A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization

A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 47; H. 9; S. 2678 - 2688
Hauptverfasser: Sanyou Zeng, Ruwang Jiao, Changhe Li, Xi Li, Alkasassbeh, Jawdat S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2647742