Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models

Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). Methods: The ML...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on biomedical engineering Ročník 67; číslo 11; s. 3101 - 3124
Hlavní autori: Xie, Jinyu, Wang, Qian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). Methods: The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events. Results: The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models. Conclusion: There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values. Significance: Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.
AbstractList Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). Methods: The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events. Results: The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models. Conclusion: There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values. Significance: Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.
This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events. The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models. There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values. Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.
This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D).OBJECTIVEThis paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D).The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events.METHODSThe ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events.The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models.RESULTSThe ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models.There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values.CONCLUSIONThere was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values.Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.SIGNIFICANCEInsight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.
Author Wang, Qian
Xie, Jinyu
Author_xml – sequence: 1
  givenname: Jinyu
  orcidid: 0000-0003-4945-9923
  surname: Xie
  fullname: Xie, Jinyu
  organization: Pennsylvania State University
– sequence: 2
  givenname: Qian
  orcidid: 0000-0001-7175-2777
  surname: Wang
  fullname: Wang, Qian
  email: quw6@psu.edu
  organization: Pennsylvania State University, University Park, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32091990$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFB0BIyBIbNhn8m9jLzlBKpRmBxCCWkWPfdFySeGoni74Bj42jGbrogpVl-zvnXp1zgc6GMABCbylZUkr0p91qe71khJEl05XUUr9ACyqlKpjk9AwtCKGq0EyLc3SR0n2-CiXKV-icM6Kp1mSB_qxgsPvexN9-uMNbY_d-ALwBE4f54aq7C9GP-z7hMOBVF4LDN91kQwL8PYLzdvT5ow0R7x4PgG_xZ28aGCFhP-B16A8m-pSJX9kErzuTkremwzvfQ_EDos_gNjjo0mv0sjVdgjen8xL9_HK9W38tNt9ubtdXm8JyoceCV0Q1UrqSCKZkQ5XV0jnQrRFcE82qylWlU9AooIJWtOHWuIbp1mlOORH8En08-h5ieJggjXXvk4WuMwOEKdWMl4JwLRXP6Idn6H2Y4pC3q5mQXNFSaJWp9ydqanpw9SH6HOdj_S_jDNAjYGNIKUL7hFBSzz3Wc4_13GN96jFrqmca60czZz1G47v_Kt8dlR4AniZpQirJFP8LiCuppQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s10499_024_01574_5
crossref_primary_10_1038_s43856_023_00253_5
crossref_primary_10_3390_s22020425
crossref_primary_10_3390_diseases11030097
crossref_primary_10_1109_ACCESS_2024_3349496
crossref_primary_10_1109_TBME_2022_3187703
crossref_primary_10_1109_TIM_2025_3554905
crossref_primary_10_1016_j_bbe_2021_08_007
crossref_primary_10_1016_j_bspc_2022_104552
crossref_primary_10_3390_s22228682
crossref_primary_10_1016_j_eswa_2023_121994
crossref_primary_10_1016_j_metabol_2021_154872
crossref_primary_10_1109_ACCESS_2024_3485550
crossref_primary_10_1109_JBHI_2025_3530461
crossref_primary_10_1109_ACCESS_2020_3016784
crossref_primary_10_3390_bioengineering10040487
crossref_primary_10_1109_ACCESS_2022_3180482
crossref_primary_10_1016_j_compbiomed_2025_110015
crossref_primary_10_1007_s40031_022_00806_7
crossref_primary_10_1038_s41597_023_01940_7
crossref_primary_10_1371_journal_pone_0310801
crossref_primary_10_1016_j_conengprac_2022_105386
crossref_primary_10_1038_s41598_025_13491_5
crossref_primary_10_1109_TBME_2024_3494732
crossref_primary_10_1177_19322968251323913
crossref_primary_10_1016_j_artmed_2024_102868
crossref_primary_10_1016_j_bspc_2025_107814
crossref_primary_10_12677_SEA_2022_114075
crossref_primary_10_3390_electronics10212719
crossref_primary_10_1016_j_bspc_2022_103991
crossref_primary_10_1016_j_bspc_2025_108468
crossref_primary_10_1109_JSEN_2025_3594498
crossref_primary_10_1109_TBME_2023_3276193
crossref_primary_10_3390_s20143870
crossref_primary_10_1177_20552076221129712
crossref_primary_10_1016_j_bspc_2022_103748
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_1016_j_heliyon_2024_e29030
crossref_primary_10_58496_MJCSC_2025_018
crossref_primary_10_1007_s11042_025_20632_5
crossref_primary_10_1109_RBME_2023_3242261
crossref_primary_10_3390_s20113214
crossref_primary_10_3390_electronics13122245
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_1016_j_conengprac_2023_105498
crossref_primary_10_1109_ACCESS_2021_3117963
crossref_primary_10_3390_app11041742
crossref_primary_10_1007_s13042_025_02758_y
crossref_primary_10_1016_j_compbiomed_2022_106535
crossref_primary_10_1007_s10115_024_02188_2
crossref_primary_10_3390_math12233708
crossref_primary_10_1109_JBHI_2022_3144870
crossref_primary_10_1088_1742_6596_2466_1_012027
crossref_primary_10_1016_j_artmed_2021_102120
crossref_primary_10_1007_s10489_024_05638_0
crossref_primary_10_1016_j_compchemeng_2024_108929
crossref_primary_10_3390_electronics12143084
crossref_primary_10_1016_j_bios_2023_115103
crossref_primary_10_1109_TBME_2021_3101589
crossref_primary_10_1016_j_bspc_2025_107998
crossref_primary_10_1016_j_jbi_2023_104300
crossref_primary_10_3389_fmed_2025_1504428
crossref_primary_10_1089_dia_2025_0074
crossref_primary_10_1177_19322968221116393
crossref_primary_10_1016_j_bspc_2021_102896
crossref_primary_10_1177_19322968211042621
crossref_primary_10_3389_fphys_2023_1225638
crossref_primary_10_1016_j_smhl_2024_100457
crossref_primary_10_1016_j_iot_2023_100945
crossref_primary_10_1038_s41746_021_00480_x
crossref_primary_10_1109_TVT_2021_3135885
crossref_primary_10_1186_s12911_025_02867_2
Cites_doi 10.1109/TBME.2006.889774
10.3389/fams.2017.00014
10.1089/dia.2008.0065
10.1109/ACC.2013.6580275
10.1177/193229681000400522
10.1109/TBME.2012.2188893
10.1109/CVPR.2016.90
10.1162/neco.1997.9.8.1735
10.1109/TBME.2008.2005937
10.1089/dia.2010.0151
10.1162/neco.1996.8.7.1341
10.1152/ajpendo.00304.2001
10.1109/ACCESS.2019.2919184
10.1177/1932296814524080
10.18637/jss.v041.i01
10.1177/1932296816654161
10.1109/EMBC.2017.8037460
10.1016/j.bspc.2009.03.002
10.32614/RJ-2017-009
10.1016/j.smhl.2019.100069
10.1089/dia.2007.0202
10.1145/3219819.3220102
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2020.2975959
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3124
ExternalDocumentID 32091990
10_1109_TBME_2020_2975959
9007528
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Penn State University Social Science Research Institute
  grantid: SSRI LEVEL 2
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-3708b55d604285b18c95dde9fa43909277d76d8eb8e14171b3cadb29fd9313043
IEDL.DBID RIE
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583492300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 10:20:08 EDT 2025
Mon Sep 29 16:40:45 EDT 2025
Thu Apr 03 07:08:22 EDT 2025
Sat Nov 29 05:34:25 EST 2025
Tue Nov 18 22:20:18 EST 2025
Wed Aug 27 02:31:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-3708b55d604285b18c95dde9fa43909277d76d8eb8e14171b3cadb29fd9313043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4945-9923
0000-0001-7175-2777
PMID 32091990
PQID 2453816498
PQPubID 85474
PageCount 24
ParticipantIDs proquest_miscellaneous_2364039583
ieee_primary_9007528
pubmed_primary_32091990
crossref_primary_10_1109_TBME_2020_2975959
crossref_citationtrail_10_1109_TBME_2020_2975959
proquest_journals_2453816498
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
van den oord (ref19) 0
ref11
ref32
ref10
marling (ref13) 0
ref2
neyshabur (ref27) 0
ref1
ref16
ref18
bai (ref15) 2018
ref24
plis (ref9) 0
ref23
ref26
li (ref30) 0
ref25
ref20
ref22
allen-zhu (ref31) 0; 97
ref21
xie (ref17) 0
ref8
ref7
ref4
ref3
ref6
ref5
zhang (ref28) 0
bartlett (ref29) 0
References_xml – ident: ref4
  doi: 10.1109/TBME.2006.889774
– start-page: 60
  year: 0
  ident: ref13
  article-title: The OhioT1DM dataset for blood glucose level prediction
  publication-title: Proc Int Workshop Knowl Discovery Healthcare Data
– ident: ref11
  doi: 10.3389/fams.2017.00014
– ident: ref3
  doi: 10.1089/dia.2008.0065
– ident: ref5
  doi: 10.1109/ACC.2013.6580275
– start-page: 35
  year: 0
  ident: ref9
  article-title: A machine learning approach to predicting blood glucose levels for Diabetes management
  publication-title: Proc AAAI Workshop Modern Artif Intell Health Anal
– ident: ref24
  doi: 10.1177/193229681000400522
– start-page: 6240
  year: 0
  ident: ref29
  article-title: Spectrally-normalized margin bounds for neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref8
  doi: 10.1109/TBME.2012.2188893
– ident: ref20
  doi: 10.1109/CVPR.2016.90
– year: 0
  ident: ref27
  article-title: In search of the real inductive bias: On the role of implicit regularization in deep learning
  publication-title: Proc Workshop Track Poster 6th Int Conf Learn Representations
– ident: ref18
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref2
  doi: 10.1109/TBME.2008.2005937
– ident: ref16
  doi: 10.1089/dia.2010.0151
– year: 2018
  ident: ref15
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– start-page: 8157
  year: 0
  ident: ref30
  article-title: Learning overparameterized neural networks via stochastic gradient descent on structured data
  publication-title: Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1162/neco.1996.8.7.1341
– ident: ref1
  doi: 10.1152/ajpendo.00304.2001
– start-page: 125
  year: 0
  ident: ref19
  article-title: Wavenet: A generative model for raw audio
  publication-title: Proc 9th ISCA Speech Synthesis Workshop Sep
– volume: 97
  year: 0
  ident: ref31
  article-title: A convergence theory for deep learning via over-parameterization
  publication-title: Proceedings 36th Int Conf Mach Learn
– ident: ref26
  doi: 10.1109/ACCESS.2019.2919184
– year: 0
  ident: ref28
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: Proc Workshop Track Poster 6th Int Conf Learn Representations
– ident: ref6
  doi: 10.1177/1932296814524080
– ident: ref22
  doi: 10.18637/jss.v041.i01
– ident: ref32
  doi: 10.1177/1932296816654161
– ident: ref10
  doi: 10.1109/EMBC.2017.8037460
– ident: ref23
  doi: 10.1016/j.bspc.2009.03.002
– ident: ref21
  doi: 10.32614/RJ-2017-009
– ident: ref7
  doi: 10.1016/j.smhl.2019.100069
– ident: ref25
  doi: 10.1089/dia.2007.0202
– ident: ref12
  doi: 10.1145/3219819.3220102
– start-page: 97
  year: 0
  ident: ref17
  article-title: Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge
  publication-title: Proc Int Workshop Knowl Discovery Healthcare Data
SSID ssj0014846
Score 2.6413555
Snippet Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous...
This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3101
SubjectTerms Algorithms
Benchmark
Blood
Blood glucose
Convolution
Data models
Deep learning
deep neural network
Diabetes
Diabetes mellitus (insulin dependent)
Glucose
Learning algorithms
Machine learning
Oscillations
Performance measurement
Prediction algorithms
Predictions
Predictive models
Recursive methods
Regression analysis
Regression models
Root-mean-square errors
Sugar
Time series
type 1 diabetes
Title Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models
URI https://ieeexplore.ieee.org/document/9007528
https://www.ncbi.nlm.nih.gov/pubmed/32091990
https://www.proquest.com/docview/2453816498
https://www.proquest.com/docview/2364039583
Volume 67
WOSCitedRecordID wos000583492300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0GorhODAowW6UKpB4oRI68RJbB-7VQsctuqhiL1Fduy0K20TtNntN_DZzDhu1AMgcYvksTPSzHhmPC_GPhrrvELXKmlKw5PcNTIxJVdJic6GsIaCaTYMm5AXF2o-15db7PNYC-O9D8ln_og-QyzfdfWGnsqONSm4TG2zbSnLoVZrjBjkaijK4SkKcKbzGMFMuT6-ms7O0BPM-BGVkWpqS_pAB4WhKn-3L4OeOX_-fxi-YM-iPQknAwO8ZFu-3WVPH3QZ3GWPZzF-vsd-TZEpb25NeCCHWUik9BB7rF7DyfK6Wy3WN7c9dC1MKacdvgw57XC5olOIjIB2LpD_Ct8gJtT0sGjhdBxpCD_wEAjzNokHgOpMEnqHQ0AavrbsX7Hv52dXp1-TOIshqUWu13gPcWWLwpXkYxU2VbUu8GbUjUGLhutMSidLp7xVPs1TmVpRG2cz3TgtUE3m4jXbabvW7zPwTWHyxjlpcbMVja0b4ZUq0bQQLvNiwvg9dao6NiqneRnLKjgsXFdE0IoIWkWCTtinccvPoUvHv4D3iHAjYKTZhB3cs0AV5bivsrygyGqucfnDuIwSSGEV0_pugzACURe6UIj5m4F1xrNFhvYYKvy3f_7nO_aEMBtqGw_Yznq18e_Zo_puvehXh8jmc3UY2Pw3EX342A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcFQK4nHg0UJZKGAkToi0Tuwk9rFbtbSiu-phEb1Fcey0K22TarPLN_DZzDhu1AMgcYvksTPSzHhmPC-AT6WxTqFrFdVZySNp6zwqM66iDJ0NYUoKphk_bCKfTtXFhT7fgC9DLYxzziefuT369LF821Zreirb16TgEnUP7qdSJryv1hpiBlL1ZTk8RhFOtAwxzJjr_dl4coS-YML3qJBUU2PSO1rIj1X5u4XpNc3xs__D8Tk8DRYlO-hZ4AVsuGYLntzpM7gFDychgr4Nv8bIllfXpX8iZxOfSulY6LJ6yQ4Wl-1yvrq67ljbsDFltbOvfVY7O1_SKURIhpYuIw-WnbKQUtOxecMOh6GG7AcewvzETeICRpUmEb3EISCNX1t0L-H78dHs8CQK0xiiSki9wpuIK5OmNiMvKzWxqnSKd6OuS7RpuE7y3OaZVc4oF8s4j42oSmsSXVstUFFK8Qo2m7Zxr4G5Oi1lbW1ucLMRtalq4ZTK0LgQNnFiBPyWOkUVWpXTxIxF4V0WrgsiaEEELQJBR_B52HLT9-n4F_A2EW4ADDQbwe4tCxRBkrsikSnFVqXG5Y_DMsogBVbKxrVrhBGIutCpQsx3etYZzhYJWmSo8t_8-Z8f4NHJbHJWnJ1Ov72Fx4RlX-m4C5ur5dq9gwfVz9W8W773zP4bRgj7Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Machine+Learning+Algorithms+on+Blood+Glucose+Prediction+for+Type+I+Diabetes+in+Comparison+With+Classical+Time-Series+Models&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Xie%2C+Jinyu&rft.au=Wang%2C+Qian&rft.date=2020-11-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=11&rft.spage=3101&rft.epage=3124&rft_id=info:doi/10.1109%2FTBME.2020.2975959&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2020_2975959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon