Modified particle swarm optimization and fuzzy regularization for pseudo de-convolution of spatially variant blurs

We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 75; číslo 11; s. 6533 - 6548
Hlavní autoři: Bilal, Mohsin, Mujtaba, Hasan, Jaffar, Muhammad Arfan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2016
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a modified particle swarm optimization (MPSO) based method for Pseudo De-convolution of the ill-posed inverse problem namely, the space-variant image degradation (SVD). In this paper, SVD is simulated by the pseudo convolution of different sub-regions of the image with different known blurring kernels and additive random noise with unknown variance. Two heuristic modifications are proposed in PSO: 1) Initialization of the swarm and 2) Mutation of the global best. Fuzzy logic is applied for the computation of regularization parameter (RP) to cater for the sensitivity of the problem. The computation of RP is crucial due to the additive noise in the SVD image. Thus mathematical morphology (MM) is applied for better extraction of spatial activity from the distorted image. The performance of the proposed method is evaluated with different test images and noise powers. Comparative analysis demonstrates the superiority of proposed restoration, in terms of quantitative measures, over well-known existing and state-of-the-art SVD approaches.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-015-2587-4