Undercover: a primal MINLP heuristic exploring a largest sub-MIP

We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programs (MINLPs) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a smallest set of variables to fix, a so-called cover , such that each constrai...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 144; no. 1-2; pp. 315 - 346
Main Authors: Berthold, Timo, Gleixner, Ambros M.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2014
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programs (MINLPs) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a smallest set of variables to fix, a so-called cover , such that each constraint is linearized. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We apply domain propagation to try to avoid infeasibilities, and conflict analysis to learn additional constraints from infeasibilities that are nonetheless encountered. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and MINLPs. It turns out that the majority of these instances allows for small covers. Although general in nature, we show that the heuristic is most successful on MIQCPs. It nicely complements existing root-node heuristics in different state-of-the-art solvers and helps to significantly improve the overall performance of the MINLP solver SCIP .
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-013-0635-2