Modified particle swarm optimization and fuzzy regularization for pseudo de-convolution of spatially variant blurs
We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blu...
Uložené v:
| Vydané v: | Multimedia tools and applications Ročník 75; číslo 11; s. 6533 - 6548 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.06.2016
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a modified particle swarm optimization (MPSO) based method for
Pseudo De-convolution
of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches. |
|---|---|
| AbstractList | We propose a modified particle swarm optimization (MPSO) based method for
Pseudo De-convolution
of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches. We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches. |
| Author | Mujtaba, Hasan Jaffar, Muhammad Arfan Bilal, Mohsin |
| Author_xml | – sequence: 1 givenname: Mohsin surname: Bilal fullname: Bilal, Mohsin email: mohsin.bilal@nu.edu.pk organization: Computer Science Department, National University of Computer And Emerging Sciences – sequence: 2 givenname: Hasan surname: Mujtaba fullname: Mujtaba, Hasan organization: Computer Science Department, National University of Computer And Emerging Sciences – sequence: 3 givenname: Muhammad Arfan surname: Jaffar fullname: Jaffar, Muhammad Arfan organization: College of Computer and Information Systems, Al Imam Mohammad Ibn Saud Islamic University (IMSIU) |
| BookMark | eNp9kU2LFDEQhoOs4O7qD_AW8OIlmspHp_soi1-w4kXPIZNUL1kySZt0r8z8erM7CrKgpxTU81SKei_IWS4ZCXkJ_A1wbt42AK4E46CZ0KNh6gk5B20kM0bAWa_lyJnRHJ6Ri9ZuOYdBC3VO6pcS4hwx0MXVNfqEtP10dU_LssZ9PLo1lkxdDnTejscDrXizJVf_NOZS6dJwC4UGZL7ku5K2h06ZaVs65FI60LtuuLzSXdpqe06ezi41fPH7vSTfP7z_dvWJXX_9-Pnq3TXzUk0rk24cw6hl8EGARzUHwFEPSu5GNXA9eFCDnwB2fph7bQwajajFpOTkUEh5SV6f5i61_NiwrXYfm8eUXMayNQuj0JoPQkJHXz1Cb8tWc9_OgpkG1T80U6fMifK1tFZxtj6uD3dYq4vJArf3WdhTFrZnYe-zsKqb8Mhcaty7evivI05O62y-wfrXTv-UfgHtDZ9x |
| CitedBy_id | crossref_primary_10_1007_s11760_019_01559_5 crossref_primary_10_1007_s11042_016_3625_6 |
| Cites_doi | 10.1109/NABIC.2009.5393754 10.1007/11550518_60 10.1007/s11042-012-1172-3 10.1007/978-3-540-74272-2_112 10.1109/29.1641 10.1109/IEMBS.2005.1615986 10.1364/OE.14.001767 10.1007/s11042-012-1015-2 10.1007/s11042-014-1867-8 10.1137/S106482759528507X 10.1137/1.9780898718874 10.1007/978-3-540-72823-8_46 10.1109/TIP.2006.873446 10.1016/j.cam.2008.08.013 10.1007/s11042-014-2063-6 10.1109/72.822518 10.1007/s11042-012-1253-3 10.1364/JOSAA.12.002593 10.1109/83.128030 10.6029/smartcr.2013.04.002 10.1007/978-3-642-24785-9_14 10.1364/AO.36.001766 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2016 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2016 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-015-2587-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 6548 |
| ExternalDocumentID | 4088902231 10_1007_s11042_015_2587_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U PUEGO |
| ID | FETCH-LOGICAL-c349t-3a88d853dcd21ce4fd1e85643b846056c146c911bc6fc1477e75ee529439ae233 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378553700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Thu Sep 04 15:12:44 EDT 2025 Wed Nov 05 00:45:28 EST 2025 Tue Nov 18 21:51:52 EST 2025 Sat Nov 29 03:25:36 EST 2025 Fri Feb 21 02:32:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Fuzzy regularization Pseudo de-convolution Space variant degradation Particle swarm optimization Mathematical morphology Ill-posed inverse problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-3a88d853dcd21ce4fd1e85643b846056c146c911bc6fc1477e75ee529439ae233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1796446079 |
| PQPubID | 54626 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1825506231 proquest_journals_1796446079 crossref_citationtrail_10_1007_s11042_015_2587_4 crossref_primary_10_1007_s11042_015_2587_4 springer_journals_10_1007_s11042_015_2587_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20160600 2016-6-00 20160601 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 6 year: 2016 text: 20160600 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BardsleyJJefferiesSNagyJPlemmonsRA computational method for the restoration of images with an unknown, spatially-varying blurOpt Express20061451767178210.1364/OE.14.001767 Boden AF, Redding DC, Hanisch RJ, Mo J (1996) Massively parallel spatially-variant maximum likelihood image restoration. In: Jacoby GH, Barnes J (eds) Astronomical data analysis software and systems V. Astronomical society of the pacific conference series, vol 101, p 131 Perry SW (2006) Adaptive image restoration: perception based neural network models and algorithms. PhD thesis, School of Electrical and Information Engineering, University of Sydney, NSW Sharif M, Hussain A, Jaffar M, Choi TS (2014) Fuzzy similarity based non local means filter for rician noise removal. Multimedia tools and applications:1–24. doi:10.1007/s11042-014-1867-8 PerrySGuanLWeight assignment for adaptive image restoration by neural networksIEEE Trans Neural Netw200011115617010.1109/72.822518 Dash R, Majhi B (2009) Particle swarm optimization based regularization for image restoration. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 1253–1257 FaisalMLantermanADSnyderDLWhiteRLImplementation of a modified Richardson-Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device cameraJ Opt Soc Am A1995122593260310.1364/JOSAA.12.002593 Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing. chap 5 BiggsDSAndrewsMAcceleration of iterative image restoration algorithmsAppl Opt19973681766177510.1364/AO.36.001766 Hansen PC, Nagy JG, O’leary DP (2006) Deblurring images: matrices, spectra, and filtering. Society for industrial and applied mathematics, Philadelphia, PA 19104–2688 Zhao Y, Gui W, Chen Z, Tang J, Li L (2005) Medical images edge detection based on mathematical morphology. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, pp 1–4 BilalMHussainAJaffarMChoiTSMirzaAEstimation and optimization based ill-posed inverse restoration using fuzzy logicMultimedia Tools and Applications20146931067108710.1007/s11042-012-1172-3 MasoodSHussainAJaffarMChoiTSIntelligent noise detection and filtering using neuro-fuzzy systemMultimedia Tools and Applications20136319310510.1007/s11042-012-1015-2 Bilal M, Rehman MSu, Jaffar MA (2013) Evolutionary reconstruction: image restoration for space variant degradation. Smart Computing Review 3(4):220–232 Sun Z, Li E, Zhang J, Gao X (2011) A regularized image restoration algorithm based on improved hybrid particle swarm optimization. In: 2011 6th International forum on strategic technology (IFOST), vol 2, pp 725–728 Welk M, Theis D,Weickert J (2005) Variational deblurring of images with uncertain and spatially variant blurs. In: Kropatsch W, Sablatnig R, Hanbury A (eds) Pattern recognition. Lecture notes in computer science, vol 3663. Springer, Berlin Heidelberg, pp 485–492 ZhouYTChellappaRVaidAJenkinsBImage restoration using a neural networkIEEE Trans Acoust Speech Signal Process19883671141115110.1109/29.16410652.68100 PaikJKatsaggelosAImage restoration using a modified hopfield networkIEEE Trans Image Process199211496310.1109/83.128030 Kober V, Agis J (2007) Space-variant restoration with sliding discrete cosine transform. In: Kropatsch W, Kampel M, Hanbury A (eds) Computer analysis of images and patterns. Lecture notes in computer science, vol 4673. Springer, Berlin Heidelberg, pp 903–911 Klapp I, Sochen N, Mendlovic D (2012) Deblurring space-variant blur by adding noisy image. In: Bruckstein A, Haar Romeny B, Bronstein A, Bronstein M (eds) Scale space and variational methods in computer vision. Lecture notes in computer science, vol 6667. Springer, Berlin Heidelberg, pp 157–168 MignotteMA segmentation based regularization term for image deconvolutionIEEE Trans Image Process2006151973198410.1109/TIP.2006.873446 ZiaSJaffarMMirzaAChoiTSRician noise removal from mr images using novel adapted selective non-local means filterMultimedia Tools and Applications201472111910.1007/s11042-012-1253-3 GuXGaoLA new method for parameter estimation of edge-preserving regularization in image restorationJ Comput Appl Math20092252478486249471810.1016/j.cam.2008.08.0131156.94006 NagyJGO’LearyDPRestoring images degraded by spatially variant blurSIAM J Sci Comput199819410631082161429510.1137/S106482759528507X0919.65091 Lucena M, Martnez-Carrillo A, Fuertes J, Carrascosa F, Ruiz A (2014) Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications:1–15. doi:10.1007/s11042-014-2063-6 Belokogne I, Carbillet M, Chesneau O (2011) How to push the limits of evolved stars observations with sphere/vlt Bar L, Sochen N, Kiryati N (2007) Restoration of images with piecewise space-variant blur. In: 1st International conference on Scale space and variational methods in computer vision, LNCS, vol 4485. Springer, Berlin, Heidelberg, pp 533–544 2587_CR3 2587_CR23 2587_CR22 2587_CR1 2587_CR25 2587_CR24 2587_CR21 S Perry (2587_CR20) 2000; 11 2587_CR8 2587_CR7 2587_CR5 DS Biggs (2587_CR4) 1997; 36 M Faisal (2587_CR9) 1995; 12 J Paik (2587_CR19) 1992; 1 S Zia (2587_CR27) 2014; 72 2587_CR12 2587_CR14 2587_CR13 2587_CR10 J Bardsley (2587_CR2) 2006; 14 JG Nagy (2587_CR18) 1998; 19 M Mignotte (2587_CR17) 2006; 15 YT Zhou (2587_CR26) 1988; 36 M Bilal (2587_CR6) 2014; 69 X Gu (2587_CR11) 2009; 225 2587_CR15 S Masood (2587_CR16) 2013; 63 |
| References_xml | – reference: GuXGaoLA new method for parameter estimation of edge-preserving regularization in image restorationJ Comput Appl Math20092252478486249471810.1016/j.cam.2008.08.0131156.94006 – reference: ZiaSJaffarMMirzaAChoiTSRician noise removal from mr images using novel adapted selective non-local means filterMultimedia Tools and Applications201472111910.1007/s11042-012-1253-3 – reference: Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB, 2nd edn. Gatesmark Publishing. chap 5 – reference: Boden AF, Redding DC, Hanisch RJ, Mo J (1996) Massively parallel spatially-variant maximum likelihood image restoration. In: Jacoby GH, Barnes J (eds) Astronomical data analysis software and systems V. Astronomical society of the pacific conference series, vol 101, p 131 – reference: Sharif M, Hussain A, Jaffar M, Choi TS (2014) Fuzzy similarity based non local means filter for rician noise removal. Multimedia tools and applications:1–24. doi:10.1007/s11042-014-1867-8 – reference: ZhouYTChellappaRVaidAJenkinsBImage restoration using a neural networkIEEE Trans Acoust Speech Signal Process19883671141115110.1109/29.16410652.68100 – reference: MignotteMA segmentation based regularization term for image deconvolutionIEEE Trans Image Process2006151973198410.1109/TIP.2006.873446 – reference: BiggsDSAndrewsMAcceleration of iterative image restoration algorithmsAppl Opt19973681766177510.1364/AO.36.001766 – reference: MasoodSHussainAJaffarMChoiTSIntelligent noise detection and filtering using neuro-fuzzy systemMultimedia Tools and Applications20136319310510.1007/s11042-012-1015-2 – reference: Bar L, Sochen N, Kiryati N (2007) Restoration of images with piecewise space-variant blur. In: 1st International conference on Scale space and variational methods in computer vision, LNCS, vol 4485. Springer, Berlin, Heidelberg, pp 533–544 – reference: Welk M, Theis D,Weickert J (2005) Variational deblurring of images with uncertain and spatially variant blurs. In: Kropatsch W, Sablatnig R, Hanbury A (eds) Pattern recognition. Lecture notes in computer science, vol 3663. Springer, Berlin Heidelberg, pp 485–492 – reference: PaikJKatsaggelosAImage restoration using a modified hopfield networkIEEE Trans Image Process199211496310.1109/83.128030 – reference: BardsleyJJefferiesSNagyJPlemmonsRA computational method for the restoration of images with an unknown, spatially-varying blurOpt Express20061451767178210.1364/OE.14.001767 – reference: Dash R, Majhi B (2009) Particle swarm optimization based regularization for image restoration. In: World congress on nature biologically inspired computing, 2009. NaBIC 2009, pp 1253–1257 – reference: BilalMHussainAJaffarMChoiTSMirzaAEstimation and optimization based ill-posed inverse restoration using fuzzy logicMultimedia Tools and Applications20146931067108710.1007/s11042-012-1172-3 – reference: Klapp I, Sochen N, Mendlovic D (2012) Deblurring space-variant blur by adding noisy image. In: Bruckstein A, Haar Romeny B, Bronstein A, Bronstein M (eds) Scale space and variational methods in computer vision. Lecture notes in computer science, vol 6667. Springer, Berlin Heidelberg, pp 157–168 – reference: Sun Z, Li E, Zhang J, Gao X (2011) A regularized image restoration algorithm based on improved hybrid particle swarm optimization. In: 2011 6th International forum on strategic technology (IFOST), vol 2, pp 725–728 – reference: Hansen PC, Nagy JG, O’leary DP (2006) Deblurring images: matrices, spectra, and filtering. Society for industrial and applied mathematics, Philadelphia, PA 19104–2688 – reference: NagyJGO’LearyDPRestoring images degraded by spatially variant blurSIAM J Sci Comput199819410631082161429510.1137/S106482759528507X0919.65091 – reference: Bilal M, Rehman MSu, Jaffar MA (2013) Evolutionary reconstruction: image restoration for space variant degradation. Smart Computing Review 3(4):220–232 – reference: Lucena M, Martnez-Carrillo A, Fuertes J, Carrascosa F, Ruiz A (2014) Decision support system for classifying archaeological pottery profiles based on mathematical morphology. Multimedia Tools and Applications:1–15. doi:10.1007/s11042-014-2063-6 – reference: FaisalMLantermanADSnyderDLWhiteRLImplementation of a modified Richardson-Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device cameraJ Opt Soc Am A1995122593260310.1364/JOSAA.12.002593 – reference: Zhao Y, Gui W, Chen Z, Tang J, Li L (2005) Medical images edge detection based on mathematical morphology. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, pp 1–4 – reference: Perry SW (2006) Adaptive image restoration: perception based neural network models and algorithms. PhD thesis, School of Electrical and Information Engineering, University of Sydney, NSW – reference: PerrySGuanLWeight assignment for adaptive image restoration by neural networksIEEE Trans Neural Netw200011115617010.1109/72.822518 – reference: Kober V, Agis J (2007) Space-variant restoration with sliding discrete cosine transform. In: Kropatsch W, Kampel M, Hanbury A (eds) Computer analysis of images and patterns. Lecture notes in computer science, vol 4673. Springer, Berlin Heidelberg, pp 903–911 – reference: Belokogne I, Carbillet M, Chesneau O (2011) How to push the limits of evolved stars observations with sphere/vlt – ident: 2587_CR8 doi: 10.1109/NABIC.2009.5393754 – ident: 2587_CR24 doi: 10.1007/11550518_60 – ident: 2587_CR3 – ident: 2587_CR7 – volume: 69 start-page: 1067 issue: 3 year: 2014 ident: 2587_CR6 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-012-1172-3 – ident: 2587_CR14 doi: 10.1007/978-3-540-74272-2_112 – volume: 36 start-page: 1141 issue: 7 year: 1988 ident: 2587_CR26 publication-title: IEEE Trans Acoust Speech Signal Process doi: 10.1109/29.1641 – ident: 2587_CR25 doi: 10.1109/IEMBS.2005.1615986 – volume: 14 start-page: 1767 issue: 5 year: 2006 ident: 2587_CR2 publication-title: Opt Express doi: 10.1364/OE.14.001767 – volume: 63 start-page: 93 issue: 1 year: 2013 ident: 2587_CR16 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-012-1015-2 – ident: 2587_CR22 doi: 10.1007/s11042-014-1867-8 – volume: 19 start-page: 1063 issue: 4 year: 1998 ident: 2587_CR18 publication-title: SIAM J Sci Comput doi: 10.1137/S106482759528507X – ident: 2587_CR12 doi: 10.1137/1.9780898718874 – ident: 2587_CR1 doi: 10.1007/978-3-540-72823-8_46 – volume: 15 start-page: 1973 year: 2006 ident: 2587_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.873446 – volume: 225 start-page: 478 issue: 2 year: 2009 ident: 2587_CR11 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.08.013 – ident: 2587_CR15 doi: 10.1007/s11042-014-2063-6 – volume: 11 start-page: 156 issue: 1 year: 2000 ident: 2587_CR20 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.822518 – ident: 2587_CR21 – volume: 72 start-page: 1 issue: 1 year: 2014 ident: 2587_CR27 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-012-1253-3 – ident: 2587_CR23 – volume: 12 start-page: 2593 year: 1995 ident: 2587_CR9 publication-title: J Opt Soc Am A doi: 10.1364/JOSAA.12.002593 – volume: 1 start-page: 49 issue: 1 year: 1992 ident: 2587_CR19 publication-title: IEEE Trans Image Process doi: 10.1109/83.128030 – ident: 2587_CR5 doi: 10.6029/smartcr.2013.04.002 – ident: 2587_CR10 – ident: 2587_CR13 doi: 10.1007/978-3-642-24785-9_14 – volume: 36 start-page: 1766 issue: 8 year: 1997 ident: 2587_CR4 publication-title: Appl Opt doi: 10.1364/AO.36.001766 |
| SSID | ssj0016524 |
| Score | 2.0868495 |
| Snippet | We propose a modified particle swarm optimization (MPSO) based method for
Pseudo De-convolution
of the ill-posed inverse problem namely, the space-variant... We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6533 |
| SubjectTerms | Additives Algorithms Analysis Blurring Computation Computer Communication Networks Computer Science Data Structures and Information Theory Fuzzy logic Inverse problems Mathematical analysis Morphology Multimedia computer applications Multimedia Information Systems Neural networks Noise Optimization Regularization Regularization methods Space telescopes Special Purpose and Application-Based Systems Stars & galaxies Studies Swarm intelligence Wavelet transforms |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6VlAM9QAmghqbVInGiWsmvtddHhBpxoKhqC-Jm7csSUmJHdgwiv55ZZ50EVJDgZEv78HpnZuez5wVwrHko4jSVlHEd0UgqRkUQJfZvU-RJD9fe1li6vkguL_nNTfrbxXHXnbd7Z5JsT-pVsJtvQ0lQfdGAoWREG_ARtR230vjn7_XSdBAzV8mWexTVod-ZMv83xVNltEKYz4yira4Z7bxrlZ9h20FLcrrghV34YIo-7HRlG4iT4j58WstBuAfVr1Lf5ghEydRxEanvRTUhJR4mExelSUShSd7M5w-kaovXV10DYl4yrU2jS6INtT7sjpdJmZPaumuL8fiB3OEIpCGR46aq9-Fq9PPf2Tl1hRioCqN0RkPBuUa9rpUOfGWiXPuGM8QykluzaqzwuFV4akoV53ifJCZhxrAgRbQjTBCGB9ArysJ8ARLbbD1MmkRKm3vQw0vgGZ1z4UuZi2gAXkeRTLks5bZYxjhb5Ve2O5zhDmd2hzMccrIcMl2k6Hit87Ajc-aktc58G4-Lb5KkAzhaNqOcWeOJKEzZYB_8lGYegkV_AD860q9N8dIDD9_U-ytsISKLF75oQ-jNqsZ8g011N7utq-8toz8C-1H5Ew priority: 102 providerName: Springer Nature |
| Title | Modified particle swarm optimization and fuzzy regularization for pseudo de-convolution of spatially variant blurs |
| URI | https://link.springer.com/article/10.1007/s11042-015-2587-4 https://www.proquest.com/docview/1796446079 https://www.proquest.com/docview/1825506231 |
| Volume | 75 |
| WOSCitedRecordID | wos000378553700023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9IltHODAYDBRGJWROIEsEieOnROCaRMSrFQDxuAS-SvSpC4pSTO0_XqeU6cdSOzC5SWS7djS-4zfF8ALKxOV5bmmXNqUptpwqlgq_G1TGukIz973WDr5KCYTeXqaT8OFWxvCKgeZ2AtqWxt_R_469jmTaRaJ_M38J_Vdo7x3NbTQ2ICtmLHY0_kHQVdehIyHprYyoqgZ48Gr2afOxT4xBZUhZRz5LP1TL62Nzb_8o73aOdz-3wPfh3vB4CRvlxTyAG65age2h2YOJPD2Dty9VpnwITRHtT0r0Twl80BbpP2lmnNSo4g5D7mbRFWWlN3V1SVp-pb2zTCAljCZt66zNbGO-sj2QOGkLknrg7jVbHZJLnAFYpboWde0j-Dr4cGX_fc0tGegJknzBU2UlBa1vTWWxcalpY2d5GjhaOmdrZlBIWxQlmqTlfguhBPcOc5ytIGUY0myC5tVXbnHQDJfw4drJ7T2FQkjfLDI2VKqWOtSpSOIBuQUJtQu9y00ZsW66rLHZ4H4LDw-C1zycrVkvizccdPkvQGHReDhtlgjcATPV8PIfd6loipXdzgHf7B5hCZkPIJXA6Vc-8S_Nnxy84ZP4Q4aZtkyJG0PNhdN557BbXOxOGubMWyIb9_HsPXuYDI9Hvckj_Ao2veQfUI45T8QHn8--Q1rewoo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk4UCggAgUWCS6gFbazttcHhFChatUk4lBQb2ZfRpVSO9hxq_RH8RuZcbxJQaK3HjjZkr1-fvPN7M4L4JWVQ5VkmeaxtIILbWKuIpHSapMIdIDP3vVY-jZKJxN5fJx92YBfPheGwio9J3ZEbStDa-TvQsqZFEmQZh9mPzl1jSLvqm-hsYTFoVuc45SteX_wCf_v6yja-3y0u8_7rgLcDEU250MlpUUlZY2NQuNEYUMnY1TMWpKPMDHIHQYpQJukwP00dWnsXBxlqLqVi2gBFCn_Br7KkIhgHOyuvBZJ3DfRlQFHTRx6L2qXqhdSIgwqXx7FKNfiTz24Nm7_8sd2am5v63_7QPfgbm9Qs49LCbgPG67chi3frIL13LUNdy5VXnwA9biyJwWa32zWyw5rzlV9yiqk0NM-N5Wp0rKivbhYsNr9oHhdfwAtfTZrXGsrZh2nyP1egllVsIaC1NV0umBnOAKRy_S0rZuH8PVavsMj2Cyr0j0GllCNoli7VGuquBjgJgqcLaQKtS6UGEDgwZCbvjY7tQiZ5uuq0oSfHPGTE35yHPJmNWS2LExy1ck7HjN5z1FNvgbMAF6uDiO7kMtIla5q8RyJU84ATeRwAG89Mi9d4l83fHL1DV_Arf2j8SgfHUwOn8JtNEKTZfjdDmzO69Y9g5vmbH7S1M87AWPw_boB-xsUMl9x |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBSE4UCggAgUWCS6gVW1nba8PCCFKRNUS5QCo4mL2ZVQptYMdt0p_Gr-OGWedFCR664FTLNkbW_Y338zsvABeWDlUSZZpHksruNAm5ioSKe02iUAH-OzdjKWvh-l4LI-OsskG_OprYSitsufEjqhtZWiPfDekmkmRBGm2W_i0iMne6O3sJ6cJUhRp7cdpLCFy4BZn6L41b_b38Fu_jKLRh8_vP3I_YYCbocjmfKiktKiwrLFRaJwobOhkjEpaS4oXJgZ5xCAdaJMUeJymLo2di6MM1bhyEW2GIv1fS9HHJMdvEn9bRTCS2A_UlQFHrRz2EdWubC-kohhUxDyKUcbFnzpxbej-FZvtVN5o639-WXfgtje02bulZNyFDVduw1Y_xIJ5TtuGWxc6Mt6D-lNljws0y9nMyxRrzlR9wiqk1hNfs8pUaVnRnp8vWO1-UB5vfwI9ADZrXGsrZh2njH4v2awqWEPJ62o6XbBTXIGIZnra1s19-HIl7-EBbJZV6R4CS6h3UaxdqjV1YgzwJwqcLaQKtS6UGEDQAyM3vmc7jQ6Z5utu04SlHLGUE5ZyXPJqtWS2bFhy2cU7PX5yz11NvgbPAJ6vTiPrUChJla5q8RqJrmiApnM4gNc9Si_8xb9u-OjyGz6DG4jT_HB_fPAYbqJtmiyz8nZgc1637glcN6fz46Z-2skag-9Xjdffa2togg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+particle+swarm+optimization+and+fuzzy+regularization+for+pseudo+de-convolution+of+spatially+variant+blurs&rft.jtitle=Multimedia+tools+and+applications&rft.au=Bilal%2C+Mohsin&rft.au=Mujtaba%2C+Hasan&rft.au=Jaffar%2C+Muhammad+Arfan&rft.date=2016-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=75&rft.issue=11&rft.spage=6533&rft.epage=6548&rft_id=info:doi/10.1007%2Fs11042-015-2587-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |