: Analysis of the sensor placement for optimal temperature distribution reconstruction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.05.028
– ident: 10.1016/j.measurement.2020.107873_b0105
  doi: 10.1016/j.jcp.2011.03.039
– year: 2017
  ident: 10.1016/j.measurement.2020.107873_b0225
– volume: 79
  start-page: 267
  year: 2016
  ident: 10.1016/j.measurement.2020.107873_b0015
  article-title: Efficient Updating of PDE Models for Metrology
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.06.012
– year: 2015
  ident: 10.1016/j.measurement.2020.107873_b0195
– year: 1999
  ident: 10.1016/j.measurement.2020.107873_b0230
– ident: 10.1016/j.measurement.2020.107873_b0245
  doi: 10.1007/978-3-319-97142-1_3
– volume: 4
  start-page: 21
  year: 2011
  ident: 10.1016/j.measurement.2020.107873_b0260
  article-title: Positive Definite Kernels: Past, Present and Future
  publication-title: Dolomites Research Notes on Approximation
– volume: 28
  start-page: 1090
  issue: 12
  year: 1983
  ident: 10.1016/j.measurement.2020.107873_b0275
  article-title: Projected Newton methods and optimization of multicommodity flows
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1983.1103183
– year: 2003
  ident: 10.1016/j.measurement.2020.107873_b0295
– year: 2011
  ident: 10.1016/j.measurement.2020.107873_b0005
– start-page: 57
  year: 2007
  ident: 10.1016/j.measurement.2020.107873_b0145
  article-title: Optimum Design for Correlated Fields via Covariance Kernel Expansions
– year: 2013
  ident: 10.1016/j.measurement.2020.107873_b0045
– volume: 38
  start-page: A243
  issue: 1
  year: 2016
  ident: 10.1016/j.measurement.2020.107873_b0090
  article-title: A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems
  publication-title: SIAM J. Scient. Comput.
  doi: 10.1137/140992564
– volume: vol. 5
  start-page: 205
  year: 2001
  ident: 10.1016/j.measurement.2020.107873_b0250
  article-title: Simplicial Decomposition Algorithms
– volume: 65
  start-page: 794
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2020.107873_b0190
  article-title: Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2601299
– volume: 91
  start-page: 509
  year: 2016
  ident: 10.1016/j.measurement.2020.107873_b0115
  article-title: Data correlation analysis for optimal sensor placement using a bond energy algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.089
– ident: 10.1016/j.measurement.2020.107873_b0135
  doi: 10.2202/1558-3708.1217
– year: 1999
  ident: 10.1016/j.measurement.2020.107873_b0270
– volume: 34
  start-page: B127
  issue: 2
  year: 2012
  ident: 10.1016/j.measurement.2020.107873_b0100
  article-title: On Computation of the Design Function Gradient for the Sensor-Location Problem in Variational Data Assimilation
  publication-title: SIAM J. Scient. Comput.
  doi: 10.1137/110825121
– year: 2012
  ident: 10.1016/j.measurement.2020.107873_b0070
– volume: 1
  start-page: 55
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.107873_b0285
  article-title: Recent Advances in Mathematical Programming with Semi-continuous Variables and Cardinality Constraint
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-013-0004-0
– volume: 34
  start-page: 1079
  issue: 6
  year: 1981
  ident: 10.1016/j.measurement.2020.107873_b0060
  article-title: Design of experiments for eigenvalue identification in distributed-parameter systems
  publication-title: Int. J. Control
  doi: 10.1080/00207178108922583
– year: 2007
  ident: 10.1016/j.measurement.2020.107873_b0120
– year: 2015
  ident: 10.1016/j.measurement.2020.107873_b0030
– year: 2005
  ident: 10.1016/j.measurement.2020.107873_b0255
– year: 2014
  ident: 10.1016/j.measurement.2020.107873_b0050
– year: 2011
  ident: 10.1016/j.measurement.2020.107873_b0300
– year: 1985
  ident: 10.1016/j.measurement.2020.107873_b0130
– year: 2005
  ident: 10.1016/j.measurement.2020.107873_b0010
– volume: 21
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2020.107873_b0205
  article-title: Sensor Network Scheduling for Identification of Spatially Distributed Processes
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/v10006-012-0002-0
– volume: 63
  start-page: 684
  issue: 3
  year: 2015
  ident: 10.1016/j.measurement.2020.107873_b0175
  article-title: Sparsity-promoting sensor selection for non-linear measurement models
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2379662
– volume: 43
  start-page: 1441
  issue: 5
  year: 1986
  ident: 10.1016/j.measurement.2020.107873_b0065
  article-title: Optimum Choice of Moving Sensor Trajectories for Distributed Parameter System Identification
  publication-title: Int. J. Control
  doi: 10.1080/00207178608933550
– volume: 43
  start-page: 453
  issue: 4
  year: 2007
  ident: 10.1016/j.measurement.2020.107873_b0240
  article-title: Criteria for Optimal Design of Small-Sample Experiments with Correlated Observations
  publication-title: Kybernetika
– volume: 98
  start-page: 948
  issue: 6
  year: 2010
  ident: 10.1016/j.measurement.2020.107873_b0280
  article-title: Computational Methods for Sparse Solution of Linear Inverse Problems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2044010
– year: 2016
  ident: 10.1016/j.measurement.2020.107873_b0290
– volume: 39
  start-page: 291
  year: 2007
  ident: 10.1016/j.measurement.2020.107873_b0200
  article-title: D-Optimal Design of a Monitoring Network for Parameter Estimation of Distributed Systems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9139-z
– year: 2007
  ident: 10.1016/j.measurement.2020.107873_b0040
– volume: 24
  start-page: 463
  issue: 3
  year: 2010
  ident: 10.1016/j.measurement.2020.107873_b0150
  article-title: Spatial sampling design and covariance-robust minimax prediction based on convex design ideas
  publication-title: Stoch. Env. Res. Risk Assess.
  doi: 10.1007/s00477-009-0334-y
SSID ssj0006396
Score 2.3727415
Snippet •A relaxation technique to sensor selection for ordinary least squares is proposed.•The problem is reduced to a sequence of convex optimum experimental design...
A sensor selection technique is developed for maximizing the parameter estimation accuracy of spatiotemporal systems when the system in question is modeled by...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107873
SubjectTerms Accuracy
Algorithms
Computer simulation
Correlated observations
Correlation analysis
Covariance matrix
Estimating techniques
Exchanging
Least squares method
Measurement
Noise
Noise measurement
Optimization
Ordinary least squares
Parameter estimation
Partial differential equations
Sensor selection
Sensors
Studies
Title D-optimal sensor selection in the presence of correlated measurement noise
URI https://dx.doi.org/10.1016/j.measurement.2020.107873
https://www.proquest.com/docview/2446725948
Volume 164
WOSCitedRecordID wos000548651300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagAwQPCMYQgw0ZiT1NqVrHsR2Jl2kXwQQTDxvqW2Q7ttSJJVXTTdN-PSd2Lu6maQWJl6hKa9fJd3L8nZNzQegz1VIlmrKIxrmN6DhXkWA0jxTYBlYR4OSu7OKv7_zkREwm6c8mVrVy7QR4UYjr63T2X6GGcwB2nTr7F3B3k8IJ-AygwxFgh-NKwB9EJaiBizoPBEzUcr5buVY3QUzjzKUcaeNDyucunQV450XvLtwtymm1FCT0I_iy9iIEFSf6-MvWsRj-2KUU1uU9wzf-Z3q6s5_sCNp0zT4Ai_2yugldEGBvjjsXhNdUhMVRzQWW1CqjgWIEK1P4niV3dLZ3H5wPg6sc1v8y7Mcs18m-tX91UYVtwNp5FkyV1VNlfqrHaI3wJBUDtLb37XBy3G3ZQNOYd8b563iGPvWBgPes6z4ic2tLdzzl9BV62RgYeM8Lxmv0yBTr6EVQdnIdPXVhv7p6g447YcFeWHAnLHhaYEAWt8KCS4t7YcHBcrETlg10dnR4uv81arprRDqm6SKKNRUyl8DfuZSJ1VYwIZniueUy1YlVLNVaEKNypUfSJgZ2IkuMjCXLSWx4_BYNirIw7xBOcsL0SKRcS0ktV2IslRmldmwNz8nIbCLR3qpMN6Xn6w4ov7MHIdtEpBs68_VXVhn0pcUja4ikJ4gZyNwqw7daDLPmaaoyoMGMk7q40ft_WdIH9Lx_crbQYDG_NNvoib5aTKv5x0Ye_wCB6KqN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-optimal+sensor+selection+in+the+presence+of+correlated+measurement+noise&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Uci%C5%84ski%2C+Dariusz&rft.date=2020-11-01&rft.issn=0263-2241&rft.volume=164&rft.spage=107873&rft_id=info:doi/10.1016%2Fj.measurement.2020.107873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2020_107873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon