Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks
•A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust features from inputs and a DNN to predict the CHF;•A validation of the method on a comprehensive CHF experimental dataset in vertical tubes was perf...
Gespeichert in:
| Veröffentlicht in: | Nuclear engineering and design Jg. 429; S. 113587 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 0029-5493, 1872-759X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust features from inputs and a DNN to predict the CHF;•A validation of the method on a comprehensive CHF experimental dataset in vertical tubes was performed;•The method was able to predict CHF values with substantial improvement in prediction accuracy.
Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m2s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors. |
|---|---|
| AbstractList | •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust features from inputs and a DNN to predict the CHF;•A validation of the method on a comprehensive CHF experimental dataset in vertical tubes was performed;•The method was able to predict CHF values with substantial improvement in prediction accuracy.
Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m2s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors. Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 - 21,197 kPa, hydraulic diameters of 1 - 44.7 mm, mass fluxes of 10 - 20,910 kg/m(2)s, inlet-subcooling of 0.6 - 3,555 kJ/kg, heated lengths of 9 - 6,000 mm and critical qualities of -0.494 - 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors. |
| ArticleNumber | 113587 |
| Author | Zubair Khalid, Rehan Ullah, Atta Ahmed, Ibrahim Zio, Enrico Khan, Asifullah |
| Author_xml | – sequence: 1 givenname: Rehan surname: Zubair Khalid fullname: Zubair Khalid, Rehan organization: Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan – sequence: 2 givenname: Ibrahim surname: Ahmed fullname: Ahmed, Ibrahim email: ibrahim.ahmed@polimi.it organization: Energy Department, Politecnico di Milano, Milano, Italy – sequence: 3 givenname: Atta surname: Ullah fullname: Ullah, Atta organization: Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan – sequence: 4 givenname: Enrico surname: Zio fullname: Zio, Enrico organization: Energy Department, Politecnico di Milano, Milano, Italy – sequence: 5 givenname: Asifullah surname: Khan fullname: Khan, Asifullah organization: Pattern Recognition Lab (PRLab), Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan |
| BackLink | https://hal.science/hal-04835886$$DView record in HAL |
| BookMark | eNqFkcGO0zAQhi20SHQXngFfOaTYjpM6Bw5VtbBIFVxA4mZNJ5Oti9eubGeh78BDkyjAgcv6MvLMfP9I_3_NrkIMxNhrKdZSyPbtaR1GpHDfU14rofRayroxm2dsJc1GVZum-3bFVkKormp0V79g1zmfxPw6tWK_bsMRArpwzwFxTIAXHgd-TtQ7LC6G-YfJFYfg-ZGg8MGPP7kLfOcSjh4Sx0khkM_8cOEUMj0cPM1YT3Tm-QwpE4exRAoYe0qZQ-iXYaDpouefqPyI6Xt-yZ4P4DO9-lNv2Nf3t192d9X-84ePu-2-wlp3pVIkW9WYFqHvNHQHaFoyetCDATMoZWRTdwCmEzWalhAmSoMYTK3BHPrG1DfszaJ7BG_PyT1AutgIzt5t93buCW0mD037KKfdd8supphzosGiKzA7UxI4b6Wwcwz2ZP_FYOcY7BLDxG_-4_8efJrcLuRkLT06SjajmzyckkmExfbRPanxG613rFc |
| CitedBy_id | crossref_primary_10_1016_j_nucengdes_2025_114111 crossref_primary_10_1016_j_icheatmasstransfer_2025_109415 crossref_primary_10_2478_amns_2025_0338 crossref_primary_10_1016_j_ijthermalsci_2025_110050 |
| Cites_doi | 10.1016/j.ssci.2022.105984 10.1007/s00231-010-0575-9 10.1016/0369-5816(65)90133-X 10.1016/j.pnucene.2021.103901 10.1016/0029-5493(94)90059-0 10.1016/j.applthermaleng.2009.11.014 10.1115/1.4014895 10.13182/T126-38128 10.1016/j.nucengdes.2021.111076 10.1016/0017-9310(84)90276-X 10.1016/j.asoc.2017.05.031 10.1016/0029-5493(67)90049-0 10.1016/j.net.2020.12.007 10.1016/S0735-1933(97)00078-X 10.1016/0029-5493(67)90111-2 10.1016/j.nucengdes.2004.01.005 10.1016/j.nucengdes.2006.05.005 10.1007/s11063-020-10234-7 10.1016/j.energy.2021.120400 10.1016/j.ijheatmasstransfer.2013.03.025 10.1080/18811248.2002.9715235 10.1016/S0029-5493(99)00153-3 10.1016/j.anucene.2020.107765 10.1016/S0029-5493(00)00223-5 10.1016/S0735-1933(00)00109-3 10.1016/S0035-3159(97)87750-1 10.1016/B978-0-12-815739-8.00011-0 10.1007/BF01132862 10.1115/ICONE12-49112 10.1016/j.nucengdes.2011.07.029 10.1016/j.nucengdes.2018.02.031 10.1016/j.anucene.2011.12.029 10.1007/s10346-019-01274-9 10.2172/4421630 10.1145/1390156.1390294 10.1115/IMECE2002-39067 10.2172/5193945 10.1016/j.anucene.2012.09.020 10.1109/IBCAST54850.2022.9990190 10.1016/j.ijthermalsci.2009.06.007 10.1016/j.ijthermalsci.2009.04.010 10.1016/S0029-5493(99)00074-6 10.1016/0029-5493(95)01178-1 10.1016/j.nucengdes.2007.02.014 10.1016/j.anucene.2010.02.019 10.1201/9781351030502 10.1016/j.sigpro.2016.07.028 10.1016/j.engappai.2022.105151 10.1007/BF01480853 10.1016/S0042-6989(97)00169-7 10.1109/TNS.2005.846834 10.1016/j.ijthermalsci.2024.109165 10.1016/S0017-9310(99)00192-1 10.1109/TSMC.2017.2754287 10.1016/j.applthermaleng.2019.114540 10.1038/s42256-020-0217-y 10.1016/j.psep.2021.03.022 10.1016/j.ijthermalsci.2023.108810 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.nucengdes.2024.113587 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-759X |
| ExternalDocumentID | oai:HAL:hal-04835886v1 10_1016_j_nucengdes_2024_113587 S0029549324006873 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ZMT ~02 ~G- 29N 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HME HVGLF HZ~ LY6 LY7 LZ3 R2- SAC SET SHN UHS WUQ XPP ~HD 1XC |
| ID | FETCH-LOGICAL-c349t-2e162586cad94a9ba56e84f4f8a8f2281539aa8903c86ecac344a0f834a8bd583 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001316425800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5493 |
| IngestDate | Tue Oct 14 20:44:28 EDT 2025 Sat Nov 29 02:30:01 EST 2025 Tue Nov 18 22:36:34 EST 2025 Sat Nov 16 15:59:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Critical Heat Flux Nuclear Reactors Sparse Autoencoders Deep Neural Network Process Safety Ensemble Model |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-2e162586cad94a9ba56e84f4f8a8f2281539aa8903c86ecac344a0f834a8bd583 |
| ORCID | 0000-0002-7108-637X |
| ParticipantIDs | hal_primary_oai_HAL_hal_04835886v1 crossref_citationtrail_10_1016_j_nucengdes_2024_113587 crossref_primary_10_1016_j_nucengdes_2024_113587 elsevier_sciencedirect_doi_10_1016_j_nucengdes_2024_113587 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Nuclear engineering and design |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Griffel, Bonilla (b0085) 1965; 2 Yang, Anglart, Han, Liu (b0430) 2021; 376 L. Han, J. Shan, B. Zhang, Application of ANNs in tube CHF prediction: Effect of neuron number in hidden layer, in: International Conference on Nuclear Engineering, Vol. 4689, 2004, pp. 425-428. Li, Mu, Hu, Shen (b0225) 2024; 203 Katto, Ohno (b0150) 1984; 27 Okawa, Kotani, Kataoka, Naitoh (b0270) 2004; 229 Quadros, Mogul, Ağbulut, Gürel, Khan, Akhtar, Jilte, Asif (b0300) 2024; 197 A. Bennett, G.F. Hewitt, H.A. Kearsey, R.K.F. Keeys, Measurements of burnout heat flux in uniformly heated round tubes at 1000psia, in: AERE-R5055 United Kingdom Atomic Energy Authority, Harwell, UK, 1965. Olekhnovitch, Teyssedou, Tapucu, Champagne, Groeneveld (b0275) 1999; 193 Zhao, Shirvan, Salko, Guo (b0445) 2020; 164 Lu, Wang, Qin, Ma (b0235) 2017; 130 L. Biasi, G. Clerici, S. Garribba, R. Sala, A. Tozzi, Studies on Burnout. Part 3. A New Correlation For Round Ducts And Uniform Heating And Its Comparison With World Data, in, ARS SpA, Milan. Univ., Milan, 1967. Kim, Baek, Chang (b0160) 2000; 199 Jiang, Zhao (b0135) 2013; 53 Leung (b0220) 1994 Quan, Hao, Xifeng, Jingchun (b0305) 2020 Olshausen, Field (b0280) 1997; 37 Khaboshan, Jaliliantabar, Abdullah, Panchal, Azarinia (b0155) 2024 Kim, Bang, Baek, Chang, Moon (b0165) 2000; 27 Hall, Mudawar (b0115) 2000; 43 R. Zubair, A. Ullah, A. Khan, M.H. Inayat, Critical heat flux prediction for safety analysis of nuclear reactors using machine learning, in: 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, 2022, pp. 314-318. Epstein, Chastain, Fawcett (b0070) 1956 Smolin, Polyakov, Esikov (b0340) 1963; 13 Tong (b0370) 1967; 6 Wei, Su, Qiu, Ni, Yang (b0395) 2010; 49 Gupta, Raza (b0110) 2020; 51 J. Soibam, A. Rabhi, I. Aslanidou, K. Kyprianidis, R. Bel Fdhila, Prediction Of The Critical Heat Flux Using Parametric Gaussian Process Regression, in: The15th International Conference On Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT) and Editorial Board of Applied Thermal Engineering (ATE), 2021. Lee, Baek, Chang (b0205) 2000; 199 Cong, Chen, Su, Qiu, Tian (b0055) 2011; 241 Guanghui, Morita, Fukuda, Pidduck, Dounan, Miettinen (b0105) 2003; 220 N.E. Todreas, M.S. Kazimi, Nuclear systems volume I: Thermal hydraulic fundamentals, CRC press, 2021. K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, in, AB Atomenergi, 1965. S. Yin, Measurements of critical heat flux in forced flow at pressures up to the vicinity of the critical point of water, in: Proc. 1988 National Heat Transfer Conf., USA, Houston, USA, July 24-27, Vol. 1, 1988, pp. 501. D. Groeneveld, Critical heat flux data used to generate the 2006 groeneveld lookup tables, in, Tech. rep., United States Nuclear Regulatory Commission, 2019. Moon, Baek, Chang (b0250) 1996; 163 D.M. Nguyen, and S.T. Yin (1975), “An Experimental Investigation of Water Critical Heat, T. Flux in a Tubular Channel in Both Horizontal and Vertical Attitudes, W.C.L. Memorandum CWTM-013-HT, Toronto, Canada,, p. December 1975. Ganaie, Hu, Malik, Tanveer, Suganthan (b0075) 2022; 115 Kumar, Alam, Ridwan, Goodwin (b0180) 2021; 227 Lee, Kim, Baek, Chang (b0210) 1997; 24 Groeneveld, Shan, Vasić, Leung, Durmayaz, Yang, Cheng, Tanase (b0090) 2007; 237 W.H. Jens, P. Lottes, Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water, in, Argonne National Lab., 1951. Jiang, Zhao (b0140) 2013; 62 Kwon, Moon, Hong (b0185) 2005; 52 T. Xie, S. Ghiaasiaan, S. Karrila, T. McDonough, Hybrid neural network-first principles modeling of critical heat flux in a thin annular channel, in: ASME International Mechanical Engineering Congress and Exposition, Vol. 36347, 2002, pp. 227-236. Ghiaasiaan (b0080) 2007 Duderstadt, Hamilton (b0065) 1976 Thompson, Macbeth (b0360) 1964 Wen, Gao, Li (b0405) 2017; 49 Groeneveld, Ireland, Kaizer, Vasic (b0095) 2018; 331 Vaziri, Hojabri, Erfani, Monsefi, Nilforooshan (b0380) 2007; 237 Wei, Su, Tian, Qiu, Ni, Yang (b0400) 2010; 30 N. Bailey, D. Lee, An experimental and analytical study of boiling water at 2000 to 2600 psi, Part I. Dryout andPost-Dryout Heat Transfer AEEW-R659, (1969). Chen, Su, Qiu, Fukuda (b0045) 2010; 46 Reynolds (b0325) 1957 E. Burck, W. Hufschmidt, Measurement of the critical heat-flux-density of subcooled water in tubes at forced flow, in, EUR 2432.d, Australian Atomic Energy Commission, Research Establishment, Sydney, Australia, 1965. Whittle, Forgan (b0410) 1967; 6 R. DeBortoli, R. Masnovi, Burnout data for 0.186 inch inside diameter by 12 inches long round nickel tube, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1957. Yan, Ma, Pan, Liu, He, Zhang, Wu, Xu (b0425) 2021; 140 R. Bowring, A simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7-17 MN/m 2 (100-2500 PSIA), in, UKAEA Reactor Group, 1972. Mazzola (b0245) 1997; 36 D. Reddy, Parametric study of CHF data, volume 2, A generalized subchannel CHF correlation for PWR and BWR fuel assemblies, EPRI-NP-2609, 2 (1983) 1983. Tamascelli, Paltrinieri, Cozzani (b0355) 2023; 158 Pérez (b0285) 2021; 149 Huang, Zhang, Zhou, Wang, Huang, Zhu (b0120) 2020; 17 Zaferanlouei, Rostamifard, Setayeshi (b0440) 2010; 37 Jiang, Zhou, Huang, Wang (b0145) 2020; 149 Cao, Geddes, Yang, Yang (b0040) 2020; 2 C. Williams, S. Beus, Critical heat flux experiments in a circular tube with heavy water and light water.(AWBA Development Program), in, Bettis Atomic Power Lab., West Mifflin, PA (USA), 1980. Kirillov, Peskov, Serdun (b0175) 1984; 57 D. Lee, An experimental investigation of forced convection burnout in high pressure water. Part IV, Large diameter tubes at about 1600 psi, in, United Kingdom Atomic Energy Authority, 1966. T. Hunt, H. Jacket, J. Roarty, J. Zerbe, An investigation of subcooled and quality burnout in circular channels, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1955. Lowdermilk, Weiland (b0230) 1955 G. Peterlongo, R. Ravetta, V. Riva, L. Rubiera, F. Tacconi, Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures. Further critical power and pressure drop measurements in round vertical tubes with and without internal obstacles. Topical Report No. 5, in, Centro Informazioni Studi Esperienze, Milan (Italy), 1964. Yan-Ping, Jian-Qiang, Bing-De, Xue-Mei, Dou-Nan, Xiao-Jun (b0435) 2004; 15 Qureshi, Khan, Zameer, Usman (b0310) 2017; 58 E. Waters, J. Anderson, W. Thorne, J. Batch, Experimental observations of upstream boiling burnout, in, General Electric Co. Hanford Atomic Products Operation, Richland, Wash., 1962. Nafey (b0260) 2009; 48 P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 1096-1103. Moon, Chang (b0255) 1994; 150 W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, in: Machine learning, Elsevier, 2020, pp. 193-208. R. Weatlierhead, P. Lottos, Boiling Burnout Newsletter No. 1, in, Vol. 1, Brookhaven National Laboratory, Nuclear Engineering Department, 1954. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, {TensorFlow}: a system for {Large-Scale} machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265-283. Cai (b0035) 2012; 43 Clark, Rohsenow (b0050) 1954; 76 U. Rohatgi, C. Godbole, G. Delipei, X. Wu, M. Avramova, Machine Learning-based Prediction of Departure from Nucleate Boiling Power for the PSBT Benchmark, in, Brookhaven National Lab.(BNL), Upton, NY (United States), 2022. G.D. J.-M. Le Corre, X. Wu, and X. Zhao, “Benchmark on Artificial Intelligence and Machine Learning for Scientific Computing in Nuclear Engineering. Phase 1: Critical Heat Flux Exercise Specifications,” NEA Working Papers, NEA/WKP(2023)1, OECD Publishing, Paris (2024). Kim, Moon, Hong, Cha, Yun (b0170) 2021; 53 B. Matzner, Critical heat flux in long tubes at 1000psi with and without swirl promoters, ASME-Paper, No. 65-WA-HT-30, (1965). Su, Fukuda, Jia, Morita (b0350) 2002; 39 Tong, Tang (b0375) 2018 Reynolds (10.1016/j.nucengdes.2024.113587_b0325) 1957 10.1016/j.nucengdes.2024.113587_b0060 Kim (10.1016/j.nucengdes.2024.113587_b0165) 2000; 27 Kim (10.1016/j.nucengdes.2024.113587_b0170) 2021; 53 Groeneveld (10.1016/j.nucengdes.2024.113587_b0090) 2007; 237 Mazzola (10.1016/j.nucengdes.2024.113587_b0245) 1997; 36 Epstein (10.1016/j.nucengdes.2024.113587_b0070) 1956 10.1016/j.nucengdes.2024.113587_b0345 10.1016/j.nucengdes.2024.113587_b0020 Lee (10.1016/j.nucengdes.2024.113587_b0210) 1997; 24 10.1016/j.nucengdes.2024.113587_b0025 Chen (10.1016/j.nucengdes.2024.113587_b0045) 2010; 46 10.1016/j.nucengdes.2024.113587_b0420 10.1016/j.nucengdes.2024.113587_b0100 10.1016/j.nucengdes.2024.113587_b0265 Whittle (10.1016/j.nucengdes.2024.113587_b0410) 1967; 6 Kim (10.1016/j.nucengdes.2024.113587_b0160) 2000; 199 Qureshi (10.1016/j.nucengdes.2024.113587_b0310) 2017; 58 10.1016/j.nucengdes.2024.113587_b0385 Ganaie (10.1016/j.nucengdes.2024.113587_b0075) 2022; 115 Jiang (10.1016/j.nucengdes.2024.113587_b0145) 2020; 149 Kwon (10.1016/j.nucengdes.2024.113587_b0185) 2005; 52 Yan (10.1016/j.nucengdes.2024.113587_b0425) 2021; 140 Lu (10.1016/j.nucengdes.2024.113587_b0235) 2017; 130 Gupta (10.1016/j.nucengdes.2024.113587_b0110) 2020; 51 10.1016/j.nucengdes.2024.113587_b0290 Li (10.1016/j.nucengdes.2024.113587_b0225) 2024; 203 Moon (10.1016/j.nucengdes.2024.113587_b0255) 1994; 150 Yang (10.1016/j.nucengdes.2024.113587_b0430) 2021; 376 Wen (10.1016/j.nucengdes.2024.113587_b0405) 2017; 49 Vaziri (10.1016/j.nucengdes.2024.113587_b0380) 2007; 237 Tamascelli (10.1016/j.nucengdes.2024.113587_b0355) 2023; 158 10.1016/j.nucengdes.2024.113587_b0215 Zaferanlouei (10.1016/j.nucengdes.2024.113587_b0440) 2010; 37 10.1016/j.nucengdes.2024.113587_b0335 10.1016/j.nucengdes.2024.113587_b0015 Huang (10.1016/j.nucengdes.2024.113587_b0120) 2020; 17 Tong (10.1016/j.nucengdes.2024.113587_b0375) 2018 10.1016/j.nucengdes.2024.113587_b0415 10.1016/j.nucengdes.2024.113587_b0010 10.1016/j.nucengdes.2024.113587_b0450 10.1016/j.nucengdes.2024.113587_b0130 10.1016/j.nucengdes.2024.113587_b0295 10.1016/j.nucengdes.2024.113587_b0330 Guanghui (10.1016/j.nucengdes.2024.113587_b0105) 2003; 220 Khaboshan (10.1016/j.nucengdes.2024.113587_b0155) 2024 Kumar (10.1016/j.nucengdes.2024.113587_b0180) 2021; 227 Smolin (10.1016/j.nucengdes.2024.113587_b0340) 1963; 13 Yan-Ping (10.1016/j.nucengdes.2024.113587_b0435) 2004; 15 Ghiaasiaan (10.1016/j.nucengdes.2024.113587_b0080) 2007 Wei (10.1016/j.nucengdes.2024.113587_b0400) 2010; 30 Tong (10.1016/j.nucengdes.2024.113587_b0370) 1967; 6 10.1016/j.nucengdes.2024.113587_b0005 10.1016/j.nucengdes.2024.113587_b0125 Lee (10.1016/j.nucengdes.2024.113587_b0205) 2000; 199 Cai (10.1016/j.nucengdes.2024.113587_b0035) 2012; 43 Duderstadt (10.1016/j.nucengdes.2024.113587_b0065) 1976 10.1016/j.nucengdes.2024.113587_b0240 Clark (10.1016/j.nucengdes.2024.113587_b0050) 1954; 76 Su (10.1016/j.nucengdes.2024.113587_b0350) 2002; 39 10.1016/j.nucengdes.2024.113587_b0200 10.1016/j.nucengdes.2024.113587_b0365 Moon (10.1016/j.nucengdes.2024.113587_b0250) 1996; 163 Quadros (10.1016/j.nucengdes.2024.113587_b0300) 2024; 197 10.1016/j.nucengdes.2024.113587_b0320 Katto (10.1016/j.nucengdes.2024.113587_b0150) 1984; 27 Olshausen (10.1016/j.nucengdes.2024.113587_b0280) 1997; 37 Griffel (10.1016/j.nucengdes.2024.113587_b0085) 1965; 2 Hall (10.1016/j.nucengdes.2024.113587_b0115) 2000; 43 10.1016/j.nucengdes.2024.113587_b0390 10.1016/j.nucengdes.2024.113587_b0190 Leung (10.1016/j.nucengdes.2024.113587_b0220) 1994 Groeneveld (10.1016/j.nucengdes.2024.113587_b0095) 2018; 331 Lowdermilk (10.1016/j.nucengdes.2024.113587_b0230) 1955 Cao (10.1016/j.nucengdes.2024.113587_b0040) 2020; 2 Cong (10.1016/j.nucengdes.2024.113587_b0055) 2011; 241 10.1016/j.nucengdes.2024.113587_b0315 Jiang (10.1016/j.nucengdes.2024.113587_b0135) 2013; 53 Kirillov (10.1016/j.nucengdes.2024.113587_b0175) 1984; 57 Okawa (10.1016/j.nucengdes.2024.113587_b0270) 2004; 229 Olekhnovitch (10.1016/j.nucengdes.2024.113587_b0275) 1999; 193 Thompson (10.1016/j.nucengdes.2024.113587_b0360) 1964 Nafey (10.1016/j.nucengdes.2024.113587_b0260) 2009; 48 Wei (10.1016/j.nucengdes.2024.113587_b0395) 2010; 49 Zhao (10.1016/j.nucengdes.2024.113587_b0445) 2020; 164 10.1016/j.nucengdes.2024.113587_b0030 10.1016/j.nucengdes.2024.113587_b0195 Quan (10.1016/j.nucengdes.2024.113587_b0305) 2020 Jiang (10.1016/j.nucengdes.2024.113587_b0140) 2013; 62 Pérez (10.1016/j.nucengdes.2024.113587_b0285) 2021; 149 |
| References_xml | – year: 1976 ident: b0065 article-title: Nuclear Reactor Analysis – volume: 62 start-page: 481 year: 2013 end-page: 494 ident: b0140 article-title: Combination of support vector regression and artificial neural networks for prediction of critical heat flux publication-title: International Journal of Heat and Mass Transfer – volume: 24 start-page: 919 year: 1997 end-page: 929 ident: b0210 article-title: Critical heat flux prediction using genetic programming for water flow in vertical round tubes publication-title: International Communications in Heat and Mass Transfer – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: b0235 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing – reference: G.D. J.-M. Le Corre, X. Wu, and X. Zhao, “Benchmark on Artificial Intelligence and Machine Learning for Scientific Computing in Nuclear Engineering. Phase 1: Critical Heat Flux Exercise Specifications,” NEA Working Papers, NEA/WKP(2023)1, OECD Publishing, Paris (2024). – reference: L. Biasi, G. Clerici, S. Garribba, R. Sala, A. Tozzi, Studies on Burnout. Part 3. A New Correlation For Round Ducts And Uniform Heating And Its Comparison With World Data, in, ARS SpA, Milan. Univ., Milan, 1967. – reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, {TensorFlow}: a system for {Large-Scale} machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265-283. – reference: S. Yin, Measurements of critical heat flux in forced flow at pressures up to the vicinity of the critical point of water, in: Proc. 1988 National Heat Transfer Conf., USA, Houston, USA, July 24-27, Vol. 1, 1988, pp. 501. – start-page: 1 year: 2020 end-page: 10 ident: b0305 article-title: Research on water temperature prediction based on improved support vector regression publication-title: Neural Computing and Applications – volume: 331 start-page: 211 year: 2018 end-page: 221 ident: b0095 article-title: An overview of measurements, data compilations and prediction methods for the critical heat flux in water-cooled tubes publication-title: Nuclear Engineering and Design – volume: 203 year: 2024 ident: b0225 article-title: Comparative analysis of heat transfer prediction for falling film evaporation on the horizontal tube based on machine learning methods publication-title: International Journal of Thermal Sciences – reference: E. Waters, J. Anderson, W. Thorne, J. Batch, Experimental observations of upstream boiling burnout, in, General Electric Co. Hanford Atomic Products Operation, Richland, Wash., 1962. – reference: K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, in, AB Atomenergi, 1965. – volume: 199 start-page: 1 year: 2000 end-page: 11 ident: b0205 article-title: A correction method for heated length effect in critical heat flux prediction publication-title: Nuclear Engineering and Design – reference: T. Hunt, H. Jacket, J. Roarty, J. Zerbe, An investigation of subcooled and quality burnout in circular channels, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1955. – volume: 6 start-page: 301 year: 1967 end-page: 324 ident: b0370 article-title: Heat transfer in water-cooled nuclear reactors publication-title: Nuclear Engineering and Design – volume: 140 year: 2021 ident: b0425 article-title: An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel publication-title: Progress in Nuclear Energy – volume: 27 start-page: 1641 year: 1984 end-page: 1648 ident: b0150 article-title: An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes publication-title: International Journal of Heat and Mass Transfer – volume: 150 start-page: 151 year: 1994 end-page: 161 ident: b0255 article-title: Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks publication-title: Nuclear Engineering and Design – reference: R. Weatlierhead, P. Lottos, Boiling Burnout Newsletter No. 1, in, Vol. 1, Brookhaven National Laboratory, Nuclear Engineering Department, 1954. – volume: 17 start-page: 217 year: 2020 end-page: 229 ident: b0120 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides – volume: 37 start-page: 3311 year: 1997 end-page: 3325 ident: b0280 article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1? publication-title: Vision Research – volume: 43 start-page: 114 year: 2012 end-page: 122 ident: b0035 article-title: Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon publication-title: Annals of Nuclear Energy – volume: 27 start-page: 285 year: 2000 end-page: 292 ident: b0165 article-title: CHF detection using spationtemporal neural network and wavelet transform publication-title: International Communications in Heat and Mass Transfer – volume: 53 start-page: 69 year: 2013 end-page: 81 ident: b0135 article-title: Particle swarm optimization-based least squares support vector regression for critical heat flux prediction publication-title: Annals of Nuclear Energy – volume: 229 start-page: 223 year: 2004 end-page: 236 ident: b0270 article-title: Prediction of the critical heat flux in annular regime in various vertical channels publication-title: Nuclear Engineering and Design – volume: 15 start-page: 236 year: 2004 ident: b0435 article-title: Application of artificial neural networks in analysis of CHF experimental data in round tubes publication-title: Journal of Nuclear Technology – volume: 37 start-page: 813 year: 2010 end-page: 821 ident: b0440 article-title: Prediction of critical heat flux using ANFIS publication-title: Annals of Nuclear Energy – volume: 48 start-page: 2264 year: 2009 end-page: 2270 ident: b0260 article-title: Neural network based correlation for critical heat flux in steam-water flows in pipes publication-title: International Journal of Thermal Sciences – reference: L. Han, J. Shan, B. Zhang, Application of ANNs in tube CHF prediction: Effect of neuron number in hidden layer, in: International Conference on Nuclear Engineering, Vol. 4689, 2004, pp. 425-428. – volume: 227 year: 2021 ident: b0180 article-title: Quantitative risk assessment of a high power density small modular reactor (SMR) core using uncertainty and sensitivity analyses publication-title: Energy – reference: R. DeBortoli, R. Masnovi, Burnout data for 0.186 inch inside diameter by 12 inches long round nickel tube, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1957. – volume: 149 start-page: 850 year: 2021 end-page: 857 ident: b0285 article-title: Writing ‘usable’nuclear power plant (NPP) safety cases using bowtie methodology publication-title: Process Safety and Environmental Protection – reference: U. Rohatgi, C. Godbole, G. Delipei, X. Wu, M. Avramova, Machine Learning-based Prediction of Departure from Nucleate Boiling Power for the PSBT Benchmark, in, Brookhaven National Lab.(BNL), Upton, NY (United States), 2022. – reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 1096-1103. – volume: 52 start-page: 535 year: 2005 end-page: 545 ident: b0185 article-title: Critical heat flux function approximation using genetic algorithms publication-title: IEEE Transactions on Nuclear Science – reference: J. Soibam, A. Rabhi, I. Aslanidou, K. Kyprianidis, R. Bel Fdhila, Prediction Of The Critical Heat Flux Using Parametric Gaussian Process Regression, in: The15th International Conference On Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT) and Editorial Board of Applied Thermal Engineering (ATE), 2021. – volume: 2 start-page: 1 year: 1965 end-page: 35 ident: b0085 article-title: Forced-convection boiling burnout for water in uniformly heated tubular test sections publication-title: Nuclear Structural Engineering – reference: D.M. Nguyen, and S.T. Yin (1975), “An Experimental Investigation of Water Critical Heat, T. Flux in a Tubular Channel in Both Horizontal and Vertical Attitudes, W.C.L. Memorandum CWTM-013-HT, Toronto, Canada,, p. December 1975. – volume: 76 start-page: 553 year: 1954 end-page: 561 ident: b0050 article-title: Local boiling heat transfer to water at low Reynolds numbers and high pressures publication-title: Transactions of the American Society of Mechanical Engineers – volume: 46 start-page: 345 year: 2010 end-page: 353 ident: b0045 article-title: Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm publication-title: Heat Mass Transfer – volume: 43 start-page: 2605 year: 2000 end-page: 2640 ident: b0115 article-title: Critical heat flux (CHF) for water flow in tubes—II.: Subcooled CHF correlations publication-title: International Journal of Heat and Mass Transfer – reference: R. Bowring, A simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7-17 MN/m 2 (100-2500 PSIA), in, UKAEA Reactor Group, 1972. – year: 1955 ident: b0230 article-title: Some measurements of boiling burn-out – reference: D. Reddy, Parametric study of CHF data, volume 2, A generalized subchannel CHF correlation for PWR and BWR fuel assemblies, EPRI-NP-2609, 2 (1983) 1983. – volume: 376 year: 2021 ident: b0430 article-title: Design, Progress in rod bundle CHF in the past 40 years publication-title: Nuclear Engineering and Design – volume: 49 start-page: 143 year: 2010 end-page: 152 ident: b0395 article-title: Applications of genetic neural network for prediction of critical heat flux publication-title: International Journal of Thermal Sciences – volume: 36 start-page: 799 year: 1997 end-page: 806 ident: b0245 article-title: Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux publication-title: Revue Générale De Thermique – volume: 163 start-page: 29 year: 1996 end-page: 49 ident: b0250 article-title: Parametric trends analysis of the critical heat flux based on artificial neural networks publication-title: Nuclear Engineering and Design – reference: C. Williams, S. Beus, Critical heat flux experiments in a circular tube with heavy water and light water.(AWBA Development Program), in, Bettis Atomic Power Lab., West Mifflin, PA (USA), 1980. – reference: N. Bailey, D. Lee, An experimental and analytical study of boiling water at 2000 to 2600 psi, Part I. Dryout andPost-Dryout Heat Transfer AEEW-R659, (1969). – year: 1964 ident: b0360 article-title: Boiling water heat transfer burnout in uniformly heated round tubes: a compilation of world data with accurate correlations – volume: 237 start-page: 1909 year: 2007 end-page: 1922 ident: b0090 article-title: The 2006 CHF look-up table publication-title: Nuclear Engineering and Design – reference: G. Peterlongo, R. Ravetta, V. Riva, L. Rubiera, F. Tacconi, Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures. Further critical power and pressure drop measurements in round vertical tubes with and without internal obstacles. Topical Report No. 5, in, Centro Informazioni Studi Esperienze, Milan (Italy), 1964. – volume: 241 start-page: 3945 year: 2011 end-page: 3951 ident: b0055 article-title: Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm publication-title: Nuclear Engineering and Design – volume: 53 start-page: 1796 year: 2021 end-page: 1809 ident: b0170 article-title: Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning publication-title: Nuclear Engineering and Technology – volume: 197 year: 2024 ident: b0300 article-title: Analysis of bubble departure and lift-off boiling model using computational intelligence techniques and hybrid algorithms publication-title: International Journal of Thermal Sciences – year: 2024 ident: b0155 article-title: Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models publication-title: Applied Thermal Engineering – volume: 115 year: 2022 ident: b0075 article-title: Ensemble deep learning: A review publication-title: Engineering Applications of Artificial Intelligence – reference: A. Bennett, G.F. Hewitt, H.A. Kearsey, R.K.F. Keeys, Measurements of burnout heat flux in uniformly heated round tubes at 1000psia, in: AERE-R5055 United Kingdom Atomic Energy Authority, Harwell, UK, 1965. – volume: 51 start-page: 2855 year: 2020 end-page: 2870 ident: b0110 article-title: Optimizing deep feedforward neural network architecture: A tabu search based approach publication-title: Neural Processing Letters – volume: 57 year: 1984 ident: b0175 article-title: Control experiment on critical heat transfer during water flow in pipes publication-title: Sov. At. Energy – reference: B. Matzner, Critical heat flux in long tubes at 1000psi with and without swirl promoters, ASME-Paper, No. 65-WA-HT-30, (1965). – volume: 39 start-page: 564 year: 2002 end-page: 571 ident: b0350 article-title: Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux publication-title: Journal of Nuclear Science and Technology – year: 1994 ident: b0220 article-title: A model for predicting the pressure gradient along a heated channel during flow boiling – volume: 58 start-page: 742 year: 2017 end-page: 755 ident: b0310 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Applied Soft Computing – reference: W.H. Jens, P. Lottes, Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water, in, Argonne National Lab., 1951. – volume: 193 start-page: 73 year: 1999 end-page: 89 ident: b0275 article-title: Critical heat flux in a vertical tube at low and medium pressures: Part I. Experimental results publication-title: Nuclear Engineering and Design – year: 2007 ident: b0080 article-title: Two-phase flow, boiling, and condensation: in conventional and miniature systems – year: 1957 ident: b0325 article-title: Burnout in forced convection nucleate boiling of water – volume: 149 year: 2020 ident: b0145 article-title: Prediction of critical heat flux using Gaussian process regression and ant colony optimization publication-title: Annals of Nuclear Energy – volume: 6 start-page: 89 year: 1967 end-page: 99 ident: b0410 article-title: A correlation for the minima in the pressure drop versus flow-rate curves for sub-cooled water flowing in narrow heated channels publication-title: Nuclear Engineering and Design – year: 1956 ident: b0070 article-title: Heat transfer and burnout to water at high subcritical pressures publication-title: Battelle Memorial Institute – volume: 237 start-page: 377 year: 2007 end-page: 385 ident: b0380 article-title: Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study publication-title: Nuclear Engineering and Design – reference: E. Burck, W. Hufschmidt, Measurement of the critical heat-flux-density of subcooled water in tubes at forced flow, in, EUR 2432.d, Australian Atomic Energy Commission, Research Establishment, Sydney, Australia, 1965. – volume: 220 start-page: 17 year: 2003 end-page: 35 ident: b0105 article-title: Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions publication-title: Applications of Artificial Neural Network, Nuclear Engineering and Design – volume: 13 start-page: 968 year: 1963 end-page: 972 ident: b0340 article-title: On the heat transfer crisis in steam-generating pipes publication-title: Soviet Atomic Energy – year: 2018 ident: b0375 article-title: Boiling heat transfer and two-phase flow – reference: T. Xie, S. Ghiaasiaan, S. Karrila, T. McDonough, Hybrid neural network-first principles modeling of critical heat flux in a thin annular channel, in: ASME International Mechanical Engineering Congress and Exposition, Vol. 36347, 2002, pp. 227-236. – volume: 158 year: 2023 ident: b0355 article-title: Learning from major accidents: a meta-learning perspective publication-title: Safety Science – volume: 30 start-page: 664 year: 2010 end-page: 672 ident: b0400 article-title: Study on dryout point by wavelet and GNN publication-title: Applied Thermal Engineering – reference: D. Lee, An experimental investigation of forced convection burnout in high pressure water. Part IV, Large diameter tubes at about 1600 psi, in, United Kingdom Atomic Energy Authority, 1966. – volume: 199 start-page: 49 year: 2000 end-page: 73 ident: b0160 article-title: Design, critical heat flux of water in vertical round tubes at low pressure and low flow conditions publication-title: Nuclear Engineering and Design – volume: 49 start-page: 136 year: 2017 end-page: 144 ident: b0405 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, Cybernetics: Systems – reference: W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, in: Machine learning, Elsevier, 2020, pp. 193-208. – reference: N.E. Todreas, M.S. Kazimi, Nuclear systems volume I: Thermal hydraulic fundamentals, CRC press, 2021. – volume: 2 start-page: 500 year: 2020 end-page: 508 ident: b0040 article-title: Ensemble deep learning in bioinformatics publication-title: Nature Machine Intelligence – reference: D. Groeneveld, Critical heat flux data used to generate the 2006 groeneveld lookup tables, in, Tech. rep., United States Nuclear Regulatory Commission, 2019. – reference: R. Zubair, A. Ullah, A. Khan, M.H. Inayat, Critical heat flux prediction for safety analysis of nuclear reactors using machine learning, in: 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, 2022, pp. 314-318. – volume: 164 year: 2020 ident: b0445 article-title: On the prediction of critical heat flux using a physics-informed machine learning-aided framework publication-title: Applied Thermal Engineering – year: 1964 ident: 10.1016/j.nucengdes.2024.113587_b0360 – volume: 158 year: 2023 ident: 10.1016/j.nucengdes.2024.113587_b0355 article-title: Learning from major accidents: a meta-learning perspective publication-title: Safety Science doi: 10.1016/j.ssci.2022.105984 – ident: 10.1016/j.nucengdes.2024.113587_b0390 – year: 1955 ident: 10.1016/j.nucengdes.2024.113587_b0230 – volume: 46 start-page: 345 year: 2010 ident: 10.1016/j.nucengdes.2024.113587_b0045 article-title: Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm publication-title: Heat Mass Transfer doi: 10.1007/s00231-010-0575-9 – year: 2018 ident: 10.1016/j.nucengdes.2024.113587_b0375 – ident: 10.1016/j.nucengdes.2024.113587_b0015 – volume: 2 start-page: 1 year: 1965 ident: 10.1016/j.nucengdes.2024.113587_b0085 article-title: Forced-convection boiling burnout for water in uniformly heated tubular test sections publication-title: Nuclear Structural Engineering doi: 10.1016/0369-5816(65)90133-X – volume: 140 year: 2021 ident: 10.1016/j.nucengdes.2024.113587_b0425 article-title: An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel publication-title: Progress in Nuclear Energy doi: 10.1016/j.pnucene.2021.103901 – volume: 150 start-page: 151 year: 1994 ident: 10.1016/j.nucengdes.2024.113587_b0255 article-title: Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks publication-title: Nuclear Engineering and Design doi: 10.1016/0029-5493(94)90059-0 – volume: 30 start-page: 664 year: 2010 ident: 10.1016/j.nucengdes.2024.113587_b0400 article-title: Study on dryout point by wavelet and GNN publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2009.11.014 – ident: 10.1016/j.nucengdes.2024.113587_b0200 – volume: 76 start-page: 553 year: 1954 ident: 10.1016/j.nucengdes.2024.113587_b0050 article-title: Local boiling heat transfer to water at low Reynolds numbers and high pressures publication-title: Transactions of the American Society of Mechanical Engineers doi: 10.1115/1.4014895 – year: 1976 ident: 10.1016/j.nucengdes.2024.113587_b0065 – ident: 10.1016/j.nucengdes.2024.113587_b0005 – ident: 10.1016/j.nucengdes.2024.113587_b0330 doi: 10.13182/T126-38128 – volume: 376 year: 2021 ident: 10.1016/j.nucengdes.2024.113587_b0430 article-title: Design, Progress in rod bundle CHF in the past 40 years publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2021.111076 – volume: 27 start-page: 1641 year: 1984 ident: 10.1016/j.nucengdes.2024.113587_b0150 article-title: An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/0017-9310(84)90276-X – volume: 58 start-page: 742 year: 2017 ident: 10.1016/j.nucengdes.2024.113587_b0310 article-title: Wind power prediction using deep neural network based meta regression and transfer learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.05.031 – volume: 6 start-page: 89 year: 1967 ident: 10.1016/j.nucengdes.2024.113587_b0410 article-title: A correlation for the minima in the pressure drop versus flow-rate curves for sub-cooled water flowing in narrow heated channels publication-title: Nuclear Engineering and Design doi: 10.1016/0029-5493(67)90049-0 – ident: 10.1016/j.nucengdes.2024.113587_b0060 – volume: 53 start-page: 1796 year: 2021 ident: 10.1016/j.nucengdes.2024.113587_b0170 article-title: Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning publication-title: Nuclear Engineering and Technology doi: 10.1016/j.net.2020.12.007 – ident: 10.1016/j.nucengdes.2024.113587_b0345 – volume: 15 start-page: 236 year: 2004 ident: 10.1016/j.nucengdes.2024.113587_b0435 article-title: Application of artificial neural networks in analysis of CHF experimental data in round tubes publication-title: Journal of Nuclear Technology – ident: 10.1016/j.nucengdes.2024.113587_b0215 – ident: 10.1016/j.nucengdes.2024.113587_b0240 – volume: 24 start-page: 919 year: 1997 ident: 10.1016/j.nucengdes.2024.113587_b0210 article-title: Critical heat flux prediction using genetic programming for water flow in vertical round tubes publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/S0735-1933(97)00078-X – volume: 6 start-page: 301 year: 1967 ident: 10.1016/j.nucengdes.2024.113587_b0370 article-title: Heat transfer in water-cooled nuclear reactors publication-title: Nuclear Engineering and Design doi: 10.1016/0029-5493(67)90111-2 – ident: 10.1016/j.nucengdes.2024.113587_b0265 – volume: 229 start-page: 223 year: 2004 ident: 10.1016/j.nucengdes.2024.113587_b0270 article-title: Prediction of the critical heat flux in annular regime in various vertical channels publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2004.01.005 – volume: 237 start-page: 377 year: 2007 ident: 10.1016/j.nucengdes.2024.113587_b0380 article-title: Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2006.05.005 – ident: 10.1016/j.nucengdes.2024.113587_b0335 – volume: 51 start-page: 2855 year: 2020 ident: 10.1016/j.nucengdes.2024.113587_b0110 article-title: Optimizing deep feedforward neural network architecture: A tabu search based approach publication-title: Neural Processing Letters doi: 10.1007/s11063-020-10234-7 – volume: 227 year: 2021 ident: 10.1016/j.nucengdes.2024.113587_b0180 article-title: Quantitative risk assessment of a high power density small modular reactor (SMR) core using uncertainty and sensitivity analyses publication-title: Energy doi: 10.1016/j.energy.2021.120400 – volume: 62 start-page: 481 year: 2013 ident: 10.1016/j.nucengdes.2024.113587_b0140 article-title: Combination of support vector regression and artificial neural networks for prediction of critical heat flux publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.03.025 – volume: 39 start-page: 564 year: 2002 ident: 10.1016/j.nucengdes.2024.113587_b0350 article-title: Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux publication-title: Journal of Nuclear Science and Technology doi: 10.1080/18811248.2002.9715235 – volume: 193 start-page: 73 year: 1999 ident: 10.1016/j.nucengdes.2024.113587_b0275 article-title: Critical heat flux in a vertical tube at low and medium pressures: Part I. Experimental results publication-title: Nuclear Engineering and Design doi: 10.1016/S0029-5493(99)00153-3 – volume: 149 year: 2020 ident: 10.1016/j.nucengdes.2024.113587_b0145 article-title: Prediction of critical heat flux using Gaussian process regression and ant colony optimization publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2020.107765 – volume: 199 start-page: 1 year: 2000 ident: 10.1016/j.nucengdes.2024.113587_b0205 article-title: A correction method for heated length effect in critical heat flux prediction publication-title: Nuclear Engineering and Design doi: 10.1016/S0029-5493(00)00223-5 – year: 1957 ident: 10.1016/j.nucengdes.2024.113587_b0325 – volume: 27 start-page: 285 year: 2000 ident: 10.1016/j.nucengdes.2024.113587_b0165 article-title: CHF detection using spationtemporal neural network and wavelet transform publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/S0735-1933(00)00109-3 – volume: 36 start-page: 799 year: 1997 ident: 10.1016/j.nucengdes.2024.113587_b0245 article-title: Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux publication-title: Revue Générale De Thermique doi: 10.1016/S0035-3159(97)87750-1 – ident: 10.1016/j.nucengdes.2024.113587_b0295 doi: 10.1016/B978-0-12-815739-8.00011-0 – volume: 57 year: 1984 ident: 10.1016/j.nucengdes.2024.113587_b0175 article-title: Control experiment on critical heat transfer during water flow in pipes publication-title: Sov. At. Energy doi: 10.1007/BF01132862 – ident: 10.1016/j.nucengdes.2024.113587_b0025 – ident: 10.1016/j.nucengdes.2024.113587_b0195 doi: 10.1115/ICONE12-49112 – volume: 241 start-page: 3945 year: 2011 ident: 10.1016/j.nucengdes.2024.113587_b0055 article-title: Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2011.07.029 – year: 2007 ident: 10.1016/j.nucengdes.2024.113587_b0080 – volume: 331 start-page: 211 year: 2018 ident: 10.1016/j.nucengdes.2024.113587_b0095 article-title: An overview of measurements, data compilations and prediction methods for the critical heat flux in water-cooled tubes publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2018.02.031 – year: 1956 ident: 10.1016/j.nucengdes.2024.113587_b0070 article-title: Heat transfer and burnout to water at high subcritical pressures publication-title: Battelle Memorial Institute – volume: 43 start-page: 114 year: 2012 ident: 10.1016/j.nucengdes.2024.113587_b0035 article-title: Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2011.12.029 – volume: 17 start-page: 217 year: 2020 ident: 10.1016/j.nucengdes.2024.113587_b0120 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides doi: 10.1007/s10346-019-01274-9 – ident: 10.1016/j.nucengdes.2024.113587_b0130 doi: 10.2172/4421630 – volume: 220 start-page: 17 year: 2003 ident: 10.1016/j.nucengdes.2024.113587_b0105 article-title: Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions publication-title: Applications of Artificial Neural Network, Nuclear Engineering and Design – ident: 10.1016/j.nucengdes.2024.113587_b0385 doi: 10.1145/1390156.1390294 – ident: 10.1016/j.nucengdes.2024.113587_b0420 doi: 10.1115/IMECE2002-39067 – ident: 10.1016/j.nucengdes.2024.113587_b0415 doi: 10.2172/5193945 – ident: 10.1016/j.nucengdes.2024.113587_b0315 – ident: 10.1016/j.nucengdes.2024.113587_b0190 – ident: 10.1016/j.nucengdes.2024.113587_b0010 – volume: 53 start-page: 69 year: 2013 ident: 10.1016/j.nucengdes.2024.113587_b0135 article-title: Particle swarm optimization-based least squares support vector regression for critical heat flux prediction publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2012.09.020 – ident: 10.1016/j.nucengdes.2024.113587_b0450 doi: 10.1109/IBCAST54850.2022.9990190 – volume: 49 start-page: 143 year: 2010 ident: 10.1016/j.nucengdes.2024.113587_b0395 article-title: Applications of genetic neural network for prediction of critical heat flux publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2009.06.007 – ident: 10.1016/j.nucengdes.2024.113587_b0100 – volume: 48 start-page: 2264 year: 2009 ident: 10.1016/j.nucengdes.2024.113587_b0260 article-title: Neural network based correlation for critical heat flux in steam-water flows in pipes publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2009.04.010 – volume: 199 start-page: 49 year: 2000 ident: 10.1016/j.nucengdes.2024.113587_b0160 article-title: Design, critical heat flux of water in vertical round tubes at low pressure and low flow conditions publication-title: Nuclear Engineering and Design doi: 10.1016/S0029-5493(99)00074-6 – volume: 163 start-page: 29 year: 1996 ident: 10.1016/j.nucengdes.2024.113587_b0250 article-title: Parametric trends analysis of the critical heat flux based on artificial neural networks publication-title: Nuclear Engineering and Design doi: 10.1016/0029-5493(95)01178-1 – year: 1994 ident: 10.1016/j.nucengdes.2024.113587_b0220 – ident: 10.1016/j.nucengdes.2024.113587_b0320 – ident: 10.1016/j.nucengdes.2024.113587_b0020 – volume: 237 start-page: 1909 year: 2007 ident: 10.1016/j.nucengdes.2024.113587_b0090 article-title: The 2006 CHF look-up table publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2007.02.014 – volume: 37 start-page: 813 year: 2010 ident: 10.1016/j.nucengdes.2024.113587_b0440 article-title: Prediction of critical heat flux using ANFIS publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2010.02.019 – ident: 10.1016/j.nucengdes.2024.113587_b0125 – ident: 10.1016/j.nucengdes.2024.113587_b0365 doi: 10.1201/9781351030502 – volume: 130 start-page: 377 year: 2017 ident: 10.1016/j.nucengdes.2024.113587_b0235 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.028 – ident: 10.1016/j.nucengdes.2024.113587_b0290 – volume: 115 year: 2022 ident: 10.1016/j.nucengdes.2024.113587_b0075 article-title: Ensemble deep learning: A review publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105151 – volume: 13 start-page: 968 year: 1963 ident: 10.1016/j.nucengdes.2024.113587_b0340 article-title: On the heat transfer crisis in steam-generating pipes publication-title: Soviet Atomic Energy doi: 10.1007/BF01480853 – volume: 37 start-page: 3311 year: 1997 ident: 10.1016/j.nucengdes.2024.113587_b0280 article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1? publication-title: Vision Research doi: 10.1016/S0042-6989(97)00169-7 – start-page: 1 year: 2020 ident: 10.1016/j.nucengdes.2024.113587_b0305 article-title: Research on water temperature prediction based on improved support vector regression publication-title: Neural Computing and Applications – volume: 52 start-page: 535 year: 2005 ident: 10.1016/j.nucengdes.2024.113587_b0185 article-title: Critical heat flux function approximation using genetic algorithms publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/TNS.2005.846834 – volume: 203 year: 2024 ident: 10.1016/j.nucengdes.2024.113587_b0225 article-title: Comparative analysis of heat transfer prediction for falling film evaporation on the horizontal tube based on machine learning methods publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2024.109165 – ident: 10.1016/j.nucengdes.2024.113587_b0030 – volume: 43 start-page: 2605 year: 2000 ident: 10.1016/j.nucengdes.2024.113587_b0115 article-title: Critical heat flux (CHF) for water flow in tubes—II.: Subcooled CHF correlations publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/S0017-9310(99)00192-1 – volume: 49 start-page: 136 year: 2017 ident: 10.1016/j.nucengdes.2024.113587_b0405 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, Cybernetics: Systems doi: 10.1109/TSMC.2017.2754287 – volume: 164 year: 2020 ident: 10.1016/j.nucengdes.2024.113587_b0445 article-title: On the prediction of critical heat flux using a physics-informed machine learning-aided framework publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2019.114540 – volume: 2 start-page: 500 year: 2020 ident: 10.1016/j.nucengdes.2024.113587_b0040 article-title: Ensemble deep learning in bioinformatics publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-0217-y – volume: 149 start-page: 850 year: 2021 ident: 10.1016/j.nucengdes.2024.113587_b0285 article-title: Writing ‘usable’nuclear power plant (NPP) safety cases using bowtie methodology publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2021.03.022 – volume: 197 year: 2024 ident: 10.1016/j.nucengdes.2024.113587_b0300 article-title: Analysis of bubble departure and lift-off boiling model using computational intelligence techniques and hybrid algorithms publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2023.108810 – year: 2024 ident: 10.1016/j.nucengdes.2024.113587_b0155 article-title: Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models publication-title: Applied Thermal Engineering |
| SSID | ssj0000092 |
| Score | 2.4546492 |
| Snippet | •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust... Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 113587 |
| SubjectTerms | Critical Heat Flux Deep Neural Network Engineering Sciences Ensemble Model Nuclear Reactors Process Safety Sparse Autoencoders |
| Title | Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks |
| URI | https://dx.doi.org/10.1016/j.nucengdes.2024.113587 https://hal.science/hal-04835886 |
| Volume | 429 |
| WOSCitedRecordID | wos001316425800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-759X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000092 issn: 0029-5493 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owELYo20N7qPpUty9ZVW8oKwhxsHtDLSvoIrRSdyu0l8hxnJIVBBQCov-h_69_pzNxHEIf2u2hlygkTF7zZTwz-TxDyDvGIniF_K4ThTp2ABQdh4uOcBS2dVCMR2GRGvgy7k0mfDoV543GDzsXZjvvpSnf7cTqv6oatoGycersP6i7OihsgHVQOixB7bC8leIH6QxraODcQ6U2GbZzR1Zzhl9krHuobIMDNMWteL7ZFbP_ksywUnE2cAqDJvqmEObqRWgoiJHWqxaYoGytW3KTL7EIJhKhiy8QxU4sjwmHnRhy-bru-k6wcjIcXO8rIJZydQ7J2QwCA0MC0nAVratNKJOKQNyfLUxydgRB_ixZ1KRMKYQ8l61LQHaV5L5KilzwIAV7v6ynOFzvF7qInXtTt-OucCCyNaZRG9PNexArsKIxb2XbPZNO-W2cMCmL65MU3p_0K9zoCZ4XG9ywcvw_qMw97H8Ozj-eBuPR5Oxwb43OOOyPYQlPycEy_Yxzfwth-ZEL18Sb5Kg_Gkw_1SIz4Vr2Ed7IAfXwj1f1N8fpzsx-AihcoouH5EEZy9C-weAj0tDpY3K_VuHyCfleoZFaNNJlTPdoxF8WjRTRSBGNNEmpRSO1aKThN2rRiGIIOGrQSOtopIAqs9OgkVo0PiWXp4OLD0OnbADiqK4ncsfVHQjPua9kJDwpQsl8zb3Yi7nksetyGK2FlFy0u4r7WkmQ8mQ75l1P8jBivPuMNNNlqp8TCl4YYyDD3F7b85gOfT-MseOeUKHSsTgmvn26gSqr42OTlnlgaZDXQaWWANUSGLUck3YluDIFYm4WeW_VF5R-rvFfA4DnzcJvQeHVqbA6PAAvwG172L24zZ9eknv7l-0VaebZRr8md9U2T9bZmxKwPwGy6tq8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+accuracy+of+prediction+of+critical+heat+flux+in+Circular+channels+by+ensemble+of+deep+sparse+autoencoders+and+deep+neural+Networks&rft.jtitle=Nuclear+engineering+and+design&rft.au=Khalid%2C+Rehan+Zubair&rft.au=Ahmed%2C+Ibrahim&rft.au=Khan%2C+Atta+Ullah&rft.au=Zio%2C+Enrico&rft.date=2024-12-01&rft.pub=Elsevier&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=429&rft_id=info:doi/10.1016%2Fj.nucengdes.2024.113587&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04835886v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon |