A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization

A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 47; H. 9; S. 2678 - 2688
Hauptverfasser: Sanyou Zeng, Ruwang Jiao, Changhe Li, Xi Li, Alkasassbeh, Jawdat S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions.
AbstractList A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions.A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions.
A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions.
Author Sanyou Zeng
Changhe Li
Xi Li
Ruwang Jiao
Alkasassbeh, Jawdat S.
Author_xml – sequence: 1
  surname: Sanyou Zeng
  fullname: Sanyou Zeng
  email: sanyouzeng@gmail.com
  organization: Sch. of Mech. Eng. & Electron. Inf., China Univ. of Geosci., Wuhan, China
– sequence: 2
  surname: Ruwang Jiao
  fullname: Ruwang Jiao
  email: ruwangjiao@gmail.com
  organization: Sch. of Mech. Eng. & Electron. Inf., China Univ. of Geosci., Wuhan, China
– sequence: 3
  surname: Changhe Li
  fullname: Changhe Li
  email: changhe.lw@gmail.com
  organization: Sch. of Autom., China Univ. of Geosci., Wuhan, China
– sequence: 4
  surname: Xi Li
  fullname: Xi Li
  email: lixi_sjz@foxmail.com
  organization: Sch. of Inf. Eng., Hebei GEO Univ., Shijiazhuang, China
– sequence: 5
  givenname: Jawdat S.
  surname: Alkasassbeh
  fullname: Alkasassbeh, Jawdat S.
  email: jawdat1983@yahoo.com
  organization: Sch. of Mech. Eng. & Electron. Inf., China Univ. of Geosci., Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28092596$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhq2qqC2lPwAhoUhcuOzij_gjx2VpC1JRL-2hJ8t2JuAlsRc7KSq_HofdVqIH5jKj0fOOZuZ9iQ5DDIDQa4KXhODmw8367uOSYiKXVNRS1vQAnVAi1IJSyQ-faiGP0VnOG1xClVajjtAxVbihvBEnKKyqSwiQTF9dJDPAr5h-VLGrPj0EM3hXrWPIYzI-QFt9nfrRR7sBN_p7qM7vYz-VRjDpoVr132Ly4_chV11M_8iut6Mf_G8zo6_Qi870Gc72-RTdXpzfrD8vrq4vv6xXVwvH6mZcMFq30FjBrQSHba0MF6W0ilsOtqVMUNxyJlrMawsdkU5Z0nSEK-NcXWN2it7v5m5T_DlBHvXgs4O-NwHilDVRgvCaCcYK-u4ZuolTCmU7TRoqBaNKNIV6u6cmO0Crt8kP5W79-MkCyB3gUsw5QaedH__ePP-h1wTr2TY926Zn2_TetqIkz5SPw_-nebPTeAB44qUinFHJ_gAgi6Nr
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TETCI_2023_3336918
crossref_primary_10_1109_TSMC_2018_2876335
crossref_primary_10_4018_IJCINI_344023
crossref_primary_10_1007_s00034_020_01417_7
crossref_primary_10_1109_TCYB_2018_2834363
crossref_primary_10_1007_s11071_021_07049_z
crossref_primary_10_1109_TSMC_2019_2954491
crossref_primary_10_1109_MCI_2025_3563425
crossref_primary_10_1109_TCYB_2022_3178132
crossref_primary_10_1109_TWC_2021_3105405
crossref_primary_10_1007_s11042_020_09237_2
crossref_primary_10_1109_TEVC_2023_3243109
crossref_primary_10_1109_TCYB_2020_3021138
crossref_primary_10_1109_TII_2022_3213719
crossref_primary_10_1109_TAP_2020_3016181
crossref_primary_10_1109_TEVC_2022_3222844
crossref_primary_10_1109_TCYB_2020_2979821
crossref_primary_10_1002_cta_70007
crossref_primary_10_1109_TEVC_2021_3051172
crossref_primary_10_1109_TEVC_2024_3418470
crossref_primary_10_1109_TSMC_2019_2953336
crossref_primary_10_1109_TAP_2023_3243777
crossref_primary_10_1109_TEVC_2019_2894743
crossref_primary_10_1109_TCYB_2020_3031642
crossref_primary_10_1109_TCYB_2020_3013950
crossref_primary_10_1109_TCYB_2020_3042853
crossref_primary_10_1109_TEVC_2020_3004027
crossref_primary_10_1109_ACCESS_2020_3040647
crossref_primary_10_1109_TEVC_2023_3313689
crossref_primary_10_1109_TSMC_2023_3324797
crossref_primary_10_1109_TSMC_2020_3010120
crossref_primary_10_1109_ACCESS_2021_3107284
crossref_primary_10_1109_TCYB_2021_3089633
crossref_primary_10_1109_TCYB_2024_3469371
crossref_primary_10_1109_TSMC_2018_2858843
crossref_primary_10_1109_TSMC_2024_3489600
crossref_primary_10_1109_TCYB_2019_2925534
crossref_primary_10_1109_ACCESS_2020_2976047
crossref_primary_10_1109_ACCESS_2020_2997864
crossref_primary_10_1109_TEVC_2022_3194729
Cites_doi 10.1109/TEVC.2008.2009032
10.1080/0305215X.2010.493937
10.1109/CEC.2011.5949866
10.1109/TEVC.2010.2093582
10.1007/978-3-642-00619-7_7
10.1109/CEC.2013.6557942
10.1109/TEVC.2003.814902
10.1109/TCYB.2015.2493239
10.1016/j.ins.2010.03.021
10.1109/TEVC.2015.2433266
10.1109/CEC.2010.5586408
10.1007/978-3-540-74581-5_4
10.1162/EVCO_a_00009
10.1109/TEVC.2004.836819
10.1109/CEC.2010.5586543
10.1109/TEVC.2005.846817
10.1007/s10472-015-9455-9
10.1109/4235.873238
10.1109/TEVC.2006.872344
10.1109/TCYB.2013.2250956
10.1109/TEVC.2015.2428292
10.1109/TEVC.2015.2483590
10.1109/CEC.2014.6900239
10.1109/CEC.2009.4983201
10.1109/TCYB.2014.2334692
10.1109/CEC.2015.7257252
10.1109/TSMCB.2011.2161467
10.1023/A:1008202821328
10.1109/CEC.2011.5949949
10.1109/CEC.2008.4630995
10.1109/CEC.2013.6557898
10.1109/TCYB.2014.2345478
10.1109/TEVC.2009.2033582
10.1016/j.ins.2016.02.054
10.1109/CEC.2014.6900448
10.1109/TCYB.2016.2600577
10.1109/TEVC.2015.2424251
10.1109/CEC.2002.1004402
10.1007/s00158-009-0380-6
10.1016/j.swevo.2011.10.001
10.1016/j.ins.2015.08.012
10.1109/TEVC.2013.2281533
10.1109/TCYB.2016.2602561
10.1145/2739482.2756561
10.1109/TEVC.2013.2281535
10.1016/j.ins.2016.01.003
10.1109/4235.996017
10.1109/TEVC.2015.2477402
10.1109/CEC.2012.6252955
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2017.2647742
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Xplore Digital Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2688
ExternalDocumentID 28092596
10_1109_TCYB_2017_2647742
7815327
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61271140; 61673355; 61203306
  funderid: 10.13039/501100001809
– fundername: 111 Project
  grantid: B17040
– fundername: Hubei Provincial Natural Science Foundation of China
  grantid: 2015CFA010
  funderid: 10.13039/501100003819
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-324de9b65b7ec0b48a56b7eb85b5ebd23620d536d054bef17c8b19f158acc4403
IEDL.DBID RIE
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407222900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Wed Oct 01 09:56:59 EDT 2025
Sun Nov 30 04:08:39 EST 2025
Thu Jan 02 23:10:44 EST 2025
Tue Nov 18 22:16:48 EST 2025
Sat Nov 29 06:48:34 EST 2025
Tue Aug 26 16:38:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-324de9b65b7ec0b48a56b7eb85b5ebd23620d536d054bef17c8b19f158acc4403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0795-9092
PMID 28092596
PQID 1927632869
PQPubID 85422
PageCount 11
ParticipantIDs ieee_primary_7815327
pubmed_primary_28092596
proquest_miscellaneous_1861543633
crossref_citationtrail_10_1109_TCYB_2017_2647742
crossref_primary_10_1109_TCYB_2017_2647742
proquest_journals_1927632869
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref15
ref58
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
mallipeddi (ref56) 2010
xiao (ref7) 2007
storn (ref54) 1997; 11
ref46
ref45
ref48
takahama (ref50) 2013
ref47
ref42
ref41
ref44
ref43
dréo (ref51) 2006
cai (ref25) 2016
ref8
ref9
ref4
ref3
ref5
ref40
liang (ref55) 2006
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
goldberg (ref49) 1987
ref24
ref23
ref26
ref20
ref21
ref28
li (ref22) 2016
ref27
ref29
takahama (ref6) 2010
References_xml – year: 2006
  ident: ref55
  publication-title: Problem Definitions and Evaluation Criteria for the CEC2006 Special Session on Constrained Real-Parameter Optimization
– ident: ref17
  doi: 10.1109/TEVC.2008.2009032
– start-page: 41
  year: 1987
  ident: ref49
  article-title: Genetic algorithms with sharing for multimodal function optimization
  publication-title: Genetic Algorithms Appl Proc 2nd Int Conf Genetic Algorithms
– ident: ref19
  doi: 10.1080/0305215X.2010.493937
– ident: ref29
  doi: 10.1109/CEC.2011.5949866
– ident: ref45
  doi: 10.1109/TEVC.2010.2093582
– ident: ref35
  doi: 10.1007/978-3-642-00619-7_7
– ident: ref20
  doi: 10.1109/CEC.2013.6557942
– ident: ref1
  doi: 10.1109/TEVC.2003.814902
– start-page: 1334
  year: 2013
  ident: ref50
  article-title: Efficient constrained optimization by the $\epsilon $ constrained differential evolution with rough approximation using kernel regression
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref2
  doi: 10.1109/TCYB.2015.2493239
– ident: ref18
  doi: 10.1016/j.ins.2010.03.021
– ident: ref28
  doi: 10.1109/TEVC.2015.2433266
– start-page: 1
  year: 2010
  ident: ref6
  article-title: Efficient constrained optimization by the $\epsilon $ constrained adaptive differential evolution
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref47
  doi: 10.1109/CEC.2010.5586408
– ident: ref38
  doi: 10.1007/978-3-540-74581-5_4
– ident: ref53
  doi: 10.1162/EVCO_a_00009
– ident: ref11
  doi: 10.1109/TEVC.2004.836819
– ident: ref8
  doi: 10.1109/CEC.2010.5586543
– ident: ref37
  doi: 10.1109/TEVC.2005.846817
– ident: ref21
  doi: 10.1007/s10472-015-9455-9
– ident: ref4
  doi: 10.1109/4235.873238
– ident: ref44
  doi: 10.1109/TEVC.2006.872344
– ident: ref58
  doi: 10.1109/TCYB.2013.2250956
– start-page: 1
  year: 2016
  ident: ref25
  article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization
  publication-title: IEEE Trans Cybern
– ident: ref14
  doi: 10.1109/TEVC.2015.2428292
– ident: ref27
  doi: 10.1109/TEVC.2015.2483590
– year: 2010
  ident: ref56
  article-title: Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization
– ident: ref36
  doi: 10.1109/CEC.2014.6900239
– ident: ref5
  doi: 10.1109/CEC.2009.4983201
– ident: ref9
  doi: 10.1109/TCYB.2014.2334692
– ident: ref32
  doi: 10.1109/CEC.2015.7257252
– ident: ref46
  doi: 10.1109/TSMCB.2011.2161467
– volume: 11
  start-page: 341
  year: 1997
  ident: ref54
  article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– ident: ref30
  doi: 10.1109/CEC.2011.5949949
– ident: ref43
  doi: 10.1109/CEC.2008.4630995
– ident: ref39
  doi: 10.1109/CEC.2013.6557898
– ident: ref12
  doi: 10.1109/TCYB.2014.2345478
– ident: ref57
  doi: 10.1109/TEVC.2009.2033582
– ident: ref15
  doi: 10.1016/j.ins.2016.02.054
– ident: ref31
  doi: 10.1109/CEC.2014.6900448
– ident: ref24
  doi: 10.1109/TCYB.2016.2600577
– ident: ref26
  doi: 10.1109/TEVC.2015.2424251
– ident: ref16
  doi: 10.1109/CEC.2002.1004402
– ident: ref42
  doi: 10.1007/s00158-009-0380-6
– ident: ref40
  doi: 10.1016/j.swevo.2011.10.001
– ident: ref3
  doi: 10.1016/j.ins.2015.08.012
– ident: ref52
  doi: 10.1109/TEVC.2013.2281533
– ident: ref23
  doi: 10.1109/TCYB.2016.2602561
– year: 2006
  ident: ref51
  publication-title: Metaheuristics for Hard Optimization Simulated Annealing Tabu Search Evolutionary and Genetic Algorithms Ant Colonies Methods and Case Studies
– ident: ref41
  doi: 10.1145/2739482.2756561
– ident: ref34
  doi: 10.1109/TEVC.2013.2281535
– start-page: 1
  year: 2016
  ident: ref22
  article-title: Efficient nondomination level update method for steady-state evolutionary multiobjective optimization
  publication-title: IEEE Trans Cybern
– ident: ref13
  doi: 10.1016/j.ins.2016.01.003
– ident: ref33
  doi: 10.1109/4235.996017
– ident: ref10
  doi: 10.1109/TEVC.2015.2477402
– start-page: 4497
  year: 2007
  ident: ref7
  article-title: A genetic algorithm for solving multi-constrained function optimization problems based on KS function
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref48
  doi: 10.1109/CEC.2012.6252955
SSID ssj0000816898
Score 2.4527957
Snippet A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2678
SubjectTerms Constrained optimization
Constraints
dynamic multiobjective optimization
Evolutionary algorithms
Evolutionary computation
Evolutionary design method
Genetic algorithms
Heuristic algorithms
Linear programming
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
Sociology
Title A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization
URI https://ieeexplore.ieee.org/document/7815327
https://www.ncbi.nlm.nih.gov/pubmed/28092596
https://www.proquest.com/docview/1927632869
https://www.proquest.com/docview/1861543633
Volume 47
WOSCitedRecordID wos000407222900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQcutKVAA6UyEgdApHXiOLaPS-mKAyocClpOkb8Crdqk2o9K_feMHW-kSoDEzVHsxMqbsV_sGT-A165FmuFYkTsuVF4Jr3PlpM81c4raQos2Znh__yzOzuRspr5uwPsxF8Z7H4PP_FEoxr1819tVWCo7FhL9sxSbsClEPeRqjespUUAiSt-WWMiRVYi0iVlQdXx-8uNDiOMSR2XIvKyCiE0pqULyX9-bkaLEyt_ZZpx1ptv_198deJTYJZkM5rALG757DLvJfxfkTTpk-u0edBOSLsh0HZ9F-pZ8HBTqSRDyjPIR3pGYpNuby2FsJKe3yVz1_I5Mrn7284vlr-sFQfp7r9kXHI2uU5rnE_g2PT0_-ZQn7YXcskotc-RZzitTcyO8paaSmtdYNJIb7o0rcd6jjrPaIeUzvi2ElaZQbcGltraqKHsKW13f-X0gDlEXihutpKmM1cp5am1BNaOtrHmbAV1__8amg8lDT6-a-INCVRPQawJ6TUIvg3djk5vhVI5_Vd4L0IwVEyoZHKxBbpLfLhrkuzjglrJWGbwab6PHhW0U3fl-hXUkssCK1Yxl8GwwjvHZa5t6_ud3voCHoWdDjNoBbC3nK_8SHtjb5cVifohmPZOH0ax_A-iD8vo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQXSiktoQWMxAEQaZ3Yju3jUroqYlk4LKicIn8FitoE7Ucl_j22441UCZC4OYqdWHkz9os94wfw3DaeZlhS5JZxmVPuVC6tcLkiVmJTKN7EDO8vEz6dirMz-WkDXg-5MM65GHzmDkMx7uXbzqzCUtkRF94_S34DbjJKS9xnaw0rKlFCIorflr6Qe17B0zZmgeXR7PjrmxDJxQ_LkHtJg4xNKbD09L-6NidFkZW_880474y3_q_H9-Bu4pdo1BvENmy49j5sJw9eoBfpmOmXO9COULpA43WEFuoa9LbXqEdByjMKSDiLYppup3_0oyM6uUoGq-a_0OjiWzc_X36_XCBPgK81--jHo8uU6PkAPo9PZseneVJfyA2hcpl7pmWd1BXT3BmsqVCs8kUtmGZO29LPfNgyUllP-rRrCm6ELmRTMKGMoRSTXdhsu9Y9BGQ97lwyraTQVBslrcPGFFgR3IiKNRng9fevTTqaPPT0oo6_KFjWAb06oFcn9DJ4NTT52Z_L8a_KOwGaoWJCJYODNch18txF7RmvH3JLUckMng23vc-FjRTVum7l6wjPAympCMlgrzeO4dlrm3r053c-hdunsw-TevJu-n4f7oRe9hFrB7C5nK_cY7hlrpbni_mTaNy_AfPu9Vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Framework+of+Dynamic+Constrained+Multiobjective+Evolutionary+Algorithms+for+Constrained+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sanyou+Zeng&rft.au=Ruwang+Jiao&rft.au=Changhe+Li&rft.au=Xi+Li&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=47&rft.issue=9&rft.spage=2678&rft.epage=2688&rft_id=info:doi/10.1109%2FTCYB.2017.2647742&rft_id=info%3Apmid%2F28092596&rft.externalDocID=7815327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon