A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization
A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 47; číslo 9; s. 2678 - 2688 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A novel multiobjective technique is proposed for solving constrained optimization problems (COPs) in this paper. The method highlights three different perspectives: 1) a COP is converted into an equivalent dynamic constrained multiobjective optimization problem (DCMOP) with three objectives: a) the original objective; b) a constraint-violation objective; and c) a niche-count objective; 2) a method of gradually reducing the constraint boundary aims to handle the constraint difficulty; and 3) a method of gradually reducing the niche size aims to handle the multimodal difficulty. A general framework of the design of dynamic constrained multiobjective evolutionary algorithms is proposed for solving DCMOPs. Three popular types of multiobjective evolutionary algorithms, i.e., Pareto ranking-based, decomposition-based, and hype-volume indicator-based, are employed to instantiate the framework. The three instantiations are tested on two benchmark suites. Experimental results show that they perform better than or competitive to a set of state-of-the-art constraint optimizers, especially on problems with a large number of dimensions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2017.2647742 |