Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models
Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). Methods: The ML...
Uložené v:
| Vydané v: | IEEE transactions on biomedical engineering Ročník 67; číslo 11; s. 3101 - 3124 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). Methods: The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events. Results: The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models. Conclusion: There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values. Significance: Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction. |
|---|---|
| AbstractList | Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). Methods: The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events. Results: The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models. Conclusion: There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values. Significance: Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction. This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D). The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events. The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models. There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values. Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction. This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D).OBJECTIVEThis paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX) model in the prediction of blood glucose (BG) levels using time-series data of patients with Type 1 diabetes (T1D).The ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events.METHODSThe ML algorithms include ML-based regression models and deep learning models such as a vanilla Long-Short-Term-Memory (LSTM) Network and a Temporal Convolution Network (TCN). Evaluations have been conducted with respect to different input features, regression model orders, as well as using the recursive method or direct method for multi-step prediction of BG levels. Prediction performance metrics include the average Root Mean Square Error (RMSE), temporal gain (TG) for early prediction, and the normalized energy of the second-order differences (ESOD) of the predicted time series to reflect risk of false alerts on hypo/hyper glycemia events.The ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models.RESULTSThe ARX model achieved the lowest average RMSE for both recursive and direct methods, the second highest average TG under the direct method, but with a higher average normalized ESOD than some other models.There was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values.CONCLUSIONThere was no significant advantage observed from the ML models compared to the classic ARX model in predicting BG levels for T1D, except that TCN's performance was more robust with respect to BG trajectories with spurious oscillations, for which ARX tended to over-predict peak BG values and under-predict valley BG values.Insight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction.SIGNIFICANCEInsight learned from this study could help researchers and clinical practitioners to select appropriate models for BG prediction. |
| Author | Wang, Qian Xie, Jinyu |
| Author_xml | – sequence: 1 givenname: Jinyu orcidid: 0000-0003-4945-9923 surname: Xie fullname: Xie, Jinyu organization: Pennsylvania State University – sequence: 2 givenname: Qian orcidid: 0000-0001-7175-2777 surname: Wang fullname: Wang, Qian email: quw6@psu.edu organization: Pennsylvania State University, University Park, PA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32091990$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFB0BIyBIbNhn8m9jLzlBKpRmBxCCWkWPfdFySeGoni74Bj42jGbrogpVl-zvnXp1zgc6GMABCbylZUkr0p91qe71khJEl05XUUr9ACyqlKpjk9AwtCKGq0EyLc3SR0n2-CiXKV-icM6Kp1mSB_qxgsPvexN9-uMNbY_d-ALwBE4f54aq7C9GP-z7hMOBVF4LDN91kQwL8PYLzdvT5ow0R7x4PgG_xZ28aGCFhP-B16A8m-pSJX9kErzuTkremwzvfQ_EDos_gNjjo0mv0sjVdgjen8xL9_HK9W38tNt9ubtdXm8JyoceCV0Q1UrqSCKZkQ5XV0jnQrRFcE82qylWlU9AooIJWtOHWuIbp1mlOORH8En08-h5ieJggjXXvk4WuMwOEKdWMl4JwLRXP6Idn6H2Y4pC3q5mQXNFSaJWp9ydqanpw9SH6HOdj_S_jDNAjYGNIKUL7hFBSzz3Wc4_13GN96jFrqmca60czZz1G47v_Kt8dlR4AniZpQirJFP8LiCuppQ |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1007_s10499_024_01574_5 crossref_primary_10_1038_s43856_023_00253_5 crossref_primary_10_3390_s22020425 crossref_primary_10_3390_diseases11030097 crossref_primary_10_1109_ACCESS_2024_3349496 crossref_primary_10_1109_TBME_2022_3187703 crossref_primary_10_1109_TIM_2025_3554905 crossref_primary_10_1016_j_bbe_2021_08_007 crossref_primary_10_1016_j_bspc_2022_104552 crossref_primary_10_3390_s22228682 crossref_primary_10_1016_j_eswa_2023_121994 crossref_primary_10_1016_j_metabol_2021_154872 crossref_primary_10_1109_ACCESS_2024_3485550 crossref_primary_10_1109_JBHI_2025_3530461 crossref_primary_10_1109_ACCESS_2020_3016784 crossref_primary_10_3390_bioengineering10040487 crossref_primary_10_1109_ACCESS_2022_3180482 crossref_primary_10_1016_j_compbiomed_2025_110015 crossref_primary_10_1007_s40031_022_00806_7 crossref_primary_10_1038_s41597_023_01940_7 crossref_primary_10_1371_journal_pone_0310801 crossref_primary_10_1016_j_conengprac_2022_105386 crossref_primary_10_1038_s41598_025_13491_5 crossref_primary_10_1109_TBME_2024_3494732 crossref_primary_10_1177_19322968251323913 crossref_primary_10_1016_j_artmed_2024_102868 crossref_primary_10_1016_j_bspc_2025_107814 crossref_primary_10_12677_SEA_2022_114075 crossref_primary_10_3390_electronics10212719 crossref_primary_10_1016_j_bspc_2022_103991 crossref_primary_10_1016_j_bspc_2025_108468 crossref_primary_10_1109_JSEN_2025_3594498 crossref_primary_10_1109_TBME_2023_3276193 crossref_primary_10_3390_s20143870 crossref_primary_10_1177_20552076221129712 crossref_primary_10_1016_j_bspc_2022_103748 crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_1016_j_heliyon_2024_e29030 crossref_primary_10_58496_MJCSC_2025_018 crossref_primary_10_1007_s11042_025_20632_5 crossref_primary_10_1109_RBME_2023_3242261 crossref_primary_10_3390_s20113214 crossref_primary_10_3390_electronics13122245 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_1016_j_conengprac_2023_105498 crossref_primary_10_1109_ACCESS_2021_3117963 crossref_primary_10_3390_app11041742 crossref_primary_10_1007_s13042_025_02758_y crossref_primary_10_1016_j_compbiomed_2022_106535 crossref_primary_10_1007_s10115_024_02188_2 crossref_primary_10_3390_math12233708 crossref_primary_10_1109_JBHI_2022_3144870 crossref_primary_10_1088_1742_6596_2466_1_012027 crossref_primary_10_1016_j_artmed_2021_102120 crossref_primary_10_1007_s10489_024_05638_0 crossref_primary_10_1016_j_compchemeng_2024_108929 crossref_primary_10_3390_electronics12143084 crossref_primary_10_1016_j_bios_2023_115103 crossref_primary_10_1109_TBME_2021_3101589 crossref_primary_10_1016_j_bspc_2025_107998 crossref_primary_10_1016_j_jbi_2023_104300 crossref_primary_10_3389_fmed_2025_1504428 crossref_primary_10_1089_dia_2025_0074 crossref_primary_10_1177_19322968221116393 crossref_primary_10_1016_j_bspc_2021_102896 crossref_primary_10_1177_19322968211042621 crossref_primary_10_3389_fphys_2023_1225638 crossref_primary_10_1016_j_smhl_2024_100457 crossref_primary_10_1016_j_iot_2023_100945 crossref_primary_10_1038_s41746_021_00480_x crossref_primary_10_1109_TVT_2021_3135885 crossref_primary_10_1186_s12911_025_02867_2 |
| Cites_doi | 10.1109/TBME.2006.889774 10.3389/fams.2017.00014 10.1089/dia.2008.0065 10.1109/ACC.2013.6580275 10.1177/193229681000400522 10.1109/TBME.2012.2188893 10.1109/CVPR.2016.90 10.1162/neco.1997.9.8.1735 10.1109/TBME.2008.2005937 10.1089/dia.2010.0151 10.1162/neco.1996.8.7.1341 10.1152/ajpendo.00304.2001 10.1109/ACCESS.2019.2919184 10.1177/1932296814524080 10.18637/jss.v041.i01 10.1177/1932296816654161 10.1109/EMBC.2017.8037460 10.1016/j.bspc.2009.03.002 10.32614/RJ-2017-009 10.1016/j.smhl.2019.100069 10.1089/dia.2007.0202 10.1145/3219819.3220102 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2020.2975959 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 3124 |
| ExternalDocumentID | 32091990 10_1109_TBME_2020_2975959 9007528 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Penn State University Social Science Research Institute grantid: SSRI LEVEL 2 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-3708b55d604285b18c95dde9fa43909277d76d8eb8e14171b3cadb29fd9313043 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583492300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Sep 28 10:20:08 EDT 2025 Mon Sep 29 16:40:45 EDT 2025 Thu Apr 03 07:08:22 EDT 2025 Sat Nov 29 05:34:25 EST 2025 Tue Nov 18 22:20:18 EST 2025 Wed Aug 27 02:31:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-3708b55d604285b18c95dde9fa43909277d76d8eb8e14171b3cadb29fd9313043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4945-9923 0000-0001-7175-2777 |
| PMID | 32091990 |
| PQID | 2453816498 |
| PQPubID | 85474 |
| PageCount | 24 |
| ParticipantIDs | proquest_miscellaneous_2364039583 ieee_primary_9007528 pubmed_primary_32091990 crossref_primary_10_1109_TBME_2020_2975959 crossref_citationtrail_10_1109_TBME_2020_2975959 proquest_journals_2453816498 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref14 van den oord (ref19) 0 ref11 ref32 ref10 marling (ref13) 0 ref2 neyshabur (ref27) 0 ref1 ref16 ref18 bai (ref15) 2018 ref24 plis (ref9) 0 ref23 ref26 li (ref30) 0 ref25 ref20 ref22 allen-zhu (ref31) 0; 97 ref21 xie (ref17) 0 ref8 ref7 ref4 ref3 ref6 ref5 zhang (ref28) 0 bartlett (ref29) 0 |
| References_xml | – ident: ref4 doi: 10.1109/TBME.2006.889774 – start-page: 60 year: 0 ident: ref13 article-title: The OhioT1DM dataset for blood glucose level prediction publication-title: Proc Int Workshop Knowl Discovery Healthcare Data – ident: ref11 doi: 10.3389/fams.2017.00014 – ident: ref3 doi: 10.1089/dia.2008.0065 – ident: ref5 doi: 10.1109/ACC.2013.6580275 – start-page: 35 year: 0 ident: ref9 article-title: A machine learning approach to predicting blood glucose levels for Diabetes management publication-title: Proc AAAI Workshop Modern Artif Intell Health Anal – ident: ref24 doi: 10.1177/193229681000400522 – start-page: 6240 year: 0 ident: ref29 article-title: Spectrally-normalized margin bounds for neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref8 doi: 10.1109/TBME.2012.2188893 – ident: ref20 doi: 10.1109/CVPR.2016.90 – year: 0 ident: ref27 article-title: In search of the real inductive bias: On the role of implicit regularization in deep learning publication-title: Proc Workshop Track Poster 6th Int Conf Learn Representations – ident: ref18 doi: 10.1162/neco.1997.9.8.1735 – ident: ref2 doi: 10.1109/TBME.2008.2005937 – ident: ref16 doi: 10.1089/dia.2010.0151 – year: 2018 ident: ref15 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – start-page: 8157 year: 0 ident: ref30 article-title: Learning overparameterized neural networks via stochastic gradient descent on structured data publication-title: Adv Neural Inf Process Syst – ident: ref14 doi: 10.1162/neco.1996.8.7.1341 – ident: ref1 doi: 10.1152/ajpendo.00304.2001 – start-page: 125 year: 0 ident: ref19 article-title: Wavenet: A generative model for raw audio publication-title: Proc 9th ISCA Speech Synthesis Workshop Sep – volume: 97 year: 0 ident: ref31 article-title: A convergence theory for deep learning via over-parameterization publication-title: Proceedings 36th Int Conf Mach Learn – ident: ref26 doi: 10.1109/ACCESS.2019.2919184 – year: 0 ident: ref28 article-title: Understanding deep learning requires rethinking generalization publication-title: Proc Workshop Track Poster 6th Int Conf Learn Representations – ident: ref6 doi: 10.1177/1932296814524080 – ident: ref22 doi: 10.18637/jss.v041.i01 – ident: ref32 doi: 10.1177/1932296816654161 – ident: ref10 doi: 10.1109/EMBC.2017.8037460 – ident: ref23 doi: 10.1016/j.bspc.2009.03.002 – ident: ref21 doi: 10.32614/RJ-2017-009 – ident: ref7 doi: 10.1016/j.smhl.2019.100069 – ident: ref25 doi: 10.1089/dia.2007.0202 – ident: ref12 doi: 10.1145/3219819.3220102 – start-page: 97 year: 0 ident: ref17 article-title: Benchmark machine learning approaches with classical time series approaches on the blood glucose level prediction challenge publication-title: Proc Int Workshop Knowl Discovery Healthcare Data |
| SSID | ssj0014846 |
| Score | 2.6413555 |
| Snippet | Objective: This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous... This paper aims to compare the performance of several commonly known machine-learning (ML) models versus a classic Autoregression with Exogenous inputs (ARX)... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3101 |
| SubjectTerms | Algorithms Benchmark Blood Blood glucose Convolution Data models Deep learning deep neural network Diabetes Diabetes mellitus (insulin dependent) Glucose Learning algorithms Machine learning Oscillations Performance measurement Prediction algorithms Predictions Predictive models Recursive methods Regression analysis Regression models Root-mean-square errors Sugar Time series type 1 diabetes |
| Title | Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models |
| URI | https://ieeexplore.ieee.org/document/9007528 https://www.ncbi.nlm.nih.gov/pubmed/32091990 https://www.proquest.com/docview/2453816498 https://www.proquest.com/docview/2364039583 |
| Volume | 67 |
| WOSCitedRecordID | wos000583492300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0GorhODAowW6UKpB4oRI68RJbB-7VQsctuqhiL1Fduy0K20TtNntN_DZzDhu1AMgcYvksTPSzHhmPC_GPhrrvELXKmlKw5PcNTIxJVdJic6GsIaCaTYMm5AXF2o-15db7PNYC-O9D8ln_og-QyzfdfWGnsqONSm4TG2zbSnLoVZrjBjkaijK4SkKcKbzGMFMuT6-ms7O0BPM-BGVkWpqS_pAB4WhKn-3L4OeOX_-fxi-YM-iPQknAwO8ZFu-3WVPH3QZ3GWPZzF-vsd-TZEpb25NeCCHWUik9BB7rF7DyfK6Wy3WN7c9dC1MKacdvgw57XC5olOIjIB2LpD_Ct8gJtT0sGjhdBxpCD_wEAjzNokHgOpMEnqHQ0AavrbsX7Hv52dXp1-TOIshqUWu13gPcWWLwpXkYxU2VbUu8GbUjUGLhutMSidLp7xVPs1TmVpRG2cz3TgtUE3m4jXbabvW7zPwTWHyxjlpcbMVja0b4ZUq0bQQLvNiwvg9dao6NiqneRnLKjgsXFdE0IoIWkWCTtinccvPoUvHv4D3iHAjYKTZhB3cs0AV5bivsrygyGqucfnDuIwSSGEV0_pugzACURe6UIj5m4F1xrNFhvYYKvy3f_7nO_aEMBtqGw_Yznq18e_Zo_puvehXh8jmc3UY2Pw3EX342A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcFQK4nHg0UJZKGAkToi0Tuwk9rFbtbSiu-phEb1Fcey0K22TarPLN_DZzDhu1AMgcYvksTPSzHhmPC-AT6WxTqFrFdVZySNp6zwqM66iDJ0NYUoKphk_bCKfTtXFhT7fgC9DLYxzziefuT369LF821Zreirb16TgEnUP7qdSJryv1hpiBlL1ZTk8RhFOtAwxzJjr_dl4coS-YML3qJBUU2PSO1rIj1X5u4XpNc3xs__D8Tk8DRYlO-hZ4AVsuGYLntzpM7gFDychgr4Nv8bIllfXpX8iZxOfSulY6LJ6yQ4Wl-1yvrq67ljbsDFltbOvfVY7O1_SKURIhpYuIw-WnbKQUtOxecMOh6GG7AcewvzETeICRpUmEb3EISCNX1t0L-H78dHs8CQK0xiiSki9wpuIK5OmNiMvKzWxqnSKd6OuS7RpuE7y3OaZVc4oF8s4j42oSmsSXVstUFFK8Qo2m7Zxr4G5Oi1lbW1ucLMRtalq4ZTK0LgQNnFiBPyWOkUVWpXTxIxF4V0WrgsiaEEELQJBR_B52HLT9-n4F_A2EW4ADDQbwe4tCxRBkrsikSnFVqXG5Y_DMsogBVbKxrVrhBGIutCpQsx3etYZzhYJWmSo8t_8-Z8f4NHJbHJWnJ1Ov72Fx4RlX-m4C5ur5dq9gwfVz9W8W773zP4bRgj7Nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+Machine+Learning+Algorithms+on+Blood+Glucose+Prediction+for+Type+I+Diabetes+in+Comparison+With+Classical+Time-Series+Models&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Xie%2C+Jinyu&rft.au=Wang%2C+Qian&rft.date=2020-11-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=11&rft.spage=3101&rft.epage=3124&rft_id=info:doi/10.1109%2FTBME.2020.2975959&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2020_2975959 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |