Stronger Convergence Results for the Center-Based Fuzzy Clustering With Convex Divergence Measure

We present a novel alternative convergence theory of the fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 49; číslo 12; s. 4229 - 4242
Hlavní autori: Saha, Arkajyoti, Das, Swagatam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a novel alternative convergence theory of the fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.
AbstractList We present a novel alternative convergence theory of the fuzzy C -means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.We present a novel alternative convergence theory of the fuzzy C -means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.
We present a novel alternative convergence theory of the fuzzy [Formula Omitted]-means (FCM) clustering algorithm with a super-class of the so-called “distance like functions” which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.
We present a novel alternative convergence theory of the fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.
We present a novel alternative convergence theory of the fuzzy C -means (FCM) clustering algorithm with a super-class of the so-called "distance like functions" which emerged from the earlier attempts of unifying the theories of center-based clustering methods. This super-class does not assume the existence of double derivative of the distance measure with respect to the coordinate of the cluster representative (first coordinate in this formulation). The convergence result does not require the separability of the distance measures. Moreover, it provides us with a stronger convergence property comparable (same to be precise, but in terms of the generalized distance measure) to that of the classical FCM with squared Euclidean distance. The crux of the convergence analysis lies in the development of a fundamentally novel mathematical proof of the continuity of the clustering operator even in absence of the closed form upgrading rule, without necessitating the separability and double differentiability of the distance function and still providing us with a convergence result comparable to that of the classical FCM. The implication of our novel proof technique goes way beyond the realm of FCM and provides a general setup for convergence analysis of the similar iterative algorithms.
Author Saha, Arkajyoti
Das, Swagatam
Author_xml – sequence: 1
  givenname: Arkajyoti
  surname: Saha
  fullname: Saha, Arkajyoti
  email: asaha8@jhmi.edu
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 2
  givenname: Swagatam
  surname: Das
  fullname: Das, Swagatam
  email: swagatam.das@isical.ac.in
  organization: Electronics and Communication Sciences Unit, India Statistical Institute, Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30137019$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhkOx1M8fUAol4E1vZpuvnWQudaxasBSqIr0K2ZmTNTKbaJIR9debZde98MJzk5PD874czruLtnzwgNBXSiaUkubnVfv_eMIIVROmasoo_YR2GK1VxZicbm36Wm6jg5TuSClVRo36grY5oVwS2uwgc5lj8HOIuA3-EeIcfAf4H6RxyAnbEHG-BdyCzxCrY5Ogx6fjy8szbocxlZnzc3zj8u1K_oRP3MbkD5g0RthHn60ZEhys3z10ffrrqj2vLv6e_W6PLqqOiyZXnDQ1r3uhrKmtpH3Xd1ZMheSzBho75QzkrDeCGVF-wGpqOVGW1b3qKMxoz_fQj5XvfQwPI6SsFy51MAzGQxiTZqRh03Ivogp6-A69C2P0ZTvNmJJCSsV5ob6vqXG2gF7fR7cw8Vm_Ha8AcgV0MaQUwerOZZNd8DkaN2hK9DIpvUxKL5PS66SKkr5Tvpl_pPm20jgA2PBKCC4I4a8biZ10
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCYB_2022_3166975
crossref_primary_10_1016_j_asoc_2020_106468
crossref_primary_10_1016_j_dsp_2021_103351
crossref_primary_10_1007_s11227_024_06723_4
crossref_primary_10_1007_s12559_021_09988_6
crossref_primary_10_1016_j_eswa_2025_129648
crossref_primary_10_1109_TCYB_2020_3035887
crossref_primary_10_1016_j_patcog_2022_108686
crossref_primary_10_1109_TCYB_2019_2951798
crossref_primary_10_1016_j_eswa_2024_123959
crossref_primary_10_1007_s11042_023_15267_3
crossref_primary_10_1016_j_ijar_2021_06_004
crossref_primary_10_1007_s11042_023_14703_8
crossref_primary_10_1016_j_dsp_2020_102905
crossref_primary_10_1016_j_eswa_2025_128245
crossref_primary_10_3390_sym16101370
crossref_primary_10_1007_s11042_025_20848_5
crossref_primary_10_3233_JIFS_238420
crossref_primary_10_1007_s13042_021_01429_y
crossref_primary_10_1016_j_measurement_2023_113183
crossref_primary_10_1007_s11063_024_11450_1
Cites_doi 10.1109/TSMCB.2008.2004818
10.1109/TSMC.1987.6499296
10.1109/TFUZZ.2015.2421071
10.1016/0031-3203(86)90047-6
10.1016/j.fss.2017.07.005
10.1214/aop/1176996454
10.1109/TSMCB.2003.810951
10.1109/TFUZZ.2005.856560
10.1007/s40745-015-0040-1
10.1016/j.patrec.2016.04.013
10.1109/34.192473
10.1109/91.388178
10.1145/331499.331504
10.1109/CDC.1978.268028
10.1007/s10994-016-5623-3
10.1109/TPAMI.1986.4767783
10.1007/BF00934676
10.1016/0031-3203(88)90037-4
10.1109/TNN.2005.845141
10.1137/1.9781611971200
10.1371/journal.pone.0144059
10.1109/TFUZZ.2004.836065
10.1016/j.patrec.2017.09.025
10.1109/TFUZZ.2013.2280141
10.1016/0022-247X(89)90128-5
10.1109/TCYB.2017.2751646
10.1109/TCYB.2017.2729542
10.1109/TPAMI.1980.4766964
10.1109/91.995126
10.1016/j.ins.2016.08.058
10.1016/0041-5553(67)90040-7
10.1080/01969727308546046
10.1109/91.784208
10.1109/TFUZZ.2011.2179659
10.1142/9789812709677_0199
10.1109/TFUZZ.2011.2143418
10.1007/978-1-4757-0450-1
10.1016/j.asoc.2010.05.005
10.1007/BF01908075
10.1109/TFUZZ.2014.2306434
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2861211
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4242
ExternalDocumentID 30137019
10_1109_TCYB_2018_2861211
8443400
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-309636d48fa6f71dcdcf45473b9e9f532e7bda42a49f5e261f308f26d8c1eb1d3
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485687200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Nov 09 13:50:30 EST 2025
Mon Jun 30 06:17:28 EDT 2025
Mon Jul 21 06:00:04 EDT 2025
Sat Nov 29 02:02:25 EST 2025
Tue Nov 18 22:44:20 EST 2025
Wed Aug 27 02:46:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-309636d48fa6f71dcdcf45473b9e9f532e7bda42a49f5e261f308f26d8c1eb1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30137019
PQID 2287477833
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_30137019
crossref_citationtrail_10_1109_TCYB_2018_2861211
crossref_primary_10_1109_TCYB_2018_2861211
proquest_journals_2287477833
ieee_primary_8443400
proquest_miscellaneous_2092520108
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
zangwill (ref31) 1969; 196
olmsted (ref32) 1961
garey (ref26) 1979
ref50
ref48
ref47
ref42
ref44
ref43
wen (ref49) 2018; 48
ref8
ref9
ref4
ref3
ref6
ref5
ref40
censor (ref39) 1997
ref35
ref34
ref37
ref36
ref33
munkres (ref29) 2000
ref2
ref1
ref38
wang (ref22) 2015; 23
barron (ref41) 1991; 19
ref24
ref23
ref25
ref20
ref21
bezdek (ref7) 2003; 11
ref27
banerjee (ref30) 2005; 6
zhu (ref45) 2009; 39
lichman (ref46) 2013
teboulle (ref28) 2007; 8
References_xml – volume: 39
  start-page: 578
  year: 2009
  ident: ref45
  article-title: Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2004818
– ident: ref12
  doi: 10.1109/TSMC.1987.6499296
– volume: 19
  start-page: 1347
  year: 1991
  ident: ref41
  article-title: Approximation of density functions by sequences of exponential families
  publication-title: Ann Stat
– volume: 23
  start-page: 2329
  year: 2015
  ident: ref22
  article-title: Analysis of parameter selection for Gustafson-Kessel fuzzy clustering using Jacobian matrix
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2015.2421071
– ident: ref13
  doi: 10.1016/0031-3203(86)90047-6
– ident: ref25
  doi: 10.1016/j.fss.2017.07.005
– ident: ref34
  doi: 10.1214/aop/1176996454
– year: 1979
  ident: ref26
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
– volume: 6
  start-page: 1705
  year: 2005
  ident: ref30
  article-title: Clustering with Bregman divergences
  publication-title: J Mach Learn Res
– year: 2013
  ident: ref46
  publication-title: UCI Machine Learning Repository
– ident: ref19
  doi: 10.1109/TSMCB.2003.810951
– ident: ref18
  doi: 10.1109/TFUZZ.2005.856560
– ident: ref2
  doi: 10.1007/s40745-015-0040-1
– ident: ref36
  doi: 10.1016/j.patrec.2016.04.013
– ident: ref9
  doi: 10.1109/34.192473
– ident: ref16
  doi: 10.1109/91.388178
– ident: ref4
  doi: 10.1145/331499.331504
– ident: ref8
  doi: 10.1109/CDC.1978.268028
– ident: ref24
  doi: 10.1007/s10994-016-5623-3
– ident: ref14
  doi: 10.1109/TPAMI.1986.4767783
– ident: ref38
  doi: 10.1007/BF00934676
– ident: ref15
  doi: 10.1016/0031-3203(88)90037-4
– year: 2000
  ident: ref29
  publication-title: Topology
– ident: ref1
  doi: 10.1109/TNN.2005.845141
– year: 1997
  ident: ref39
  publication-title: Parallel Optimization Theory Algorithms and Applications
– volume: 11
  start-page: 351
  year: 2003
  ident: ref7
  article-title: Convergence of alternating optimization
  publication-title: Neural Parallel Sci Comput
– ident: ref47
  doi: 10.1137/1.9781611971200
– year: 1961
  ident: ref32
  publication-title: Advanced Calculus
– ident: ref3
  doi: 10.1371/journal.pone.0144059
– ident: ref17
  doi: 10.1109/TFUZZ.2004.836065
– ident: ref33
  doi: 10.1016/j.patrec.2017.09.025
– ident: ref44
  doi: 10.1109/TFUZZ.2013.2280141
– ident: ref35
  doi: 10.1016/0022-247X(89)90128-5
– ident: ref50
  doi: 10.1109/TCYB.2017.2751646
– volume: 48
  start-page: 1
  year: 2018
  ident: ref49
  article-title: Discriminative transformation learning for fuzzy sparse subspace clustering
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2729542
– ident: ref40
  doi: 10.1109/TPAMI.1980.4766964
– ident: ref48
  doi: 10.1109/91.995126
– volume: 196
  year: 1969
  ident: ref31
  publication-title: Nonlinear Programming A Unified Approach
– ident: ref23
  doi: 10.1016/j.ins.2016.08.058
– ident: ref37
  doi: 10.1016/0041-5553(67)90040-7
– ident: ref5
  doi: 10.1080/01969727308546046
– volume: 8
  start-page: 65
  year: 2007
  ident: ref28
  article-title: A unified continuous optimization framework for center-based clustering methods
  publication-title: J Mach Learn Res
– ident: ref10
  doi: 10.1109/91.784208
– ident: ref27
  doi: 10.1109/TFUZZ.2011.2179659
– ident: ref11
  doi: 10.1142/9789812709677_0199
– ident: ref20
  doi: 10.1109/TFUZZ.2011.2143418
– ident: ref6
  doi: 10.1007/978-1-4757-0450-1
– ident: ref43
  doi: 10.1016/j.asoc.2010.05.005
– ident: ref42
  doi: 10.1007/BF01908075
– ident: ref21
  doi: 10.1109/TFUZZ.2014.2306434
SSID ssj0000816898
Score 2.3237326
Snippet We present a novel alternative convergence theory of the fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM)...
We present a novel alternative convergence theory of the fuzzy C -means (FCM) clustering algorithm with a super-class of the so-called "distance like...
We present a novel alternative convergence theory of the fuzzy [Formula Omitted]-means (FCM) clustering algorithm with a super-class of the so-called “distance...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4229
SubjectTerms Closed graph theorem
Clustering
Clustering algorithms
Continuity (mathematics)
Convergence
convergence analysis
convex analysis
Cybernetics
distance like functions (DLFs)
Distance measurement
Divergence
Euclidean distance
Euclidean geometry
Iterative algorithms
Iterative methods
Linear programming
Mathematical analysis
Operators (mathematics)
partitional clustering
Partitioning algorithms
unsupervised learning
Title Stronger Convergence Results for the Center-Based Fuzzy Clustering With Convex Divergence Measure
URI https://ieeexplore.ieee.org/document/8443400
https://www.ncbi.nlm.nih.gov/pubmed/30137019
https://www.proquest.com/docview/2287477833
https://www.proquest.com/docview/2092520108
Volume 49
WOSCitedRecordID wos000485687200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQculFIegVIZiQMg0iaxN7aPdGHFhQpBEcspcpwJXWm1izYJgv56Zpxs1ENB4uYothPlG2ceHn8D8FyriU1domJfeR0rzFRsfGlin9ZMTWjRGR-KTejzczOf24878Ho8C4OIIfkMT7gZ9vKrte84VHZqlJIkc7uwq3Xen9Ua4ymhgEQofZtRIyarQg-bmGliTy-m3844j8ucZIY5s7hAjGS2vUCxc00jhRIrf7c2g9aZ7f_f-96FO4N1Kd704nAAO7i6BwfD-m3Ei4Fk-uUhuM8cA_-OGzHlvPNwBBPFJ2y6ZdsIsmQFWYaCY7-4ic9I1VVi1l1d_RbTZcfcCqTxxNdFe9kP_yXeLsZJPvRhx_vwZfbuYvo-HsotxF4q28aSvBmZV8rULq91WhF6NdN9ydKirScyQ11WTmVO0RWS51XLxNRZXhmf0h-_kg9gb7Ve4SMQia4ceUYZGSNWOZWXuZNljiotyZ9MPEaQbD954Qcuci6JsSyCT5LYggErGLBiACyCV-OQHz0Rx786HzIaY8cBiAiOtrgWw1JtiowZ_7U2UkbwbLxNi4x3TtwK1x31SWw24bwBE8HDXh7Gubdi9PjmZz6B2zTQ9hkwR7DXbjp8Crf8z3bRbI5JkufmOEjyH0s466w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQXoJRHoICROAAibRJ7E_tIF1ZFtCsEi2hPkWNP2pVWu2iTIOivx-N4Iw6AxM1RbCfKjDMPj78P4HkhRirViYiNNUUsMBOxNJWMTVoTNKFCLY0nmyimU3l6qj5uwevhLAwi-uIz3Kem38u3K9NRquxACsGdzl2Bq8ScFU5rDRkVTyHhyW8z14idX1GEbcw0UQez8dkhVXLJ_UwSahZRxHDC2_MgO7_ZJE-y8nd_09udya3_e-PbcDP4l-xNrxA7sIXLO7ATVnDDXgSY6Ze7oD9TFvwc12xMlef-ECayT9h0i7ZhzpdlzjdklP3FdXzojJ1lk-7y8icbLzpCV3A2j32dtxf98B_s7XyY5KRPPN6FL5N3s_FRHAgXYsOFamPu4hmeWyFrnddFap38agL84pVCVY94hkVltci0cFfoYq-aJ7LOcitN6v75lt-D7eVqiQ-AJYXVLjbKnDuihBZ5lWte5SjSykWUicEIks0nL01AIydSjEXpo5JElSSwkgRWBoFF8GoY8q2H4vhX512SxtAxCCKCvY1cy7BYmzIjzP-ikJxH8Gy47ZYZ7Z3oJa461ydR2YgqB2QE93t9GObeqNHDPz_zKVw_mp0cl8fvpx8ewQ03ierrYfZgu113-Biume_tvFk_8fr8Cyt57g0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stronger+Convergence+Results+for+the+Center-Based+Fuzzy+Clustering+With+Convex+Divergence+Measure&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Saha%2C+Arkajyoti&rft.au=Das%2C+Swagatam&rft.date=2019-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=49&rft.issue=12&rft.spage=4229&rft_id=info:doi/10.1109%2FTCYB.2018.2861211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon