Hybrid Fractal-Wavelet Method for Multi-Channel EEG Signal Compression

In this paper, a hybrid method is proposed for multi-channel electroencephalograms (EEG) signal compression. This new method takes advantage of two different compression techniques: fractal and wavelet-based coding. First, an effective decorrelation is performed through the principal component analy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circuits, systems, and signal processing Ročník 33; číslo 8; s. 2583 - 2604
Hlavní autoři: Saeedi, Jamal, Faez, Karim, Moradi, Mohammad Hassan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.08.2014
Springer Nature B.V
Témata:
ISSN:0278-081X, 1531-5878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a hybrid method is proposed for multi-channel electroencephalograms (EEG) signal compression. This new method takes advantage of two different compression techniques: fractal and wavelet-based coding. First, an effective decorrelation is performed through the principal component analysis of different channels to efficiently compress the multi-channel EEG data. Then, the decorrelated EEG signal is decomposed using wavelet packet transform (WPT). Finally, fractal encoding is applied to the low frequency coefficients of WPT, and a modified wavelet-based coding is used for coding the remaining high frequency coefficients. This new method provides improved compression results as compared to the wavelet and fractal compression methods.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-014-9764-y