Numerical methods for solving applied optimal control problems

For an optimal control problem with state constraints, an iterative solution method is described based on reduction to a finite-dimensional problem, followed by applying a successive linearization algorithm with the use of an augmented Lagrangian. The efficiency of taking into account state constrai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 53; číslo 12; s. 1825 - 1838
Hlavní autoři: Gornov, A. Yu, Tyatyushkin, A. I., Finkelstein, E. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.12.2013
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For an optimal control problem with state constraints, an iterative solution method is described based on reduction to a finite-dimensional problem, followed by applying a successive linearization algorithm with the use of an augmented Lagrangian. The efficiency of taking into account state constraints in optimal control computation is illustrated by numerically solving several application problems.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542513120063