Semi-supervised Stacked Label Consistent Autoencoder for Reconstruction and Analysis of Biomedical Signals
Objective: An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and classification as separate problems. This is the first study that proposes a combined framework to address the issue in a holistic fashi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on biomedical engineering Jg. 64; H. 9; S. 2196 - 2205 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9294, 1558-2531 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Objective: An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and classification as separate problems. This is the first study that proposes a combined framework to address the issue in a holistic fashion. Methods: For telemonitoring purposes, reconstruction techniques of biomedical signals are largely based on compressed sensing (CS); these are "designed" techniques where the reconstruction formulation is based on some "assumption" regarding the signal. In this study, we propose a new paradigm for reconstruction-the reconstruction is "learned," using an autoencoder; it does not require any assumption regarding the signal as long as there is sufficiently large training data. But since the final goal is to analyze/classify the signal, the system can also learn a linear classification map that is added inside the autoencoder. The ensuing optimization problem is solved using the Split Bregman technique. Results: Experiments were carried out on reconstructing and classifying electrocardiogram (ECG) (arrhythmia classification) and EEG (seizure classification) signals. Conclusion: Our proposed tool is capable of operating in a semi-supervised fashion. We show that our proposed method is better in reconstruction and more than an order magnitude faster than CS based methods; it is capable of real-time operation. Our method also yields better results than recently proposed classification methods. Significance: This is the first study offering an alternative to CS-based reconstruction. It also shows that the representation learning approach can yield better results than traditional methods that use hand-crafted features for signal analysis. |
|---|---|
| AbstractList | Objective: An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and classification as separate problems. This is the first study that proposes a combined framework to address the issue in a holistic fashion. Methods: For telemonitoring purposes, reconstruction techniques of biomedical signals are largely based on compressed sensing (CS); these are “designed” techniques where the reconstruction formulation is based on some “assumption” regarding the signal. In this study, we propose a new paradigm for reconstruction-the reconstruction is “learned,” using an autoencoder; it does not require any assumption regarding the signal as long as there is sufficiently large training data. But since the final goal is to analyze/classify the signal, the system can also learn a linear classification map that is added inside the autoencoder. The ensuing optimization problem is solved using the Split Bregman technique. Results: Experiments were carried out on reconstructing and classifying electrocardiogram (ECG) (arrhythmia classification) and EEG (seizure classification) signals. Conclusion: Our proposed tool is capable of operating in a semi-supervised fashion. We show that our proposed method is better in reconstruction and more than an order magnitude faster than CS based methods; it is capable of real-time operation. Our method also yields better results than recently proposed classification methods. Significance: This is the first study offering an alternative to CS-based reconstruction. It also shows that the representation learning approach can yield better results than traditional methods that use hand-crafted features for signal analysis. An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and classification as separate problems. This is the first study that proposes a combined framework to address the issue in a holistic fashion. For telemonitoring purposes, reconstruction techniques of biomedical signals are largely based on compressed sensing (CS); these are "designed" techniques where the reconstruction formulation is based on some "assumption" regarding the signal. In this study, we propose a new paradigm for reconstruction-the reconstruction is "learned," using an autoencoder; it does not require any assumption regarding the signal as long as there is sufficiently large training data. But since the final goal is to analyze/classify the signal, the system can also learn a linear classification map that is added inside the autoencoder. The ensuing optimization problem is solved using the Split Bregman technique. Experiments were carried out on reconstructing and classifying electrocardiogram (ECG) (arrhythmia classification) and EEG (seizure classification) signals. Our proposed tool is capable of operating in a semi-supervised fashion. We show that our proposed method is better in reconstruction and more than an order magnitude faster than CS based methods; it is capable of real-time operation. Our method also yields better results than recently proposed classification methods. This is the first study offering an alternative to CS-based reconstruction. It also shows that the representation learning approach can yield better results than traditional methods that use hand-crafted features for signal analysis. OBJECTIVEAn autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and classification as separate problems. This is the first study that proposes a combined framework to address the issue in a holistic fashion.METHODSFor telemonitoring purposes, reconstruction techniques of biomedical signals are largely based on compressed sensing (CS); these are "designed" techniques where the reconstruction formulation is based on some "assumption" regarding the signal. In this study, we propose a new paradigm for reconstruction-the reconstruction is "learned," using an autoencoder; it does not require any assumption regarding the signal as long as there is sufficiently large training data. But since the final goal is to analyze/classify the signal, the system can also learn a linear classification map that is added inside the autoencoder. The ensuing optimization problem is solved using the Split Bregman technique.RESULTSExperiments were carried out on reconstructing and classifying electrocardiogram (ECG) (arrhythmia classification) and EEG (seizure classification) signals.CONCLUSIONOur proposed tool is capable of operating in a semi-supervised fashion. We show that our proposed method is better in reconstruction and more than an order magnitude faster than CS based methods; it is capable of real-time operation. Our method also yields better results than recently proposed classification methods.SIGNIFICANCEThis is the first study offering an alternative to CS-based reconstruction. It also shows that the representation learning approach can yield better results than traditional methods that use hand-crafted features for signal analysis. |
| Author | Majumdar, Angshul Ward, Rabab Gogna, Anupriya |
| Author_xml | – sequence: 1 givenname: Anupriya surname: Gogna fullname: Gogna, Anupriya organization: Indraprasatha Institute of Information Technology – sequence: 2 givenname: Angshul surname: Majumdar fullname: Majumdar, Angshul email: angshul@iiitd.ac.in organization: Indraprasatha Institute of Information Technology, Delhi, India – sequence: 3 givenname: Rabab surname: Ward fullname: Ward, Rabab organization: University of British Columbia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27893378$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URNPCD0BIyBKXXjb4a_1xTKNSkIKQSDlbXu8sctisg-1F6r_HUVIOPXB6NZrnHc3Me4UupjgBQm8pWVJKzMeH2693S0aoXDLJqWTkBVrQttUNazm9QAtCqG4MM-ISXeW8q6XQQr5Cl0xpw7nSC7Tbwj40eT5A-hMy9HhbnP9VdeM6GPE6TjnkAlPBq7lEmHzsIeEhJvwdfG2WNPsS4oTd1OPV5MbHyuM44NsQ99AH70a8DT9rI79GL4cq8Oas1-jHp7uH9edm8-3-y3q1aTwXpjRcUS5bwb3gpHWGCNJJZXpiXK9h8APIYWg500r1XS99Nwyd7oRgnQTFBVB-jW5Ocw8p_p4hF7sP2cM4ugninC3VQkhimGIV_fAM3cU5HZe1jCrBGTFCVur9mZq7epM9pLB36dE-fbEC6gT4FHNOMFgfiju-pSQXRkuJPeZlj3nZY172nFd10mfOp-H_87w7eQIA_OOVapnmkv8Fqe6gYA |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_TBCAS_2023_3234280 crossref_primary_10_1016_j_bspc_2023_104992 crossref_primary_10_1109_ACCESS_2020_3000638 crossref_primary_10_1016_j_image_2020_116111 crossref_primary_10_1109_TASE_2022_3218132 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1016_j_bspc_2021_103065 crossref_primary_10_1088_1361_6501_abfbab crossref_primary_10_1109_THMS_2023_3244938 crossref_primary_10_1109_TBME_2021_3137184 crossref_primary_10_1016_j_bspc_2020_102054 crossref_primary_10_1088_1741_2552_adc48e crossref_primary_10_1109_ACCESS_2024_3406736 crossref_primary_10_1109_TSG_2018_2815763 crossref_primary_10_1016_j_neunet_2023_01_034 crossref_primary_10_1016_j_chemosphere_2024_143835 crossref_primary_10_1109_ACCESS_2017_2771536 crossref_primary_10_1016_j_knosys_2025_113173 crossref_primary_10_1016_j_knosys_2024_112322 crossref_primary_10_1109_JAS_2022_105425 crossref_primary_10_3390_jmse13050956 crossref_primary_10_1145_3448302 crossref_primary_10_1016_j_measurement_2023_113944 crossref_primary_10_1016_j_compbiomed_2020_103797 crossref_primary_10_3389_fnins_2023_1135850 crossref_primary_10_1109_TBCAS_2019_2930215 crossref_primary_10_1111_exsy_12494 crossref_primary_10_1109_ACCESS_2018_2859267 crossref_primary_10_1145_3241056 crossref_primary_10_1109_JSEN_2020_3025384 crossref_primary_10_3390_s24113601 crossref_primary_10_1109_TNSE_2022_3222362 crossref_primary_10_1007_s11063_021_10467_0 crossref_primary_10_1016_j_neunet_2018_07_016 crossref_primary_10_1109_ACCESS_2018_2881492 crossref_primary_10_1016_j_nanoen_2024_109796 crossref_primary_10_1016_j_mri_2018_06_003 crossref_primary_10_1109_ACCESS_2020_3038314 crossref_primary_10_1109_ACCESS_2019_2919143 crossref_primary_10_1109_TMM_2020_2999183 crossref_primary_10_1016_j_eswa_2021_115729 crossref_primary_10_1016_j_comcom_2022_07_027 crossref_primary_10_1016_j_bspc_2021_103281 crossref_primary_10_1109_JBHI_2020_3006145 crossref_primary_10_1007_s10489_019_01581_7 crossref_primary_10_1007_s11042_023_15052_2 crossref_primary_10_1109_ACCESS_2025_3553056 crossref_primary_10_1016_j_bspc_2020_102225 crossref_primary_10_1109_ACCESS_2019_2912036 crossref_primary_10_1186_s12938_019_0630_9 crossref_primary_10_1371_journal_pone_0218930 crossref_primary_10_1109_JIOT_2020_3021724 crossref_primary_10_1109_JBHI_2018_2871678 crossref_primary_10_1364_AO_57_002545 crossref_primary_10_1109_THMS_2019_2904615 crossref_primary_10_3390_electronics8060667 crossref_primary_10_1109_TBCAS_2021_3090995 crossref_primary_10_1109_TSMC_2019_2946398 crossref_primary_10_1016_j_bdr_2021_100305 crossref_primary_10_1109_TBME_2019_2926104 crossref_primary_10_1177_14604582231213846 crossref_primary_10_1016_j_neucom_2024_128644 crossref_primary_10_1186_s12911_019_0967_9 crossref_primary_10_3390_brainsci11050668 crossref_primary_10_1109_TCBB_2020_3006699 crossref_primary_10_1109_TIM_2018_2872387 crossref_primary_10_1007_s00034_022_02071_x crossref_primary_10_3390_app12168368 crossref_primary_10_1002_rcs_1947 crossref_primary_10_1016_j_dsp_2025_105608 crossref_primary_10_1007_s42979_024_03508_7 crossref_primary_10_1109_JIOT_2024_3402254 crossref_primary_10_1016_j_neucom_2022_12_017 crossref_primary_10_1016_j_patcog_2021_108386 crossref_primary_10_1109_ACCESS_2019_2930882 crossref_primary_10_3389_fnins_2022_824471 crossref_primary_10_1088_1741_2552_ad48ba crossref_primary_10_1109_ACCESS_2020_3025324 crossref_primary_10_3389_fnbot_2019_00037 crossref_primary_10_1016_j_dsp_2025_105053 crossref_primary_10_1016_j_inffus_2024_102536 crossref_primary_10_1109_TNNLS_2020_3042500 crossref_primary_10_1155_2020_8849011 crossref_primary_10_3389_fphys_2021_727210 crossref_primary_10_3390_app12168256 |
| Cites_doi | 10.3390/s140202036 10.1109/TBCAS.2015.2444276 10.1109/JSSC.2003.811979 10.1561/2200000006 10.1109/18.382009 10.1109/TITB.2009.2034649 10.1016/j.eswa.2012.12.063 10.1016/j.bspc.2013.01.005 10.1109/TBME.2010.2048568 10.1109/JBHI.2013.2255132 10.1109/TIT.2011.2173241 10.1109/TBME.2012.2217959 10.3390/s140101474 10.1109/TSP.2012.2208955 10.1109/SSP.2007.4301243 10.1109/JBHI.2014.2312374 10.1016/j.bspc.2015.03.002 10.1109/TIT.2007.909108 10.1109/JBHI.2014.2358640 10.1109/JSSC.2007.897157 10.1109/JSSC.2011.2179451 10.1109/TNSRE.2013.2290870 10.1016/j.bspc.2014.11.006 10.1109/TIFS.2015.2398817 10.1109/TNSRE.2014.2319334 10.1002/cpa.20042 10.1016/j.cmpb.2013.11.014 10.1109/TBME.2010.2068048 10.1016/j.bspc.2013.08.006 10.1109/TPAMI.2013.88 10.1145/1390156.1390224 10.1109/TBME.2012.2226175 10.1109/JBHI.2014.2325017 10.1126/science.1127647 10.1109/ICASSP.2013.6639345 10.1109/TBME.2014.2360101 10.1109/TITB.2011.2181403 10.1007/BF02551274 10.1016/j.bspc.2014.09.003 10.1186/1475-925X-8-31 10.1016/0893-6080(91)90009-T 10.1016/j.bspc.2014.04.004 10.1016/j.acha.2008.07.002 10.1109/TITB.2009.2038481 10.1109/TITB.2011.2159805 10.1016/j.bspc.2013.09.005 10.1016/j.eswa.2010.02.045 10.1109/TBCAS.2013.2263459 10.1109/TNSRE.2015.2441835 10.1109/TSP.2013.2241055 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2016.2631620 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 2205 |
| ExternalDocumentID | 27893378 10_1109_TBME_2016_2631620 7752836 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Qatar Foundation – fundername: NPRP grantid: 7-684-1-127 – fundername: Qatar National Research Fund funderid: 10.13039/100008982 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-37136543c4305a9040b679d09ad8efcfe6ff532877dbd6cbffb8b442b6e734e13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408111500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 |
| IngestDate | Thu Oct 02 11:04:54 EDT 2025 Mon Jun 30 08:15:05 EDT 2025 Wed Feb 19 02:41:17 EST 2025 Sat Nov 29 05:34:20 EST 2025 Tue Nov 18 21:53:44 EST 2025 Wed Aug 27 02:53:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-37136543c4305a9040b679d09ad8efcfe6ff532877dbd6cbffb8b442b6e734e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 27893378 |
| PQID | 2174320946 |
| PQPubID | 85474 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2174320946 crossref_citationtrail_10_1109_TBME_2016_2631620 proquest_miscellaneous_1844609272 ieee_primary_7752836 pubmed_primary_27893378 crossref_primary_10_1109_TBME_2016_2631620 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-01 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | (ref59) 2016 ref57 ref56 ref12 ref15 ref53 majumdar (ref17) 2014; 14 ref52 ref55 ref11 ref54 ref10 bengio (ref36) 0 ref19 ref18 makhani (ref39) 0 cho (ref28) 0 hinton (ref26) 2006; 13 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 fauvel (ref13) 2014; 14 ref8 ref7 majumdar (ref41) 0 ref9 ref4 ref3 vincent (ref27) 2010; 11 ref6 ref5 ref35 ref34 ref37 ref30 ref33 ref32 (ref64) 2016 ref2 chiang (ref14) 2013; 14 ref1 lin (ref31) 2010; 57 hosseini kamal (ref16) 0 chen (ref38) 0 ref24 ref23 ref25 (ref49) 1957; 144 ref20 ref63 ref22 ref21 ye (ref58) 0 ref29 rifai (ref40) 0 ref60 ref62 ref61 |
| References_xml | – volume: 14 start-page: 2036 year: 2013 ident: ref14 article-title: Energy-efficient data reduction techniques for wireless seizure detection systems publication-title: SENSORS doi: 10.3390/s140202036 – ident: ref7 doi: 10.1109/TBCAS.2015.2444276 – ident: ref10 doi: 10.1109/JSSC.2003.811979 – ident: ref37 doi: 10.1561/2200000006 – volume: 14 start-page: 15729 year: 2014 ident: ref17 article-title: Low-rank matrix recovery approach for energy efficient EEG acquisition for wireless body area network publication-title: Sensors Special Issue State-of-the-Art Sensor Technol Canada – ident: ref46 doi: 10.1109/18.382009 – start-page: 4305 year: 0 ident: ref16 article-title: Compressive multichannel cortical signal recording publication-title: Proc IEEE ICASSP – ident: ref22 doi: 10.1109/TITB.2009.2034649 – ident: ref55 doi: 10.1016/j.eswa.2012.12.063 – ident: ref56 doi: 10.1016/j.bspc.2013.01.005 – volume: 57 start-page: 1798 year: 2010 ident: ref31 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2048568 – ident: ref30 doi: 10.1109/JBHI.2013.2255132 – ident: ref43 doi: 10.1109/TIT.2011.2173241 – start-page: 1476 year: 0 ident: ref38 article-title: Marginalized denoising autoencoders for nonlinear representation publication-title: Proc of ICML 2014 – ident: ref6 doi: 10.1109/TBME.2012.2217959 – volume: 14 start-page: 1474 year: 2014 ident: ref13 article-title: An Energy efficient compressed sensing framework for the compression of electroencephalogram signals publication-title: SENSORS doi: 10.3390/s140101474 – ident: ref53 doi: 10.1109/TSP.2012.2208955 – volume: 144 start-page: 679 year: 1957 ident: ref49 article-title: On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition publication-title: Doklady Akad Nauk SSSR – ident: ref12 doi: 10.1109/SSP.2007.4301243 – ident: ref2 doi: 10.1109/JBHI.2014.2312374 – start-page: 833 year: 0 ident: ref40 article-title: Contractive auto-encoders: Explicit invariance during feature extraction publication-title: Proc ICML 2011 – start-page: 153 year: 0 ident: ref36 article-title: Greedy layer-wise training of deep networks publication-title: Proc NIPS – year: 2016 ident: ref59 – start-page: 1918 year: 0 ident: ref58 article-title: Arrhythmia detection and classification using morphological and dynamic features of ECG signals publication-title: Proc IEEE EMBS – ident: ref20 doi: 10.1016/j.bspc.2015.03.002 – ident: ref42 doi: 10.1109/TIT.2007.909108 – ident: ref29 doi: 10.1109/JBHI.2014.2358640 – ident: ref9 doi: 10.1109/JSSC.2007.897157 – start-page: 432 year: 0 ident: ref28 article-title: Simple sparsification improves sparse denoising autoencoders in denoising highly noisy images publication-title: Proc of ICML'2013 – year: 0 ident: ref39 article-title: K-sparse autoencoder publication-title: Proceedings of the ICLR 2014 – year: 2016 ident: ref64 – ident: ref8 doi: 10.1109/JSSC.2011.2179451 – ident: ref33 doi: 10.1109/TNSRE.2013.2290870 – ident: ref21 doi: 10.1016/j.bspc.2014.11.006 – ident: ref34 doi: 10.1109/TIFS.2015.2398817 – ident: ref3 doi: 10.1109/TNSRE.2014.2319334 – ident: ref45 doi: 10.1002/cpa.20042 – ident: ref61 doi: 10.1016/j.cmpb.2013.11.014 – ident: ref54 doi: 10.1109/TBME.2010.2068048 – ident: ref62 doi: 10.1016/j.bspc.2013.08.006 – ident: ref52 doi: 10.1109/TPAMI.2013.88 – ident: ref51 doi: 10.1145/1390156.1390224 – ident: ref1 doi: 10.1109/TBME.2012.2226175 – ident: ref5 doi: 10.1109/JBHI.2014.2325017 – volume: 13 start-page: 504 year: 2006 ident: ref26 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: ref35 doi: 10.1109/ICASSP.2013.6639345 – ident: ref60 doi: 10.1109/TBME.2014.2360101 – ident: ref24 doi: 10.1109/TITB.2011.2181403 – volume: 11 start-page: 3371 year: 2010 ident: ref27 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref47 doi: 10.1007/BF02551274 – ident: ref50 doi: 10.1109/18.382009 – ident: ref19 doi: 10.1016/j.bspc.2014.09.003 – ident: ref57 doi: 10.1186/1475-925X-8-31 – ident: ref48 doi: 10.1016/0893-6080(91)90009-T – ident: ref18 doi: 10.1016/j.bspc.2014.04.004 – ident: ref44 doi: 10.1016/j.acha.2008.07.002 – ident: ref23 doi: 10.1109/TITB.2009.2038481 – year: 0 ident: ref41 article-title: Face recognition via class sparsity based supervised encoding publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref25 doi: 10.1109/TITB.2011.2159805 – ident: ref15 doi: 10.1016/j.bspc.2013.09.005 – ident: ref63 doi: 10.1016/j.eswa.2010.02.045 – ident: ref4 doi: 10.1109/TBCAS.2013.2263459 – ident: ref32 doi: 10.1109/TNSRE.2015.2441835 – ident: ref11 doi: 10.1109/TSP.2013.2241055 |
| SSID | ssj0014846 |
| Score | 2.567681 |
| Snippet | Objective: An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction... An autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction and... OBJECTIVEAn autoencoder-based framework that simultaneously reconstruct and classify biomedical signals is proposed. Previous work has treated reconstruction... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2196 |
| SubjectTerms | Algorithms Arrhythmia Body area network (BAN) Classification Compressed sensing Correlation Data processing deep learning EEG EKG Electrocardiography - methods Electroencephalography Image reconstruction Information Storage and Retrieval - methods Monitoring Pattern Recognition, Automated - methods Real time operation Reconstruction Signal analysis Signal classification Signal Processing, Computer-Assisted Supervised Machine Learning |
| Title | Semi-supervised Stacked Label Consistent Autoencoder for Reconstruction and Analysis of Biomedical Signals |
| URI | https://ieeexplore.ieee.org/document/7752836 https://www.ncbi.nlm.nih.gov/pubmed/27893378 https://www.proquest.com/docview/2174320946 https://www.proquest.com/docview/1844609272 |
| Volume | 64 |
| WOSCitedRecordID | wos000408111500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9VAEJ4AMUYeUEHlIJI18clYaLt79vIIBuIDEBMwOW_N3kqOwZbQc_z9zmx7Cg9o4luT7S2dmd35OjvfB_Bp6rROgiYIvWwmrCgzV2ufBau185LUzZNqybm6vNSzmfm-Bl_GXpgYY9p8Fg_pMNXyQ-uX9KvsSCmiIpHrsK6U7Hu1xoqB0H1TTl5gAJdGDBXMIjdH1ycXp7SJSx6WkheyJPU3agDlnMTVHi1HSV_l76lmWnLOXv7fy76CrSG1ZMe9L7yGtdhsw-YjwsFteH4xlNJ34OdV_DXPuuUdTRZdDAzTTozowM6ti7csCXmiBzQLdrxctER3GeI9wxSXEWJ94J1ltglsRW3C2pqdpIZ-sj27mt8QPfMb-HF2ev31WzYIL2SeC7PASYc2vwnuiQ_MGoxzJ5UJubFBx9rXUdb1lCPWUsEF6V1dO-2EKJ2MiotY8Lew0bRN3AUWcm-nwuMkahxiI2M9piCBMjsrC5fzCeSr71_5gZWcxDFuq4ROclOR9SqyXjVYbwKfx0vuekqOf528Q6YZTxysMoH9lZGrIWi7KqGzEvEuDn8chzHcqIZim9guuwoBsZC5KVU5gXe9c4z3XvnU3tPPfA8vSsoJ0ga1fdhAO8UP8Mz_Xsy7-wP06Zk-SD79B5A08Dg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgngceLQ8thQwEifUtIntdexji1oVsbtC6iL1ZvkVtKgkVbPL78fjZNMeaCVukZyXMjP2fBnP9wF8Glspk6BJhF4m44bTzFbSZd5IaZ1AdfOkWjIpZzN5fq6-b8De0AsTQkibz8I-HqZavm_cCn-VHZQlUpGIe3AflbPGXbfWUDPgsmvLyYsYwlTxvoZZ5OpgfjQ9xm1cYp8KVgiK-m_YAsoYyqvdWJCSwsrtyWZadE6e_d_rPoenfXJJDjtveAEbod6CJzcoB7fg4bQvpm_Dr7Pwe5G1q0ucLtrgSUw8Y0x7MjE2XJAk5Rl9oF6Sw9WyQcJLH65ITHIJYtZr5lliak_W5CakqchRaulH65OzxU8kaH4JP06O519Os156IXOMq2WcdnD7G2cOGcGMipFuRal8royXoXJVEFU1ZhFtld564WxVWWk5p1aEkvFQsFewWTd1eAPE586MuYvTqLIRHSnjYhLiMbczorA5G0G-_v7a9bzkKI9xoRM-yZVG62m0nu6tN4LPwyWXHSnHXSdvo2mGE3urjGB3bWTdh22rEz6jEfHG4Y_DcAw4rKKYOjSrVkdIzEWuaElH8LpzjuHea5_a-fczP8Cj0_l0oidfZ9_ewmOKGULarrYLm9Fm4R08cH-Wi_bqffLsv5RJ8ps |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+Stacked+Label+Consistent+Autoencoder+for+Reconstruction+and+Analysis+of+Biomedical+Signals&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gogna%2C+Anupriya&rft.au=Majumdar%2C+Angshul&rft.au=Ward%2C+Rabab&rft.date=2017-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=64&rft.issue=9&rft.spage=2196&rft_id=info:doi/10.1109%2FTBME.2016.2631620&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |