A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization
A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cybernetics Jg. 47; H. 9; S. 2678 - 2688 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions. |
|---|---|
| AbstractList | A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions.A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions. A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions. |
| Author | Sanyou Zeng Changhe Li Xi Li Ruwang Jiao Alkasassbeh, Jawdat S. |
| Author_xml | – sequence: 1 surname: Sanyou Zeng fullname: Sanyou Zeng email: sanyouzeng@gmail.com organization: Sch. of Mech. Eng. & Electron. Inf., China Univ. of Geosci., Wuhan, China – sequence: 2 surname: Ruwang Jiao fullname: Ruwang Jiao email: ruwangjiao@gmail.com organization: Sch. of Mech. Eng. & Electron. Inf., China Univ. of Geosci., Wuhan, China – sequence: 3 surname: Changhe Li fullname: Changhe Li email: changhe.lw@gmail.com organization: Sch. of Autom., China Univ. of Geosci., Wuhan, China – sequence: 4 surname: Xi Li fullname: Xi Li email: lixi_sjz@foxmail.com organization: Sch. of Inf. Eng., Hebei GEO Univ., Shijiazhuang, China – sequence: 5 givenname: Jawdat S. surname: Alkasassbeh fullname: Alkasassbeh, Jawdat S. email: jawdat1983@yahoo.com organization: Sch. of Mech. Eng. & Electron. Inf., China Univ. of Geosci., Wuhan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28092596$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQhq2qqC2lPwAhoUhcuOzij_gjx2VpC1JRL-2hJ8t2JuAlsRc7KSq_HofdVqIH5jKj0fOOZuZ9iQ5DDIDQa4KXhODmw8367uOSYiKXVNRS1vQAnVAi1IJSyQ-faiGP0VnOG1xClVajjtAxVbihvBEnKKyqSwiQTF9dJDPAr5h-VLGrPj0EM3hXrWPIYzI-QFt9nfrRR7sBN_p7qM7vYz-VRjDpoVr132Ly4_chV11M_8iut6Mf_G8zo6_Qi870Gc72-RTdXpzfrD8vrq4vv6xXVwvH6mZcMFq30FjBrQSHba0MF6W0ilsOtqVMUNxyJlrMawsdkU5Z0nSEK-NcXWN2it7v5m5T_DlBHvXgs4O-NwHilDVRgvCaCcYK-u4ZuolTCmU7TRoqBaNKNIV6u6cmO0Crt8kP5W79-MkCyB3gUsw5QaedH__ePP-h1wTr2TY926Zn2_TetqIkz5SPw_-nebPTeAB44qUinFHJ_gAgi6Nr |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TETCI_2023_3336918 crossref_primary_10_1109_TSMC_2018_2876335 crossref_primary_10_4018_IJCINI_344023 crossref_primary_10_1007_s00034_020_01417_7 crossref_primary_10_1109_TCYB_2018_2834363 crossref_primary_10_1007_s11071_021_07049_z crossref_primary_10_1109_TSMC_2019_2954491 crossref_primary_10_1109_MCI_2025_3563425 crossref_primary_10_1109_TCYB_2022_3178132 crossref_primary_10_1109_TWC_2021_3105405 crossref_primary_10_1007_s11042_020_09237_2 crossref_primary_10_1109_TEVC_2023_3243109 crossref_primary_10_1109_TCYB_2020_3021138 crossref_primary_10_1109_TII_2022_3213719 crossref_primary_10_1109_TAP_2020_3016181 crossref_primary_10_1109_TEVC_2022_3222844 crossref_primary_10_1109_TCYB_2020_2979821 crossref_primary_10_1002_cta_70007 crossref_primary_10_1109_TEVC_2021_3051172 crossref_primary_10_1109_TEVC_2024_3418470 crossref_primary_10_1109_TSMC_2019_2953336 crossref_primary_10_1109_TAP_2023_3243777 crossref_primary_10_1109_TEVC_2019_2894743 crossref_primary_10_1109_TCYB_2020_3031642 crossref_primary_10_1109_TCYB_2020_3013950 crossref_primary_10_1109_TCYB_2020_3042853 crossref_primary_10_1109_TEVC_2020_3004027 crossref_primary_10_1109_ACCESS_2020_3040647 crossref_primary_10_1109_TEVC_2023_3313689 crossref_primary_10_1109_TSMC_2023_3324797 crossref_primary_10_1109_TSMC_2020_3010120 crossref_primary_10_1109_ACCESS_2021_3107284 crossref_primary_10_1109_TCYB_2021_3089633 crossref_primary_10_1109_TCYB_2024_3469371 crossref_primary_10_1109_TSMC_2018_2858843 crossref_primary_10_1109_TSMC_2024_3489600 crossref_primary_10_1109_TCYB_2019_2925534 crossref_primary_10_1109_ACCESS_2020_2976047 crossref_primary_10_1109_ACCESS_2020_2997864 crossref_primary_10_1109_TEVC_2022_3194729 |
| Cites_doi | 10.1109/TEVC.2008.2009032 10.1080/0305215X.2010.493937 10.1109/CEC.2011.5949866 10.1109/TEVC.2010.2093582 10.1007/978-3-642-00619-7_7 10.1109/CEC.2013.6557942 10.1109/TEVC.2003.814902 10.1109/TCYB.2015.2493239 10.1016/j.ins.2010.03.021 10.1109/TEVC.2015.2433266 10.1109/CEC.2010.5586408 10.1007/978-3-540-74581-5_4 10.1162/EVCO_a_00009 10.1109/TEVC.2004.836819 10.1109/CEC.2010.5586543 10.1109/TEVC.2005.846817 10.1007/s10472-015-9455-9 10.1109/4235.873238 10.1109/TEVC.2006.872344 10.1109/TCYB.2013.2250956 10.1109/TEVC.2015.2428292 10.1109/TEVC.2015.2483590 10.1109/CEC.2014.6900239 10.1109/CEC.2009.4983201 10.1109/TCYB.2014.2334692 10.1109/CEC.2015.7257252 10.1109/TSMCB.2011.2161467 10.1023/A:1008202821328 10.1109/CEC.2011.5949949 10.1109/CEC.2008.4630995 10.1109/CEC.2013.6557898 10.1109/TCYB.2014.2345478 10.1109/TEVC.2009.2033582 10.1016/j.ins.2016.02.054 10.1109/CEC.2014.6900448 10.1109/TCYB.2016.2600577 10.1109/TEVC.2015.2424251 10.1109/CEC.2002.1004402 10.1007/s00158-009-0380-6 10.1016/j.swevo.2011.10.001 10.1016/j.ins.2015.08.012 10.1109/TEVC.2013.2281533 10.1109/TCYB.2016.2602561 10.1145/2739482.2756561 10.1109/TEVC.2013.2281535 10.1016/j.ins.2016.01.003 10.1109/4235.996017 10.1109/TEVC.2015.2477402 10.1109/CEC.2012.6252955 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2017.2647742 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore Digital Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 2688 |
| ExternalDocumentID | 28092596 10_1109_TCYB_2017_2647742 7815327 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61271140; 61673355; 61203306 funderid: 10.13039/501100001809 – fundername: 111 Project grantid: B17040 – fundername: Hubei Provincial Natural Science Foundation of China grantid: 2015CFA010 funderid: 10.13039/501100003819 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-324de9b65b7ec0b48a56b7eb85b5ebd23620d536d054bef17c8b19f158acc4403 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407222900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Wed Oct 01 09:56:59 EDT 2025 Sun Nov 30 04:08:39 EST 2025 Thu Jan 02 23:10:44 EST 2025 Tue Nov 18 22:16:48 EST 2025 Sat Nov 29 06:48:34 EST 2025 Tue Aug 26 16:38:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-324de9b65b7ec0b48a56b7eb85b5ebd23620d536d054bef17c8b19f158acc4403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0795-9092 |
| PMID | 28092596 |
| PQID | 1927632869 |
| PQPubID | 85422 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_7815327 pubmed_primary_28092596 proquest_miscellaneous_1861543633 crossref_citationtrail_10_1109_TCYB_2017_2647742 crossref_primary_10_1109_TCYB_2017_2647742 proquest_journals_1927632869 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-01 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref12 ref15 ref58 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 mallipeddi (ref56) 2010 xiao (ref7) 2007 storn (ref54) 1997; 11 ref46 ref45 ref48 takahama (ref50) 2013 ref47 ref42 ref41 ref44 ref43 dréo (ref51) 2006 cai (ref25) 2016 ref8 ref9 ref4 ref3 ref5 ref40 liang (ref55) 2006 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 goldberg (ref49) 1987 ref24 ref23 ref26 ref20 ref21 ref28 li (ref22) 2016 ref27 ref29 takahama (ref6) 2010 |
| References_xml | – year: 2006 ident: ref55 publication-title: Problem Definitions and Evaluation Criteria for the CEC2006 Special Session on Constrained Real-Parameter Optimization – ident: ref17 doi: 10.1109/TEVC.2008.2009032 – start-page: 41 year: 1987 ident: ref49 article-title: Genetic algorithms with sharing for multimodal function optimization publication-title: Genetic Algorithms Appl Proc 2nd Int Conf Genetic Algorithms – ident: ref19 doi: 10.1080/0305215X.2010.493937 – ident: ref29 doi: 10.1109/CEC.2011.5949866 – ident: ref45 doi: 10.1109/TEVC.2010.2093582 – ident: ref35 doi: 10.1007/978-3-642-00619-7_7 – ident: ref20 doi: 10.1109/CEC.2013.6557942 – ident: ref1 doi: 10.1109/TEVC.2003.814902 – start-page: 1334 year: 2013 ident: ref50 article-title: Efficient constrained optimization by the $\epsilon $ constrained differential evolution with rough approximation using kernel regression publication-title: Proc IEEE Congr Evol Comput – ident: ref2 doi: 10.1109/TCYB.2015.2493239 – ident: ref18 doi: 10.1016/j.ins.2010.03.021 – ident: ref28 doi: 10.1109/TEVC.2015.2433266 – start-page: 1 year: 2010 ident: ref6 article-title: Efficient constrained optimization by the $\epsilon $ constrained adaptive differential evolution publication-title: Proc IEEE Congr Evol Comput – ident: ref47 doi: 10.1109/CEC.2010.5586408 – ident: ref38 doi: 10.1007/978-3-540-74581-5_4 – ident: ref53 doi: 10.1162/EVCO_a_00009 – ident: ref11 doi: 10.1109/TEVC.2004.836819 – ident: ref8 doi: 10.1109/CEC.2010.5586543 – ident: ref37 doi: 10.1109/TEVC.2005.846817 – ident: ref21 doi: 10.1007/s10472-015-9455-9 – ident: ref4 doi: 10.1109/4235.873238 – ident: ref44 doi: 10.1109/TEVC.2006.872344 – ident: ref58 doi: 10.1109/TCYB.2013.2250956 – start-page: 1 year: 2016 ident: ref25 article-title: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization publication-title: IEEE Trans Cybern – ident: ref14 doi: 10.1109/TEVC.2015.2428292 – ident: ref27 doi: 10.1109/TEVC.2015.2483590 – year: 2010 ident: ref56 article-title: Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization – ident: ref36 doi: 10.1109/CEC.2014.6900239 – ident: ref5 doi: 10.1109/CEC.2009.4983201 – ident: ref9 doi: 10.1109/TCYB.2014.2334692 – ident: ref32 doi: 10.1109/CEC.2015.7257252 – ident: ref46 doi: 10.1109/TSMCB.2011.2161467 – volume: 11 start-page: 341 year: 1997 ident: ref54 article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – ident: ref30 doi: 10.1109/CEC.2011.5949949 – ident: ref43 doi: 10.1109/CEC.2008.4630995 – ident: ref39 doi: 10.1109/CEC.2013.6557898 – ident: ref12 doi: 10.1109/TCYB.2014.2345478 – ident: ref57 doi: 10.1109/TEVC.2009.2033582 – ident: ref15 doi: 10.1016/j.ins.2016.02.054 – ident: ref31 doi: 10.1109/CEC.2014.6900448 – ident: ref24 doi: 10.1109/TCYB.2016.2600577 – ident: ref26 doi: 10.1109/TEVC.2015.2424251 – ident: ref16 doi: 10.1109/CEC.2002.1004402 – ident: ref42 doi: 10.1007/s00158-009-0380-6 – ident: ref40 doi: 10.1016/j.swevo.2011.10.001 – ident: ref3 doi: 10.1016/j.ins.2015.08.012 – ident: ref52 doi: 10.1109/TEVC.2013.2281533 – ident: ref23 doi: 10.1109/TCYB.2016.2602561 – year: 2006 ident: ref51 publication-title: Metaheuristics for Hard Optimization Simulated Annealing Tabu Search Evolutionary and Genetic Algorithms Ant Colonies Methods and Case Studies – ident: ref41 doi: 10.1145/2739482.2756561 – ident: ref34 doi: 10.1109/TEVC.2013.2281535 – start-page: 1 year: 2016 ident: ref22 article-title: Efficient nondomination level update method for steady-state evolutionary multiobjective optimization publication-title: IEEE Trans Cybern – ident: ref13 doi: 10.1016/j.ins.2016.01.003 – ident: ref33 doi: 10.1109/4235.996017 – ident: ref10 doi: 10.1109/TEVC.2015.2477402 – start-page: 4497 year: 2007 ident: ref7 article-title: A genetic algorithm for solving multi-constrained function optimization problems based on KS function publication-title: Proc IEEE Congr Evol Comput – ident: ref48 doi: 10.1109/CEC.2012.6252955 |
| SSID | ssj0000816898 |
| Score | 2.4527957 |
| Snippet | A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2678 |
| SubjectTerms | Constrained optimization Constraints dynamic multiobjective optimization Evolutionary algorithms Evolutionary computation Evolutionary design method Genetic algorithms Heuristic algorithms Linear programming multiobjective optimization Multiple objective analysis Optimization Pareto optimization Sociology |
| Title | A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization |
| URI | https://ieeexplore.ieee.org/document/7815327 https://www.ncbi.nlm.nih.gov/pubmed/28092596 https://www.proquest.com/docview/1927632869 https://www.proquest.com/docview/1861543633 |
| Volume | 47 |
| WOSCitedRecordID | wos000407222900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQcutKVAA6UyEgdApHXiOLaPS-mKAyocClpOkb8Crdqk2o9K_feMHW-kSoDEzVHsxMqbsV_sGT-A165FmuFYkTsuVF4Jr3PlpM81c4raQos2Znh__yzOzuRspr5uwPsxF8Z7H4PP_FEoxr1819tVWCo7FhL9sxSbsClEPeRqjespUUAiSt-WWMiRVYi0iVlQdXx-8uNDiOMSR2XIvKyCiE0pqULyX9-bkaLEyt_ZZpx1ptv_198deJTYJZkM5rALG757DLvJfxfkTTpk-u0edBOSLsh0HZ9F-pZ8HBTqSRDyjPIR3pGYpNuby2FsJKe3yVz1_I5Mrn7284vlr-sFQfp7r9kXHI2uU5rnE_g2PT0_-ZQn7YXcskotc-RZzitTcyO8paaSmtdYNJIb7o0rcd6jjrPaIeUzvi2ElaZQbcGltraqKHsKW13f-X0gDlEXihutpKmM1cp5am1BNaOtrHmbAV1__8amg8lDT6-a-INCVRPQawJ6TUIvg3djk5vhVI5_Vd4L0IwVEyoZHKxBbpLfLhrkuzjglrJWGbwab6PHhW0U3fl-hXUkssCK1Yxl8GwwjvHZa5t6_ud3voCHoWdDjNoBbC3nK_8SHtjb5cVifohmPZOH0ax_A-iD8vo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQXSiktoQWMxAEQaZ3Yju3jUroqYlk4LKicIn8FitoE7Ucl_j22441UCZC4OYqdWHkz9os94wfw3DaeZlhS5JZxmVPuVC6tcLkiVmJTKN7EDO8vEz6dirMz-WkDXg-5MM65GHzmDkMx7uXbzqzCUtkRF94_S34DbjJKS9xnaw0rKlFCIorflr6Qe17B0zZmgeXR7PjrmxDJxQ_LkHtJg4xNKbD09L-6NidFkZW_880474y3_q_H9-Bu4pdo1BvENmy49j5sJw9eoBfpmOmXO9COULpA43WEFuoa9LbXqEdByjMKSDiLYppup3_0oyM6uUoGq-a_0OjiWzc_X36_XCBPgK81--jHo8uU6PkAPo9PZseneVJfyA2hcpl7pmWd1BXT3BmsqVCs8kUtmGZO29LPfNgyUllP-rRrCm6ELmRTMKGMoRSTXdhsu9Y9BGQ97lwyraTQVBslrcPGFFgR3IiKNRng9fevTTqaPPT0oo6_KFjWAb06oFcn9DJ4NTT52Z_L8a_KOwGaoWJCJYODNch18txF7RmvH3JLUckMng23vc-FjRTVum7l6wjPAympCMlgrzeO4dlrm3r053c-hdunsw-TevJu-n4f7oRe9hFrB7C5nK_cY7hlrpbni_mTaNy_AfPu9Vk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Framework+of+Dynamic+Constrained+Multiobjective+Evolutionary+Algorithms+for+Constrained+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sanyou+Zeng&rft.au=Ruwang+Jiao&rft.au=Changhe+Li&rft.au=Xi+Li&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=47&rft.issue=9&rft.spage=2678&rft.epage=2688&rft_id=info:doi/10.1109%2FTCYB.2017.2647742&rft_id=info%3Apmid%2F28092596&rft.externalDocID=7815327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |