Modified particle swarm optimization and fuzzy regularization for pseudo de-convolution of spatially variant blurs

We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 75; číslo 11; s. 6533 - 6548
Hlavní autori: Bilal, Mohsin, Mujtaba, Hasan, Jaffar, Muhammad Arfan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2016
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches.
AbstractList We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches.
We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches.
Author Mujtaba, Hasan
Jaffar, Muhammad Arfan
Bilal, Mohsin
Author_xml – sequence: 1
  givenname: Mohsin
  surname: Bilal
  fullname: Bilal, Mohsin
  email: mohsin.bilal@nu.edu.pk
  organization: Computer Science Department, National University of Computer And Emerging Sciences
– sequence: 2
  givenname: Hasan
  surname: Mujtaba
  fullname: Mujtaba, Hasan
  organization: Computer Science Department, National University of Computer And Emerging Sciences
– sequence: 3
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
  organization: College of Computer and Information Systems, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
BookMark eNp9kU2LFDEQhoOs4O7qD_AW8OIlmspHp_soi1-w4kXPIZNUL1kySZt0r8z8erM7CrKgpxTU81SKei_IWS4ZCXkJ_A1wbt42AK4E46CZ0KNh6gk5B20kM0bAWa_lyJnRHJ6Ri9ZuOYdBC3VO6pcS4hwx0MXVNfqEtP10dU_LssZ9PLo1lkxdDnTejscDrXizJVf_NOZS6dJwC4UGZL7ku5K2h06ZaVs65FI60LtuuLzSXdpqe06ezi41fPH7vSTfP7z_dvWJXX_9-Pnq3TXzUk0rk24cw6hl8EGARzUHwFEPSu5GNXA9eFCDnwB2fph7bQwajajFpOTkUEh5SV6f5i61_NiwrXYfm8eUXMayNQuj0JoPQkJHXz1Cb8tWc9_OgpkG1T80U6fMifK1tFZxtj6uD3dYq4vJArf3WdhTFrZnYe-zsKqb8Mhcaty7evivI05O62y-wfrXTv-UfgHtDZ9x
CitedBy_id crossref_primary_10_1007_s11760_019_01559_5
crossref_primary_10_1007_s11042_016_3625_6
Cites_doi 10.1109/NABIC.2009.5393754
10.1007/11550518_60
10.1007/s11042-012-1172-3
10.1007/978-3-540-74272-2_112
10.1109/29.1641
10.1109/IEMBS.2005.1615986
10.1364/OE.14.001767
10.1007/s11042-012-1015-2
10.1007/s11042-014-1867-8
10.1137/S106482759528507X
10.1137/1.9780898718874
10.1007/978-3-540-72823-8_46
10.1109/TIP.2006.873446
10.1016/j.cam.2008.08.013
10.1007/s11042-014-2063-6
10.1109/72.822518
10.1007/s11042-012-1253-3
10.1364/JOSAA.12.002593
10.1109/83.128030
10.6029/smartcr.2013.04.002
10.1007/978-3-642-24785-9_14
10.1364/AO.36.001766
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2016
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-015-2587-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 6548
ExternalDocumentID 4088902231
10_1007_s11042_015_2587_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
PUEGO
ID FETCH-LOGICAL-c349t-3a88d853dcd21ce4fd1e85643b846056c146c911bc6fc1477e75ee529439ae233
IEDL.DBID K7-
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378553700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Thu Sep 04 15:12:44 EDT 2025
Wed Nov 05 00:45:28 EST 2025
Tue Nov 18 21:51:52 EST 2025
Sat Nov 29 03:25:36 EST 2025
Fri Feb 21 02:32:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Fuzzy regularization
Pseudo de-convolution
Space variant degradation
Particle swarm optimization
Mathematical morphology
Ill-posed inverse problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3a88d853dcd21ce4fd1e85643b846056c146c911bc6fc1477e75ee529439ae233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1796446079
PQPubID 54626
PageCount 16
ParticipantIDs proquest_miscellaneous_1825506231
proquest_journals_1796446079
crossref_citationtrail_10_1007_s11042_015_2587_4
crossref_primary_10_1007_s11042_015_2587_4
springer_journals_10_1007_s11042_015_2587_4
PublicationCentury 2000
PublicationDate 20160600
2016-6-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 6
  year: 2016
  text: 20160600
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BardsleyJJefferiesSNagyJPlemmonsRA computational method for the restoration of images with an unknown, spatially-varying blurOpt Express20061451767178210.1364/OE.14.001767
Boden AF, Redding DC, Hanisch RJ, Mo J (1996) Massively parallel spatially-variant maximum likelihood image restoration. In: Jacoby GH, Barnes J (eds) Astronomical data analysis software and systems V. Astronomical society of the pacific conference series, vol 101, p 131
Perry SW (2006) Adaptive image restoration: perception based neural network models and algorithms. PhD thesis, School of Electrical and Information Engineering, University of Sydney, NSW
Sharif M, Hussain A, Jaffar M, Choi TS (2014) Fuzzy similarity based non local means filter for rician noise removal. Multimedia tools and applications:1–24. doi:10.1007/s11042-014-1867-8
PerrySGuanLWeight assignment for adaptive image restoration by neural networksIEEE Trans Neural Netw200011115617010.1109/72.822518
Dash R, Majhi B (2009) Particle swarm optimization based regularization for image restoration. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 1253–1257
FaisalMLantermanADSnyderDLWhiteRLImplementation of a modified Richardson-Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device cameraJ Opt Soc Am A1995122593260310.1364/JOSAA.12.002593
Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing. chap 5
BiggsDSAndrewsMAcceleration of iterative image restoration algorithmsAppl Opt19973681766177510.1364/AO.36.001766
Hansen PC, Nagy JG, O’leary DP (2006) Deblurring images: matrices, spectra, and filtering. Society for industrial and applied mathematics, Philadelphia, PA 19104–2688
Zhao Y, Gui W, Chen Z, Tang J, Li L (2005) Medical images edge detection based on mathematical morphology. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, pp 1–4
BilalMHussainAJaffarMChoiTSMirzaAEstimation and optimization based ill-posed inverse restoration using fuzzy logicMultimedia Tools and Applications20146931067108710.1007/s11042-012-1172-3
MasoodSHussainAJaffarMChoiTSIntelligent noise detection and filtering using neuro-fuzzy systemMultimedia Tools and Applications20136319310510.1007/s11042-012-1015-2
Bilal M, Rehman MSu, Jaffar MA (2013) Evolutionary reconstruction: image restoration for space variant degradation. Smart Computing Review 3(4):220–232
Sun Z, Li E, Zhang J, Gao X (2011) A regularized image restoration algorithm based on improved hybrid particle swarm optimization. In: 2011 6th International forum on strategic technology (IFOST), vol 2, pp 725–728
Welk M, Theis D,Weickert J (2005) Variational deblurring of images with uncertain and spatially variant blurs. In: Kropatsch W, Sablatnig R, Hanbury A (eds) Pattern recognition. Lecture notes in computer science, vol 3663. Springer, Berlin Heidelberg, pp 485–492
ZhouYTChellappaRVaidAJenkinsBImage restoration using a neural networkIEEE Trans Acoust Speech Signal Process19883671141115110.1109/29.16410652.68100
PaikJKatsaggelosAImage restoration using a modified hopfield networkIEEE Trans Image Process199211496310.1109/83.128030
Kober V, Agis J (2007) Space-variant restoration with sliding discrete cosine transform. In: Kropatsch W, Kampel M, Hanbury A (eds) Computer analysis of images and patterns. Lecture notes in computer science, vol 4673. Springer, Berlin Heidelberg, pp 903–911
Klapp I, Sochen N, Mendlovic D (2012) Deblurring space-variant blur by adding noisy image. In: Bruckstein A, Haar Romeny B, Bronstein A, Bronstein M (eds) Scale space and variational methods in computer vision. Lecture notes in computer science, vol 6667. Springer, Berlin Heidelberg, pp 157–168
MignotteMA segmentation based regularization term for image deconvolutionIEEE Trans Image Process2006151973198410.1109/TIP.2006.873446
ZiaSJaffarMMirzaAChoiTSRician noise removal from mr images using novel adapted selective non-local means filterMultimedia Tools and Applications201472111910.1007/s11042-012-1253-3
GuXGaoLA new method for parameter estimation of edge-preserving regularization in image restorationJ Comput Appl Math20092252478486249471810.1016/j.cam.2008.08.0131156.94006
NagyJGO’LearyDPRestoring images degraded by spatially variant blurSIAM J Sci Comput199819410631082161429510.1137/S106482759528507X0919.65091
Lucena M, Martnez-Carrillo A, Fuertes J, Carrascosa F, Ruiz A (2014) Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications:1–15. doi:10.1007/s11042-014-2063-6
Belokogne I, Carbillet M, Chesneau O (2011) How to push the limits of evolved stars observations with sphere/vlt
Bar L, Sochen N, Kiryati N (2007) Restoration of images with piecewise space-variant blur. In: 1st International conference on Scale space and variational methods in computer vision, LNCS, vol 4485. Springer, Berlin, Heidelberg, pp 533–544
2587_CR3
2587_CR23
2587_CR22
2587_CR1
2587_CR25
2587_CR24
2587_CR21
S Perry (2587_CR20) 2000; 11
2587_CR8
2587_CR7
2587_CR5
DS Biggs (2587_CR4) 1997; 36
M Faisal (2587_CR9) 1995; 12
J Paik (2587_CR19) 1992; 1
S Zia (2587_CR27) 2014; 72
2587_CR12
2587_CR14
2587_CR13
2587_CR10
J Bardsley (2587_CR2) 2006; 14
JG Nagy (2587_CR18) 1998; 19
M Mignotte (2587_CR17) 2006; 15
YT Zhou (2587_CR26) 1988; 36
M Bilal (2587_CR6) 2014; 69
X Gu (2587_CR11) 2009; 225
2587_CR15
S Masood (2587_CR16) 2013; 63
References_xml – reference: GuXGaoLA new method for parameter estimation of edge-preserving regularization in image restorationJ Comput Appl Math20092252478486249471810.1016/j.cam.2008.08.0131156.94006
– reference: ZiaSJaffarMMirzaAChoiTSRician noise removal from mr images using novel adapted selective non-local means filterMultimedia Tools and Applications201472111910.1007/s11042-012-1253-3
– reference: Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing. chap 5
– reference: Boden AF, Redding DC, Hanisch RJ, Mo J (1996) Massively parallel spatially-variant maximum likelihood image restoration. In: Jacoby GH, Barnes J (eds) Astronomical data analysis software and systems V. Astronomical society of the pacific conference series, vol 101, p 131
– reference: Sharif M, Hussain A, Jaffar M, Choi TS (2014) Fuzzy similarity based non local means filter for rician noise removal. Multimedia tools and applications:1–24. doi:10.1007/s11042-014-1867-8
– reference: ZhouYTChellappaRVaidAJenkinsBImage restoration using a neural networkIEEE Trans Acoust Speech Signal Process19883671141115110.1109/29.16410652.68100
– reference: MignotteMA segmentation based regularization term for image deconvolutionIEEE Trans Image Process2006151973198410.1109/TIP.2006.873446
– reference: BiggsDSAndrewsMAcceleration of iterative image restoration algorithmsAppl Opt19973681766177510.1364/AO.36.001766
– reference: MasoodSHussainAJaffarMChoiTSIntelligent noise detection and filtering using neuro-fuzzy systemMultimedia Tools and Applications20136319310510.1007/s11042-012-1015-2
– reference: Bar L, Sochen N, Kiryati N (2007) Restoration of images with piecewise space-variant blur. In: 1st International conference on Scale space and variational methods in computer vision, LNCS, vol 4485. Springer, Berlin, Heidelberg, pp 533–544
– reference: Welk M, Theis D,Weickert J (2005) Variational deblurring of images with uncertain and spatially variant blurs. In: Kropatsch W, Sablatnig R, Hanbury A (eds) Pattern recognition. Lecture notes in computer science, vol 3663. Springer, Berlin Heidelberg, pp 485–492
– reference: PaikJKatsaggelosAImage restoration using a modified hopfield networkIEEE Trans Image Process199211496310.1109/83.128030
– reference: BardsleyJJefferiesSNagyJPlemmonsRA computational method for the restoration of images with an unknown, spatially-varying blurOpt Express20061451767178210.1364/OE.14.001767
– reference: Dash R, Majhi B (2009) Particle swarm optimization based regularization for image restoration. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 1253–1257
– reference: BilalMHussainAJaffarMChoiTSMirzaAEstimation and optimization based ill-posed inverse restoration using fuzzy logicMultimedia Tools and Applications20146931067108710.1007/s11042-012-1172-3
– reference: Klapp I, Sochen N, Mendlovic D (2012) Deblurring space-variant blur by adding noisy image. In: Bruckstein A, Haar Romeny B, Bronstein A, Bronstein M (eds) Scale space and variational methods in computer vision. Lecture notes in computer science, vol 6667. Springer, Berlin Heidelberg, pp 157–168
– reference: Sun Z, Li E, Zhang J, Gao X (2011) A regularized image restoration algorithm based on improved hybrid particle swarm optimization. In: 2011 6th International forum on strategic technology (IFOST), vol 2, pp 725–728
– reference: Hansen PC, Nagy JG, O’leary DP (2006) Deblurring images: matrices, spectra, and filtering. Society for industrial and applied mathematics, Philadelphia, PA 19104–2688
– reference: NagyJGO’LearyDPRestoring images degraded by spatially variant blurSIAM J Sci Comput199819410631082161429510.1137/S106482759528507X0919.65091
– reference: Bilal M, Rehman MSu, Jaffar MA (2013) Evolutionary reconstruction: image restoration for space variant degradation. Smart Computing Review 3(4):220–232
– reference: Lucena M, Martnez-Carrillo A, Fuertes J, Carrascosa F, Ruiz A (2014) Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications:1–15. doi:10.1007/s11042-014-2063-6
– reference: FaisalMLantermanADSnyderDLWhiteRLImplementation of a modified Richardson-Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device cameraJ Opt Soc Am A1995122593260310.1364/JOSAA.12.002593
– reference: Zhao Y, Gui W, Chen Z, Tang J, Li L (2005) Medical images edge detection based on mathematical morphology. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, pp 1–4
– reference: Perry SW (2006) Adaptive image restoration: perception based neural network models and algorithms. PhD thesis, School of Electrical and Information Engineering, University of Sydney, NSW
– reference: PerrySGuanLWeight assignment for adaptive image restoration by neural networksIEEE Trans Neural Netw200011115617010.1109/72.822518
– reference: Kober V, Agis J (2007) Space-variant restoration with sliding discrete cosine transform. In: Kropatsch W, Kampel M, Hanbury A (eds) Computer analysis of images and patterns. Lecture notes in computer science, vol 4673. Springer, Berlin Heidelberg, pp 903–911
– reference: Belokogne I, Carbillet M, Chesneau O (2011) How to push the limits of evolved stars observations with sphere/vlt
– ident: 2587_CR8
  doi: 10.1109/NABIC.2009.5393754
– ident: 2587_CR24
  doi: 10.1007/11550518_60
– ident: 2587_CR3
– ident: 2587_CR7
– volume: 69
  start-page: 1067
  issue: 3
  year: 2014
  ident: 2587_CR6
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-012-1172-3
– ident: 2587_CR14
  doi: 10.1007/978-3-540-74272-2_112
– volume: 36
  start-page: 1141
  issue: 7
  year: 1988
  ident: 2587_CR26
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/29.1641
– ident: 2587_CR25
  doi: 10.1109/IEMBS.2005.1615986
– volume: 14
  start-page: 1767
  issue: 5
  year: 2006
  ident: 2587_CR2
  publication-title: Opt Express
  doi: 10.1364/OE.14.001767
– volume: 63
  start-page: 93
  issue: 1
  year: 2013
  ident: 2587_CR16
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-012-1015-2
– ident: 2587_CR22
  doi: 10.1007/s11042-014-1867-8
– volume: 19
  start-page: 1063
  issue: 4
  year: 1998
  ident: 2587_CR18
  publication-title: SIAM J Sci Comput
  doi: 10.1137/S106482759528507X
– ident: 2587_CR12
  doi: 10.1137/1.9780898718874
– ident: 2587_CR1
  doi: 10.1007/978-3-540-72823-8_46
– volume: 15
  start-page: 1973
  year: 2006
  ident: 2587_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.873446
– volume: 225
  start-page: 478
  issue: 2
  year: 2009
  ident: 2587_CR11
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.08.013
– ident: 2587_CR15
  doi: 10.1007/s11042-014-2063-6
– volume: 11
  start-page: 156
  issue: 1
  year: 2000
  ident: 2587_CR20
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.822518
– ident: 2587_CR21
– volume: 72
  start-page: 1
  issue: 1
  year: 2014
  ident: 2587_CR27
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-012-1253-3
– ident: 2587_CR23
– volume: 12
  start-page: 2593
  year: 1995
  ident: 2587_CR9
  publication-title: J Opt Soc Am A
  doi: 10.1364/JOSAA.12.002593
– volume: 1
  start-page: 49
  issue: 1
  year: 1992
  ident: 2587_CR19
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.128030
– ident: 2587_CR5
  doi: 10.6029/smartcr.2013.04.002
– ident: 2587_CR10
– ident: 2587_CR13
  doi: 10.1007/978-3-642-24785-9_14
– volume: 36
  start-page: 1766
  issue: 8
  year: 1997
  ident: 2587_CR4
  publication-title: Appl Opt
  doi: 10.1364/AO.36.001766
SSID ssj0016524
Score 2.0868495
Snippet We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant...
We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6533
SubjectTerms Additives
Algorithms
Analysis
Blurring
Computation
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Fuzzy logic
Inverse problems
Mathematical analysis
Morphology
Multimedia computer applications
Multimedia Information Systems
Neural networks
Noise
Optimization
Regularization
Regularization methods
Space telescopes
Special Purpose and Application-Based Systems
Stars & galaxies
Studies
Swarm intelligence
Wavelet transforms
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6VlAM9QAmghqbVInGiWsmvtddHhBpxoKhqC-Jm7csSUmJHdgwiv55ZZ50EVJDgZEv78HpnZuez5wVwrHko4jSVlHEd0UgqRkUQJfZvU-RJD9fe1li6vkguL_nNTfrbxXHXnbd7Z5JsT-pVsJtvQ0lQfdGAoWREG_ARtR230vjn7_XSdBAzV8mWexTVod-ZMv83xVNltEKYz4yira4Z7bxrlZ9h20FLcrrghV34YIo-7HRlG4iT4j58WstBuAfVr1Lf5ghEydRxEanvRTUhJR4mExelSUShSd7M5w-kaovXV10DYl4yrU2jS6INtT7sjpdJmZPaumuL8fiB3OEIpCGR46aq9-Fq9PPf2Tl1hRioCqN0RkPBuUa9rpUOfGWiXPuGM8QykluzaqzwuFV4akoV53ifJCZhxrAgRbQjTBCGB9ArysJ8ARLbbD1MmkRKm3vQw0vgGZ1z4UuZi2gAXkeRTLks5bZYxjhb5Ve2O5zhDmd2hzMccrIcMl2k6Hit87Ajc-aktc58G4-Lb5KkAzhaNqOcWeOJKEzZYB_8lGYegkV_AD860q9N8dIDD9_U-ytsISKLF75oQ-jNqsZ8g011N7utq-8toz8C-1H5Ew
  priority: 102
  providerName: Springer Nature
Title Modified particle swarm optimization and fuzzy regularization for pseudo de-convolution of spatially variant blurs
URI https://link.springer.com/article/10.1007/s11042-015-2587-4
https://www.proquest.com/docview/1796446079
https://www.proquest.com/docview/1825506231
Volume 75
WOSCitedRecordID wos000378553700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9IltHODAYDBRGJWROIEsEieOnROCaRMSrFQDxuAS-SvSpC4pSTO0_XqeU6cdSOzC5SWS7djS-4zfF8ALKxOV5bmmXNqUptpwqlgq_G1TGukIz973WDr5KCYTeXqaT8OFWxvCKgeZ2AtqWxt_R_469jmTaRaJ_M38J_Vdo7x3NbTQ2ICtmLHY0_kHQVdehIyHprYyoqgZ48Gr2afOxT4xBZUhZRz5LP1TL62Nzb_8o73aOdz-3wPfh3vB4CRvlxTyAG65age2h2YOJPD2Dty9VpnwITRHtT0r0Twl80BbpP2lmnNSo4g5D7mbRFWWlN3V1SVp-pb2zTCAljCZt66zNbGO-sj2QOGkLknrg7jVbHZJLnAFYpboWde0j-Dr4cGX_fc0tGegJknzBU2UlBa1vTWWxcalpY2d5GjhaOmdrZlBIWxQlmqTlfguhBPcOc5ytIGUY0myC5tVXbnHQDJfw4drJ7T2FQkjfLDI2VKqWOtSpSOIBuQUJtQu9y00ZsW66rLHZ4H4LDw-C1zycrVkvizccdPkvQGHReDhtlgjcATPV8PIfd6loipXdzgHf7B5hCZkPIJXA6Vc-8S_Nnxy84ZP4Q4aZtkyJG0PNhdN557BbXOxOGubMWyIb9_HsPXuYDI9Hvckj_Ao2veQfUI45T8QHn8--Q1rewoo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk4UCggAgUWCS6gFbazttcHhFChatUk4lBQb2ZfRpVSO9hxq_RH8RuZcbxJQaK3HjjZkr1-fvPN7M4L4JWVQ5VkmeaxtIILbWKuIpHSapMIdIDP3vVY-jZKJxN5fJx92YBfPheGwio9J3ZEbStDa-TvQsqZFEmQZh9mPzl1jSLvqm-hsYTFoVuc45SteX_wCf_v6yja-3y0u8_7rgLcDEU250MlpUUlZY2NQuNEYUMnY1TMWpKPMDHIHQYpQJukwP00dWnsXBxlqLqVi2gBFCn_Br7KkIhgHOyuvBZJ3DfRlQFHTRx6L2qXqhdSIgwqXx7FKNfiTz24Nm7_8sd2am5v63_7QPfgbm9Qs49LCbgPG67chi3frIL13LUNdy5VXnwA9biyJwWa32zWyw5rzlV9yiqk0NM-N5Wp0rKivbhYsNr9oHhdfwAtfTZrXGsrZh2nyP1egllVsIaC1NV0umBnOAKRy_S0rZuH8PVavsMj2Cyr0j0GllCNoli7VGuquBjgJgqcLaQKtS6UGEDgwZCbvjY7tQiZ5uuq0oSfHPGTE35yHPJmNWS2LExy1ck7HjN5z1FNvgbMAF6uDiO7kMtIla5q8RyJU84ATeRwAG89Mi9d4l83fHL1DV_Arf2j8SgfHUwOn8JtNEKTZfjdDmzO69Y9g5vmbH7S1M87AWPw_boB-xsUMl9x
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBSE4UCggAgUWCS6gVW1nba8PCCFKRNUS5QCo4mL2ZVQptYMdt0p_Gr-OGWedFCR664FTLNkbW_Y338zsvABeWDlUSZZpHksruNAm5ioSKe02iUAH-OzdjKWvh-l4LI-OsskG_OprYSitsufEjqhtZWiPfDekmkmRBGm2W_i0iMne6O3sJ6cJUhRp7cdpLCFy4BZn6L41b_b38Fu_jKLRh8_vP3I_YYCbocjmfKiktKiwrLFRaJwobOhkjEpaS4oXJgZ5xCAdaJMUeJymLo2di6MM1bhyEW2GIv1fS9HHJMdvEn9bRTCS2A_UlQFHrRz2EdWubC-kohhUxDyKUcbFnzpxbej-FZvtVN5o639-WXfgtje02bulZNyFDVduw1Y_xIJ5TtuGWxc6Mt6D-lNljws0y9nMyxRrzlR9wiqk1hNfs8pUaVnRnp8vWO1-UB5vfwI9ADZrXGsrZh2njH4v2awqWEPJ62o6XbBTXIGIZnra1s19-HIl7-EBbJZV6R4CS6h3UaxdqjV1YgzwJwqcLaQKtS6UGEDQAyM3vmc7jQ6Z5utu04SlHLGUE5ZyXPJqtWS2bFhy2cU7PX5yz11NvgbPAJ6vTiPrUChJla5q8RqJrmiApnM4gNc9Si_8xb9u-OjyGz6DG4jT_HB_fPAYbqJtmiyz8nZgc1637glcN6fz46Z-2skag-9Xjdffa2togg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+particle+swarm+optimization+and+fuzzy+regularization+for+pseudo+de-convolution+of+spatially+variant+blurs&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bilal%2C+Mohsin&rft.au=Mujtaba%2C+Hasan&rft.au=Jaffar%2C+Muhammad+Arfan&rft.date=2016-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=75&rft.issue=11&rft.spage=6533&rft.epage=6548&rft_id=info:doi/10.1007%2Fs11042-015-2587-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon