Secure State Estimation With Switched Compensation Mechanism Against DoS Attacks

This article is concerned with the secure state estimation problem for cyber-physical systems under intermittent denial-of-service (DoS) attacks. Based on a switching scheme and the cascade observer technique, a novel resilient state observer with a switched compensation mechanism is designed. Moreo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 52; číslo 9; s. 9609 - 9620
Hlavní autori: Yan, Jing-Jing, Yang, Guang-Hong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This article is concerned with the secure state estimation problem for cyber-physical systems under intermittent denial-of-service (DoS) attacks. Based on a switching scheme and the cascade observer technique, a novel resilient state observer with a switched compensation mechanism is designed. Moreover, a quantitative relationship between the resilience against DoS attacks and the design parameters is revealed. Compared with the existing results, where only the boundedness of the estimation error is guaranteed under DoS attacks, the exponential convergence of the estimation error is achieved by employing the proposed observer scheme, such that the estimation performance is improved. More specifically, in the disturbance-free case, it is proven that the state estimation error converges exponentially to 0 despite the existence of DoS attacks. Finally, simulation results are provided to illustrate the effectiveness and merits of the proposed methods.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3060743