Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks

•A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust features from inputs and a DNN to predict the CHF;•A validation of the method on a comprehensive CHF experimental dataset in vertical tubes was perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design Jg. 429; S. 113587
Hauptverfasser: Zubair Khalid, Rehan, Ahmed, Ibrahim, Ullah, Atta, Zio, Enrico, Khan, Asifullah
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2024
Elsevier
Schlagworte:
ISSN:0029-5493, 1872-759X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust features from inputs and a DNN to predict the CHF;•A validation of the method on a comprehensive CHF experimental dataset in vertical tubes was performed;•The method was able to predict CHF values with substantial improvement in prediction accuracy. Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m2s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors.
AbstractList •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust features from inputs and a DNN to predict the CHF;•A validation of the method on a comprehensive CHF experimental dataset in vertical tubes was performed;•The method was able to predict CHF values with substantial improvement in prediction accuracy. Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 – 21,197 kPa, hydraulic diameters of 1 – 44.7 mm, mass fluxes of 10 – 20,910 kg/m2s, inlet-subcooling of 0.6 – 3,555 kJ/kg, heated lengths of 9 – 6,000 mm and critical qualities of −0.494 – 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors.
Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling heat transfer systems. However, the lack of a deterministic theory for CHF prediction remains a significant challenge in the thermal engineering domain. This has led to the development of numerous prediction models based on various CHF experimental data, with no single universally acceptable model covering the wide range of flow conditions encountered in practice. In this paper, we explore the use of a comprehensive CHF experimental dataset in conjunction with artificial intelligence techniques to predict CHF in vertical tubes, contributing to the ongoing efforts to address this critical issue. The proposed method stands on the collection of comprehensive CHF experimental data from various sources, covering a wide range of operating conditions (pressure of 100 - 21,197 kPa, hydraulic diameters of 1 - 44.7 mm, mass fluxes of 10 - 20,910 kg/m(2)s, inlet-subcooling of 0.6 - 3,555 kJ/kg, heated lengths of 9 - 6,000 mm and critical qualities of -0.494 - 0.981), and is based on a new prediction model for the prediction of the CHF. Specifically, the prediction model consists of an ensemble of deep sparse autoencoders (AEs) used as a base-learner to extract robust features from the input data and a deep neural network (DNN) built on top of the ensemble of deep sparse AEs for use as a meta-learner to predict the CHF. The proposed method is validated on the collected CHF data and the obtained results show a substantial improvement in CHF prediction accuracy, outperforming standalone and other state of-the-art machine learning models. This innovative approach offers a notable improvement in CHF prediction, potentially contributing to the development of more reliable and efficient nuclear reactors.
ArticleNumber 113587
Author Zubair Khalid, Rehan
Ullah, Atta
Ahmed, Ibrahim
Zio, Enrico
Khan, Asifullah
Author_xml – sequence: 1
  givenname: Rehan
  surname: Zubair Khalid
  fullname: Zubair Khalid, Rehan
  organization: Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
– sequence: 2
  givenname: Ibrahim
  surname: Ahmed
  fullname: Ahmed, Ibrahim
  email: ibrahim.ahmed@polimi.it
  organization: Energy Department, Politecnico di Milano, Milano, Italy
– sequence: 3
  givenname: Atta
  surname: Ullah
  fullname: Ullah, Atta
  organization: Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
– sequence: 4
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: Energy Department, Politecnico di Milano, Milano, Italy
– sequence: 5
  givenname: Asifullah
  surname: Khan
  fullname: Khan, Asifullah
  organization: Pattern Recognition Lab (PRLab), Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
BackLink https://hal.science/hal-04835886$$DView record in HAL
BookMark eNqFkcGO0zAQhi20SHQXngFfOaTYjpM6Bw5VtbBIFVxA4mZNJ5Oti9eubGeh78BDkyjAgcv6MvLMfP9I_3_NrkIMxNhrKdZSyPbtaR1GpHDfU14rofRayroxm2dsJc1GVZum-3bFVkKormp0V79g1zmfxPw6tWK_bsMRArpwzwFxTIAXHgd-TtQ7LC6G-YfJFYfg-ZGg8MGPP7kLfOcSjh4Sx0khkM_8cOEUMj0cPM1YT3Tm-QwpE4exRAoYe0qZQ-iXYaDpouefqPyI6Xt-yZ4P4DO9-lNv2Nf3t192d9X-84ePu-2-wlp3pVIkW9WYFqHvNHQHaFoyetCDATMoZWRTdwCmEzWalhAmSoMYTK3BHPrG1DfszaJ7BG_PyT1AutgIzt5t93buCW0mD037KKfdd8supphzosGiKzA7UxI4b6Wwcwz2ZP_FYOcY7BLDxG_-4_8efJrcLuRkLT06SjajmzyckkmExfbRPanxG613rFc
CitedBy_id crossref_primary_10_1016_j_nucengdes_2025_114111
crossref_primary_10_1016_j_icheatmasstransfer_2025_109415
crossref_primary_10_2478_amns_2025_0338
crossref_primary_10_1016_j_ijthermalsci_2025_110050
Cites_doi 10.1016/j.ssci.2022.105984
10.1007/s00231-010-0575-9
10.1016/0369-5816(65)90133-X
10.1016/j.pnucene.2021.103901
10.1016/0029-5493(94)90059-0
10.1016/j.applthermaleng.2009.11.014
10.1115/1.4014895
10.13182/T126-38128
10.1016/j.nucengdes.2021.111076
10.1016/0017-9310(84)90276-X
10.1016/j.asoc.2017.05.031
10.1016/0029-5493(67)90049-0
10.1016/j.net.2020.12.007
10.1016/S0735-1933(97)00078-X
10.1016/0029-5493(67)90111-2
10.1016/j.nucengdes.2004.01.005
10.1016/j.nucengdes.2006.05.005
10.1007/s11063-020-10234-7
10.1016/j.energy.2021.120400
10.1016/j.ijheatmasstransfer.2013.03.025
10.1080/18811248.2002.9715235
10.1016/S0029-5493(99)00153-3
10.1016/j.anucene.2020.107765
10.1016/S0029-5493(00)00223-5
10.1016/S0735-1933(00)00109-3
10.1016/S0035-3159(97)87750-1
10.1016/B978-0-12-815739-8.00011-0
10.1007/BF01132862
10.1115/ICONE12-49112
10.1016/j.nucengdes.2011.07.029
10.1016/j.nucengdes.2018.02.031
10.1016/j.anucene.2011.12.029
10.1007/s10346-019-01274-9
10.2172/4421630
10.1145/1390156.1390294
10.1115/IMECE2002-39067
10.2172/5193945
10.1016/j.anucene.2012.09.020
10.1109/IBCAST54850.2022.9990190
10.1016/j.ijthermalsci.2009.06.007
10.1016/j.ijthermalsci.2009.04.010
10.1016/S0029-5493(99)00074-6
10.1016/0029-5493(95)01178-1
10.1016/j.nucengdes.2007.02.014
10.1016/j.anucene.2010.02.019
10.1201/9781351030502
10.1016/j.sigpro.2016.07.028
10.1016/j.engappai.2022.105151
10.1007/BF01480853
10.1016/S0042-6989(97)00169-7
10.1109/TNS.2005.846834
10.1016/j.ijthermalsci.2024.109165
10.1016/S0017-9310(99)00192-1
10.1109/TSMC.2017.2754287
10.1016/j.applthermaleng.2019.114540
10.1038/s42256-020-0217-y
10.1016/j.psep.2021.03.022
10.1016/j.ijthermalsci.2023.108810
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.nucengdes.2024.113587
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-759X
ExternalDocumentID oai:HAL:hal-04835886v1
10_1016_j_nucengdes_2024_113587
S0029549324006873
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
ZMT
~02
~G-
29N
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HME
HVGLF
HZ~
LY6
LY7
LZ3
R2-
SAC
SET
SHN
UHS
WUQ
XPP
~HD
1XC
ID FETCH-LOGICAL-c349t-2e162586cad94a9ba56e84f4f8a8f2281539aa8903c86ecac344a0f834a8bd583
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001316425800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5493
IngestDate Tue Oct 14 20:44:28 EDT 2025
Sat Nov 29 02:30:01 EST 2025
Tue Nov 18 22:36:34 EST 2025
Sat Nov 16 15:59:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Critical Heat Flux
Nuclear Reactors
Sparse Autoencoders
Deep Neural Network
Process Safety
Ensemble Model
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-2e162586cad94a9ba56e84f4f8a8f2281539aa8903c86ecac344a0f834a8bd583
ORCID 0000-0002-7108-637X
ParticipantIDs hal_primary_oai_HAL_hal_04835886v1
crossref_citationtrail_10_1016_j_nucengdes_2024_113587
crossref_primary_10_1016_j_nucengdes_2024_113587
elsevier_sciencedirect_doi_10_1016_j_nucengdes_2024_113587
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nuclear engineering and design
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Griffel, Bonilla (b0085) 1965; 2
Yang, Anglart, Han, Liu (b0430) 2021; 376
L. Han, J. Shan, B. Zhang, Application of ANNs in tube CHF prediction: Effect of neuron number in hidden layer, in: International Conference on Nuclear Engineering, Vol. 4689, 2004, pp. 425-428.
Li, Mu, Hu, Shen (b0225) 2024; 203
Katto, Ohno (b0150) 1984; 27
Okawa, Kotani, Kataoka, Naitoh (b0270) 2004; 229
Quadros, Mogul, Ağbulut, Gürel, Khan, Akhtar, Jilte, Asif (b0300) 2024; 197
A. Bennett, G.F. Hewitt, H.A. Kearsey, R.K.F. Keeys, Measurements of burnout heat flux in uniformly heated round tubes at 1000psia, in: AERE-R5055 United Kingdom Atomic Energy Authority, Harwell, UK, 1965.
Olekhnovitch, Teyssedou, Tapucu, Champagne, Groeneveld (b0275) 1999; 193
Zhao, Shirvan, Salko, Guo (b0445) 2020; 164
Lu, Wang, Qin, Ma (b0235) 2017; 130
L. Biasi, G. Clerici, S. Garribba, R. Sala, A. Tozzi, Studies on Burnout. Part 3. A New Correlation For Round Ducts And Uniform Heating And Its Comparison With World Data, in, ARS SpA, Milan. Univ., Milan, 1967.
Kim, Baek, Chang (b0160) 2000; 199
Jiang, Zhao (b0135) 2013; 53
Leung (b0220) 1994
Quan, Hao, Xifeng, Jingchun (b0305) 2020
Olshausen, Field (b0280) 1997; 37
Khaboshan, Jaliliantabar, Abdullah, Panchal, Azarinia (b0155) 2024
Kim, Bang, Baek, Chang, Moon (b0165) 2000; 27
Hall, Mudawar (b0115) 2000; 43
R. Zubair, A. Ullah, A. Khan, M.H. Inayat, Critical heat flux prediction for safety analysis of nuclear reactors using machine learning, in: 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, 2022, pp. 314-318.
Epstein, Chastain, Fawcett (b0070) 1956
Smolin, Polyakov, Esikov (b0340) 1963; 13
Tong (b0370) 1967; 6
Wei, Su, Qiu, Ni, Yang (b0395) 2010; 49
Gupta, Raza (b0110) 2020; 51
J. Soibam, A. Rabhi, I. Aslanidou, K. Kyprianidis, R. Bel Fdhila, Prediction Of The Critical Heat Flux Using Parametric Gaussian Process Regression, in: The15th International Conference On Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT) and Editorial Board of Applied Thermal Engineering (ATE), 2021.
Lee, Baek, Chang (b0205) 2000; 199
Cong, Chen, Su, Qiu, Tian (b0055) 2011; 241
Guanghui, Morita, Fukuda, Pidduck, Dounan, Miettinen (b0105) 2003; 220
N.E. Todreas, M.S. Kazimi, Nuclear systems volume I: Thermal hydraulic fundamentals, CRC press, 2021.
K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, in, AB Atomenergi, 1965.
S. Yin, Measurements of critical heat flux in forced flow at pressures up to the vicinity of the critical point of water, in: Proc. 1988 National Heat Transfer Conf., USA, Houston, USA, July 24-27, Vol. 1, 1988, pp. 501.
D. Groeneveld, Critical heat flux data used to generate the 2006 groeneveld lookup tables, in, Tech. rep., United States Nuclear Regulatory Commission, 2019.
Moon, Baek, Chang (b0250) 1996; 163
D.M. Nguyen, and S.T. Yin (1975), “An Experimental Investigation of Water Critical Heat, T. Flux in a Tubular Channel in Both Horizontal and Vertical Attitudes, W.C.L. Memorandum CWTM-013-HT, Toronto, Canada,, p. December 1975.
Ganaie, Hu, Malik, Tanveer, Suganthan (b0075) 2022; 115
Kumar, Alam, Ridwan, Goodwin (b0180) 2021; 227
Lee, Kim, Baek, Chang (b0210) 1997; 24
Groeneveld, Shan, Vasić, Leung, Durmayaz, Yang, Cheng, Tanase (b0090) 2007; 237
W.H. Jens, P. Lottes, Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water, in, Argonne National Lab., 1951.
Jiang, Zhao (b0140) 2013; 62
Kwon, Moon, Hong (b0185) 2005; 52
T. Xie, S. Ghiaasiaan, S. Karrila, T. McDonough, Hybrid neural network-first principles modeling of critical heat flux in a thin annular channel, in: ASME International Mechanical Engineering Congress and Exposition, Vol. 36347, 2002, pp. 227-236.
Ghiaasiaan (b0080) 2007
Duderstadt, Hamilton (b0065) 1976
Thompson, Macbeth (b0360) 1964
Wen, Gao, Li (b0405) 2017; 49
Groeneveld, Ireland, Kaizer, Vasic (b0095) 2018; 331
Vaziri, Hojabri, Erfani, Monsefi, Nilforooshan (b0380) 2007; 237
Wei, Su, Tian, Qiu, Ni, Yang (b0400) 2010; 30
N. Bailey, D. Lee, An experimental and analytical study of boiling water at 2000 to 2600 psi, Part I. Dryout andPost-Dryout Heat Transfer AEEW-R659, (1969).
Chen, Su, Qiu, Fukuda (b0045) 2010; 46
Reynolds (b0325) 1957
E. Burck, W. Hufschmidt, Measurement of the critical heat-flux-density of subcooled water in tubes at forced flow, in, EUR 2432.d, Australian Atomic Energy Commission, Research Establishment, Sydney, Australia, 1965.
Whittle, Forgan (b0410) 1967; 6
R. DeBortoli, R. Masnovi, Burnout data for 0.186 inch inside diameter by 12 inches long round nickel tube, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1957.
Yan, Ma, Pan, Liu, He, Zhang, Wu, Xu (b0425) 2021; 140
R. Bowring, A simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7-17 MN/m 2 (100-2500 PSIA), in, UKAEA Reactor Group, 1972.
Mazzola (b0245) 1997; 36
D. Reddy, Parametric study of CHF data, volume 2, A generalized subchannel CHF correlation for PWR and BWR fuel assemblies, EPRI-NP-2609, 2 (1983) 1983.
Tamascelli, Paltrinieri, Cozzani (b0355) 2023; 158
Pérez (b0285) 2021; 149
Huang, Zhang, Zhou, Wang, Huang, Zhu (b0120) 2020; 17
Zaferanlouei, Rostamifard, Setayeshi (b0440) 2010; 37
Jiang, Zhou, Huang, Wang (b0145) 2020; 149
Cao, Geddes, Yang, Yang (b0040) 2020; 2
C. Williams, S. Beus, Critical heat flux experiments in a circular tube with heavy water and light water.(AWBA Development Program), in, Bettis Atomic Power Lab., West Mifflin, PA (USA), 1980.
Kirillov, Peskov, Serdun (b0175) 1984; 57
D. Lee, An experimental investigation of forced convection burnout in high pressure water. Part IV, Large diameter tubes at about 1600 psi, in, United Kingdom Atomic Energy Authority, 1966.
T. Hunt, H. Jacket, J. Roarty, J. Zerbe, An investigation of subcooled and quality burnout in circular channels, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1955.
Lowdermilk, Weiland (b0230) 1955
G. Peterlongo, R. Ravetta, V. Riva, L. Rubiera, F. Tacconi, Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures. Further critical power and pressure drop measurements in round vertical tubes with and without internal obstacles. Topical Report No. 5, in, Centro Informazioni Studi Esperienze, Milan (Italy), 1964.
Yan-Ping, Jian-Qiang, Bing-De, Xue-Mei, Dou-Nan, Xiao-Jun (b0435) 2004; 15
Qureshi, Khan, Zameer, Usman (b0310) 2017; 58
E. Waters, J. Anderson, W. Thorne, J. Batch, Experimental observations of upstream boiling burnout, in, General Electric Co. Hanford Atomic Products Operation, Richland, Wash., 1962.
Nafey (b0260) 2009; 48
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 1096-1103.
Moon, Chang (b0255) 1994; 150
W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, in: Machine learning, Elsevier, 2020, pp. 193-208.
R. Weatlierhead, P. Lottos, Boiling Burnout Newsletter No. 1, in, Vol. 1, Brookhaven National Laboratory, Nuclear Engineering Department, 1954.
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, {TensorFlow}: a system for {Large-Scale} machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265-283.
Cai (b0035) 2012; 43
Clark, Rohsenow (b0050) 1954; 76
U. Rohatgi, C. Godbole, G. Delipei, X. Wu, M. Avramova, Machine Learning-based Prediction of Departure from Nucleate Boiling Power for the PSBT Benchmark, in, Brookhaven National Lab.(BNL), Upton, NY (United States), 2022.
G.D. J.-M. Le Corre, X. Wu, and X. Zhao, “Benchmark on Artificial Intelligence and Machine Learning for Scientific Computing in Nuclear Engineering. Phase 1: Critical Heat Flux Exercise Specifications,” NEA Working Papers, NEA/WKP(2023)1, OECD Publishing, Paris (2024).
Kim, Moon, Hong, Cha, Yun (b0170) 2021; 53
B. Matzner, Critical heat flux in long tubes at 1000psi with and without swirl promoters, ASME-Paper, No. 65-WA-HT-30, (1965).
Su, Fukuda, Jia, Morita (b0350) 2002; 39
Tong, Tang (b0375) 2018
Reynolds (10.1016/j.nucengdes.2024.113587_b0325) 1957
10.1016/j.nucengdes.2024.113587_b0060
Kim (10.1016/j.nucengdes.2024.113587_b0165) 2000; 27
Kim (10.1016/j.nucengdes.2024.113587_b0170) 2021; 53
Groeneveld (10.1016/j.nucengdes.2024.113587_b0090) 2007; 237
Mazzola (10.1016/j.nucengdes.2024.113587_b0245) 1997; 36
Epstein (10.1016/j.nucengdes.2024.113587_b0070) 1956
10.1016/j.nucengdes.2024.113587_b0345
10.1016/j.nucengdes.2024.113587_b0020
Lee (10.1016/j.nucengdes.2024.113587_b0210) 1997; 24
10.1016/j.nucengdes.2024.113587_b0025
Chen (10.1016/j.nucengdes.2024.113587_b0045) 2010; 46
10.1016/j.nucengdes.2024.113587_b0420
10.1016/j.nucengdes.2024.113587_b0100
10.1016/j.nucengdes.2024.113587_b0265
Whittle (10.1016/j.nucengdes.2024.113587_b0410) 1967; 6
Kim (10.1016/j.nucengdes.2024.113587_b0160) 2000; 199
Qureshi (10.1016/j.nucengdes.2024.113587_b0310) 2017; 58
10.1016/j.nucengdes.2024.113587_b0385
Ganaie (10.1016/j.nucengdes.2024.113587_b0075) 2022; 115
Jiang (10.1016/j.nucengdes.2024.113587_b0145) 2020; 149
Kwon (10.1016/j.nucengdes.2024.113587_b0185) 2005; 52
Yan (10.1016/j.nucengdes.2024.113587_b0425) 2021; 140
Lu (10.1016/j.nucengdes.2024.113587_b0235) 2017; 130
Gupta (10.1016/j.nucengdes.2024.113587_b0110) 2020; 51
10.1016/j.nucengdes.2024.113587_b0290
Li (10.1016/j.nucengdes.2024.113587_b0225) 2024; 203
Moon (10.1016/j.nucengdes.2024.113587_b0255) 1994; 150
Yang (10.1016/j.nucengdes.2024.113587_b0430) 2021; 376
Wen (10.1016/j.nucengdes.2024.113587_b0405) 2017; 49
Vaziri (10.1016/j.nucengdes.2024.113587_b0380) 2007; 237
Tamascelli (10.1016/j.nucengdes.2024.113587_b0355) 2023; 158
10.1016/j.nucengdes.2024.113587_b0215
Zaferanlouei (10.1016/j.nucengdes.2024.113587_b0440) 2010; 37
10.1016/j.nucengdes.2024.113587_b0335
10.1016/j.nucengdes.2024.113587_b0015
Huang (10.1016/j.nucengdes.2024.113587_b0120) 2020; 17
Tong (10.1016/j.nucengdes.2024.113587_b0375) 2018
10.1016/j.nucengdes.2024.113587_b0415
10.1016/j.nucengdes.2024.113587_b0010
10.1016/j.nucengdes.2024.113587_b0450
10.1016/j.nucengdes.2024.113587_b0130
10.1016/j.nucengdes.2024.113587_b0295
10.1016/j.nucengdes.2024.113587_b0330
Guanghui (10.1016/j.nucengdes.2024.113587_b0105) 2003; 220
Khaboshan (10.1016/j.nucengdes.2024.113587_b0155) 2024
Kumar (10.1016/j.nucengdes.2024.113587_b0180) 2021; 227
Smolin (10.1016/j.nucengdes.2024.113587_b0340) 1963; 13
Yan-Ping (10.1016/j.nucengdes.2024.113587_b0435) 2004; 15
Ghiaasiaan (10.1016/j.nucengdes.2024.113587_b0080) 2007
Wei (10.1016/j.nucengdes.2024.113587_b0400) 2010; 30
Tong (10.1016/j.nucengdes.2024.113587_b0370) 1967; 6
10.1016/j.nucengdes.2024.113587_b0005
10.1016/j.nucengdes.2024.113587_b0125
Lee (10.1016/j.nucengdes.2024.113587_b0205) 2000; 199
Cai (10.1016/j.nucengdes.2024.113587_b0035) 2012; 43
Duderstadt (10.1016/j.nucengdes.2024.113587_b0065) 1976
10.1016/j.nucengdes.2024.113587_b0240
Clark (10.1016/j.nucengdes.2024.113587_b0050) 1954; 76
Su (10.1016/j.nucengdes.2024.113587_b0350) 2002; 39
10.1016/j.nucengdes.2024.113587_b0200
10.1016/j.nucengdes.2024.113587_b0365
Moon (10.1016/j.nucengdes.2024.113587_b0250) 1996; 163
Quadros (10.1016/j.nucengdes.2024.113587_b0300) 2024; 197
10.1016/j.nucengdes.2024.113587_b0320
Katto (10.1016/j.nucengdes.2024.113587_b0150) 1984; 27
Olshausen (10.1016/j.nucengdes.2024.113587_b0280) 1997; 37
Griffel (10.1016/j.nucengdes.2024.113587_b0085) 1965; 2
Hall (10.1016/j.nucengdes.2024.113587_b0115) 2000; 43
10.1016/j.nucengdes.2024.113587_b0390
10.1016/j.nucengdes.2024.113587_b0190
Leung (10.1016/j.nucengdes.2024.113587_b0220) 1994
Groeneveld (10.1016/j.nucengdes.2024.113587_b0095) 2018; 331
Lowdermilk (10.1016/j.nucengdes.2024.113587_b0230) 1955
Cao (10.1016/j.nucengdes.2024.113587_b0040) 2020; 2
Cong (10.1016/j.nucengdes.2024.113587_b0055) 2011; 241
10.1016/j.nucengdes.2024.113587_b0315
Jiang (10.1016/j.nucengdes.2024.113587_b0135) 2013; 53
Kirillov (10.1016/j.nucengdes.2024.113587_b0175) 1984; 57
Okawa (10.1016/j.nucengdes.2024.113587_b0270) 2004; 229
Olekhnovitch (10.1016/j.nucengdes.2024.113587_b0275) 1999; 193
Thompson (10.1016/j.nucengdes.2024.113587_b0360) 1964
Nafey (10.1016/j.nucengdes.2024.113587_b0260) 2009; 48
Wei (10.1016/j.nucengdes.2024.113587_b0395) 2010; 49
Zhao (10.1016/j.nucengdes.2024.113587_b0445) 2020; 164
10.1016/j.nucengdes.2024.113587_b0030
10.1016/j.nucengdes.2024.113587_b0195
Quan (10.1016/j.nucengdes.2024.113587_b0305) 2020
Jiang (10.1016/j.nucengdes.2024.113587_b0140) 2013; 62
Pérez (10.1016/j.nucengdes.2024.113587_b0285) 2021; 149
References_xml – year: 1976
  ident: b0065
  article-title: Nuclear Reactor Analysis
– volume: 62
  start-page: 481
  year: 2013
  end-page: 494
  ident: b0140
  article-title: Combination of support vector regression and artificial neural networks for prediction of critical heat flux
  publication-title: International Journal of Heat and Mass Transfer
– volume: 24
  start-page: 919
  year: 1997
  end-page: 929
  ident: b0210
  article-title: Critical heat flux prediction using genetic programming for water flow in vertical round tubes
  publication-title: International Communications in Heat and Mass Transfer
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: b0235
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
– reference: G.D. J.-M. Le Corre, X. Wu, and X. Zhao, “Benchmark on Artificial Intelligence and Machine Learning for Scientific Computing in Nuclear Engineering. Phase 1: Critical Heat Flux Exercise Specifications,” NEA Working Papers, NEA/WKP(2023)1, OECD Publishing, Paris (2024).
– reference: L. Biasi, G. Clerici, S. Garribba, R. Sala, A. Tozzi, Studies on Burnout. Part 3. A New Correlation For Round Ducts And Uniform Heating And Its Comparison With World Data, in, ARS SpA, Milan. Univ., Milan, 1967.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, {TensorFlow}: a system for {Large-Scale} machine learning, in: 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265-283.
– reference: S. Yin, Measurements of critical heat flux in forced flow at pressures up to the vicinity of the critical point of water, in: Proc. 1988 National Heat Transfer Conf., USA, Houston, USA, July 24-27, Vol. 1, 1988, pp. 501.
– start-page: 1
  year: 2020
  end-page: 10
  ident: b0305
  article-title: Research on water temperature prediction based on improved support vector regression
  publication-title: Neural Computing and Applications
– volume: 331
  start-page: 211
  year: 2018
  end-page: 221
  ident: b0095
  article-title: An overview of measurements, data compilations and prediction methods for the critical heat flux in water-cooled tubes
  publication-title: Nuclear Engineering and Design
– volume: 203
  year: 2024
  ident: b0225
  article-title: Comparative analysis of heat transfer prediction for falling film evaporation on the horizontal tube based on machine learning methods
  publication-title: International Journal of Thermal Sciences
– reference: E. Waters, J. Anderson, W. Thorne, J. Batch, Experimental observations of upstream boiling burnout, in, General Electric Co. Hanford Atomic Products Operation, Richland, Wash., 1962.
– reference: K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, in, AB Atomenergi, 1965.
– volume: 199
  start-page: 1
  year: 2000
  end-page: 11
  ident: b0205
  article-title: A correction method for heated length effect in critical heat flux prediction
  publication-title: Nuclear Engineering and Design
– reference: T. Hunt, H. Jacket, J. Roarty, J. Zerbe, An investigation of subcooled and quality burnout in circular channels, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1955.
– volume: 6
  start-page: 301
  year: 1967
  end-page: 324
  ident: b0370
  article-title: Heat transfer in water-cooled nuclear reactors
  publication-title: Nuclear Engineering and Design
– volume: 140
  year: 2021
  ident: b0425
  article-title: An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel
  publication-title: Progress in Nuclear Energy
– volume: 27
  start-page: 1641
  year: 1984
  end-page: 1648
  ident: b0150
  article-title: An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes
  publication-title: International Journal of Heat and Mass Transfer
– volume: 150
  start-page: 151
  year: 1994
  end-page: 161
  ident: b0255
  article-title: Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks
  publication-title: Nuclear Engineering and Design
– reference: R. Weatlierhead, P. Lottos, Boiling Burnout Newsletter No. 1, in, Vol. 1, Brookhaven National Laboratory, Nuclear Engineering Department, 1954.
– volume: 17
  start-page: 217
  year: 2020
  end-page: 229
  ident: b0120
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
– volume: 37
  start-page: 3311
  year: 1997
  end-page: 3325
  ident: b0280
  article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1?
  publication-title: Vision Research
– volume: 43
  start-page: 114
  year: 2012
  end-page: 122
  ident: b0035
  article-title: Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon
  publication-title: Annals of Nuclear Energy
– volume: 27
  start-page: 285
  year: 2000
  end-page: 292
  ident: b0165
  article-title: CHF detection using spationtemporal neural network and wavelet transform
  publication-title: International Communications in Heat and Mass Transfer
– volume: 53
  start-page: 69
  year: 2013
  end-page: 81
  ident: b0135
  article-title: Particle swarm optimization-based least squares support vector regression for critical heat flux prediction
  publication-title: Annals of Nuclear Energy
– volume: 229
  start-page: 223
  year: 2004
  end-page: 236
  ident: b0270
  article-title: Prediction of the critical heat flux in annular regime in various vertical channels
  publication-title: Nuclear Engineering and Design
– volume: 15
  start-page: 236
  year: 2004
  ident: b0435
  article-title: Application of artificial neural networks in analysis of CHF experimental data in round tubes
  publication-title: Journal of Nuclear Technology
– volume: 37
  start-page: 813
  year: 2010
  end-page: 821
  ident: b0440
  article-title: Prediction of critical heat flux using ANFIS
  publication-title: Annals of Nuclear Energy
– volume: 48
  start-page: 2264
  year: 2009
  end-page: 2270
  ident: b0260
  article-title: Neural network based correlation for critical heat flux in steam-water flows in pipes
  publication-title: International Journal of Thermal Sciences
– reference: L. Han, J. Shan, B. Zhang, Application of ANNs in tube CHF prediction: Effect of neuron number in hidden layer, in: International Conference on Nuclear Engineering, Vol. 4689, 2004, pp. 425-428.
– volume: 227
  year: 2021
  ident: b0180
  article-title: Quantitative risk assessment of a high power density small modular reactor (SMR) core using uncertainty and sensitivity analyses
  publication-title: Energy
– reference: R. DeBortoli, R. Masnovi, Burnout data for 0.186 inch inside diameter by 12 inches long round nickel tube, in, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1957.
– volume: 149
  start-page: 850
  year: 2021
  end-page: 857
  ident: b0285
  article-title: Writing ‘usable’nuclear power plant (NPP) safety cases using bowtie methodology
  publication-title: Process Safety and Environmental Protection
– reference: U. Rohatgi, C. Godbole, G. Delipei, X. Wu, M. Avramova, Machine Learning-based Prediction of Departure from Nucleate Boiling Power for the PSBT Benchmark, in, Brookhaven National Lab.(BNL), Upton, NY (United States), 2022.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th international conference on Machine learning, 2008, pp. 1096-1103.
– volume: 52
  start-page: 535
  year: 2005
  end-page: 545
  ident: b0185
  article-title: Critical heat flux function approximation using genetic algorithms
  publication-title: IEEE Transactions on Nuclear Science
– reference: J. Soibam, A. Rabhi, I. Aslanidou, K. Kyprianidis, R. Bel Fdhila, Prediction Of The Critical Heat Flux Using Parametric Gaussian Process Regression, in: The15th International Conference On Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT) and Editorial Board of Applied Thermal Engineering (ATE), 2021.
– volume: 2
  start-page: 1
  year: 1965
  end-page: 35
  ident: b0085
  article-title: Forced-convection boiling burnout for water in uniformly heated tubular test sections
  publication-title: Nuclear Structural Engineering
– reference: D.M. Nguyen, and S.T. Yin (1975), “An Experimental Investigation of Water Critical Heat, T. Flux in a Tubular Channel in Both Horizontal and Vertical Attitudes, W.C.L. Memorandum CWTM-013-HT, Toronto, Canada,, p. December 1975.
– volume: 76
  start-page: 553
  year: 1954
  end-page: 561
  ident: b0050
  article-title: Local boiling heat transfer to water at low Reynolds numbers and high pressures
  publication-title: Transactions of the American Society of Mechanical Engineers
– volume: 46
  start-page: 345
  year: 2010
  end-page: 353
  ident: b0045
  article-title: Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm
  publication-title: Heat Mass Transfer
– volume: 43
  start-page: 2605
  year: 2000
  end-page: 2640
  ident: b0115
  article-title: Critical heat flux (CHF) for water flow in tubes—II.: Subcooled CHF correlations
  publication-title: International Journal of Heat and Mass Transfer
– reference: R. Bowring, A simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7-17 MN/m 2 (100-2500 PSIA), in, UKAEA Reactor Group, 1972.
– year: 1955
  ident: b0230
  article-title: Some measurements of boiling burn-out
– reference: D. Reddy, Parametric study of CHF data, volume 2, A generalized subchannel CHF correlation for PWR and BWR fuel assemblies, EPRI-NP-2609, 2 (1983) 1983.
– volume: 376
  year: 2021
  ident: b0430
  article-title: Design, Progress in rod bundle CHF in the past 40 years
  publication-title: Nuclear Engineering and Design
– volume: 49
  start-page: 143
  year: 2010
  end-page: 152
  ident: b0395
  article-title: Applications of genetic neural network for prediction of critical heat flux
  publication-title: International Journal of Thermal Sciences
– volume: 36
  start-page: 799
  year: 1997
  end-page: 806
  ident: b0245
  article-title: Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux
  publication-title: Revue Générale De Thermique
– volume: 163
  start-page: 29
  year: 1996
  end-page: 49
  ident: b0250
  article-title: Parametric trends analysis of the critical heat flux based on artificial neural networks
  publication-title: Nuclear Engineering and Design
– reference: C. Williams, S. Beus, Critical heat flux experiments in a circular tube with heavy water and light water.(AWBA Development Program), in, Bettis Atomic Power Lab., West Mifflin, PA (USA), 1980.
– reference: N. Bailey, D. Lee, An experimental and analytical study of boiling water at 2000 to 2600 psi, Part I. Dryout andPost-Dryout Heat Transfer AEEW-R659, (1969).
– year: 1964
  ident: b0360
  article-title: Boiling water heat transfer burnout in uniformly heated round tubes: a compilation of world data with accurate correlations
– volume: 237
  start-page: 1909
  year: 2007
  end-page: 1922
  ident: b0090
  article-title: The 2006 CHF look-up table
  publication-title: Nuclear Engineering and Design
– reference: G. Peterlongo, R. Ravetta, V. Riva, L. Rubiera, F. Tacconi, Large scale experiments on heat transfer and hydrodynamics with steam-water mixtures. Further critical power and pressure drop measurements in round vertical tubes with and without internal obstacles. Topical Report No. 5, in, Centro Informazioni Studi Esperienze, Milan (Italy), 1964.
– volume: 241
  start-page: 3945
  year: 2011
  end-page: 3951
  ident: b0055
  article-title: Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm
  publication-title: Nuclear Engineering and Design
– volume: 53
  start-page: 1796
  year: 2021
  end-page: 1809
  ident: b0170
  article-title: Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning
  publication-title: Nuclear Engineering and Technology
– volume: 197
  year: 2024
  ident: b0300
  article-title: Analysis of bubble departure and lift-off boiling model using computational intelligence techniques and hybrid algorithms
  publication-title: International Journal of Thermal Sciences
– year: 2024
  ident: b0155
  article-title: Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models
  publication-title: Applied Thermal Engineering
– volume: 115
  year: 2022
  ident: b0075
  article-title: Ensemble deep learning: A review
  publication-title: Engineering Applications of Artificial Intelligence
– reference: A. Bennett, G.F. Hewitt, H.A. Kearsey, R.K.F. Keeys, Measurements of burnout heat flux in uniformly heated round tubes at 1000psia, in: AERE-R5055 United Kingdom Atomic Energy Authority, Harwell, UK, 1965.
– volume: 51
  start-page: 2855
  year: 2020
  end-page: 2870
  ident: b0110
  article-title: Optimizing deep feedforward neural network architecture: A tabu search based approach
  publication-title: Neural Processing Letters
– volume: 57
  year: 1984
  ident: b0175
  article-title: Control experiment on critical heat transfer during water flow in pipes
  publication-title: Sov. At. Energy
– reference: B. Matzner, Critical heat flux in long tubes at 1000psi with and without swirl promoters, ASME-Paper, No. 65-WA-HT-30, (1965).
– volume: 39
  start-page: 564
  year: 2002
  end-page: 571
  ident: b0350
  article-title: Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux
  publication-title: Journal of Nuclear Science and Technology
– year: 1994
  ident: b0220
  article-title: A model for predicting the pressure gradient along a heated channel during flow boiling
– volume: 58
  start-page: 742
  year: 2017
  end-page: 755
  ident: b0310
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Applied Soft Computing
– reference: W.H. Jens, P. Lottes, Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water, in, Argonne National Lab., 1951.
– volume: 193
  start-page: 73
  year: 1999
  end-page: 89
  ident: b0275
  article-title: Critical heat flux in a vertical tube at low and medium pressures: Part I. Experimental results
  publication-title: Nuclear Engineering and Design
– year: 2007
  ident: b0080
  article-title: Two-phase flow, boiling, and condensation: in conventional and miniature systems
– year: 1957
  ident: b0325
  article-title: Burnout in forced convection nucleate boiling of water
– volume: 149
  year: 2020
  ident: b0145
  article-title: Prediction of critical heat flux using Gaussian process regression and ant colony optimization
  publication-title: Annals of Nuclear Energy
– volume: 6
  start-page: 89
  year: 1967
  end-page: 99
  ident: b0410
  article-title: A correlation for the minima in the pressure drop versus flow-rate curves for sub-cooled water flowing in narrow heated channels
  publication-title: Nuclear Engineering and Design
– year: 1956
  ident: b0070
  article-title: Heat transfer and burnout to water at high subcritical pressures
  publication-title: Battelle Memorial Institute
– volume: 237
  start-page: 377
  year: 2007
  end-page: 385
  ident: b0380
  article-title: Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study
  publication-title: Nuclear Engineering and Design
– reference: E. Burck, W. Hufschmidt, Measurement of the critical heat-flux-density of subcooled water in tubes at forced flow, in, EUR 2432.d, Australian Atomic Energy Commission, Research Establishment, Sydney, Australia, 1965.
– volume: 220
  start-page: 17
  year: 2003
  end-page: 35
  ident: b0105
  article-title: Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions
  publication-title: Applications of Artificial Neural Network, Nuclear Engineering and Design
– volume: 13
  start-page: 968
  year: 1963
  end-page: 972
  ident: b0340
  article-title: On the heat transfer crisis in steam-generating pipes
  publication-title: Soviet Atomic Energy
– year: 2018
  ident: b0375
  article-title: Boiling heat transfer and two-phase flow
– reference: T. Xie, S. Ghiaasiaan, S. Karrila, T. McDonough, Hybrid neural network-first principles modeling of critical heat flux in a thin annular channel, in: ASME International Mechanical Engineering Congress and Exposition, Vol. 36347, 2002, pp. 227-236.
– volume: 158
  year: 2023
  ident: b0355
  article-title: Learning from major accidents: a meta-learning perspective
  publication-title: Safety Science
– volume: 30
  start-page: 664
  year: 2010
  end-page: 672
  ident: b0400
  article-title: Study on dryout point by wavelet and GNN
  publication-title: Applied Thermal Engineering
– reference: D. Lee, An experimental investigation of forced convection burnout in high pressure water. Part IV, Large diameter tubes at about 1600 psi, in, United Kingdom Atomic Energy Authority, 1966.
– volume: 199
  start-page: 49
  year: 2000
  end-page: 73
  ident: b0160
  article-title: Design, critical heat flux of water in vertical round tubes at low pressure and low flow conditions
  publication-title: Nuclear Engineering and Design
– volume: 49
  start-page: 136
  year: 2017
  end-page: 144
  ident: b0405
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, Cybernetics: Systems
– reference: W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, in: Machine learning, Elsevier, 2020, pp. 193-208.
– reference: N.E. Todreas, M.S. Kazimi, Nuclear systems volume I: Thermal hydraulic fundamentals, CRC press, 2021.
– volume: 2
  start-page: 500
  year: 2020
  end-page: 508
  ident: b0040
  article-title: Ensemble deep learning in bioinformatics
  publication-title: Nature Machine Intelligence
– reference: D. Groeneveld, Critical heat flux data used to generate the 2006 groeneveld lookup tables, in, Tech. rep., United States Nuclear Regulatory Commission, 2019.
– reference: R. Zubair, A. Ullah, A. Khan, M.H. Inayat, Critical heat flux prediction for safety analysis of nuclear reactors using machine learning, in: 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, 2022, pp. 314-318.
– volume: 164
  year: 2020
  ident: b0445
  article-title: On the prediction of critical heat flux using a physics-informed machine learning-aided framework
  publication-title: Applied Thermal Engineering
– year: 1964
  ident: 10.1016/j.nucengdes.2024.113587_b0360
– volume: 158
  year: 2023
  ident: 10.1016/j.nucengdes.2024.113587_b0355
  article-title: Learning from major accidents: a meta-learning perspective
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2022.105984
– ident: 10.1016/j.nucengdes.2024.113587_b0390
– year: 1955
  ident: 10.1016/j.nucengdes.2024.113587_b0230
– volume: 46
  start-page: 345
  year: 2010
  ident: 10.1016/j.nucengdes.2024.113587_b0045
  article-title: Prediction of CHF in concentric-tube open thermosiphon using artificial neural network and genetic algorithm
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-010-0575-9
– year: 2018
  ident: 10.1016/j.nucengdes.2024.113587_b0375
– ident: 10.1016/j.nucengdes.2024.113587_b0015
– volume: 2
  start-page: 1
  year: 1965
  ident: 10.1016/j.nucengdes.2024.113587_b0085
  article-title: Forced-convection boiling burnout for water in uniformly heated tubular test sections
  publication-title: Nuclear Structural Engineering
  doi: 10.1016/0369-5816(65)90133-X
– volume: 140
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113587_b0425
  article-title: An evaluation of critical heat flux prediction methods for the upward flow in a vertical narrow rectangular channel
  publication-title: Progress in Nuclear Energy
  doi: 10.1016/j.pnucene.2021.103901
– volume: 150
  start-page: 151
  year: 1994
  ident: 10.1016/j.nucengdes.2024.113587_b0255
  article-title: Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/0029-5493(94)90059-0
– volume: 30
  start-page: 664
  year: 2010
  ident: 10.1016/j.nucengdes.2024.113587_b0400
  article-title: Study on dryout point by wavelet and GNN
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2009.11.014
– ident: 10.1016/j.nucengdes.2024.113587_b0200
– volume: 76
  start-page: 553
  year: 1954
  ident: 10.1016/j.nucengdes.2024.113587_b0050
  article-title: Local boiling heat transfer to water at low Reynolds numbers and high pressures
  publication-title: Transactions of the American Society of Mechanical Engineers
  doi: 10.1115/1.4014895
– year: 1976
  ident: 10.1016/j.nucengdes.2024.113587_b0065
– ident: 10.1016/j.nucengdes.2024.113587_b0005
– ident: 10.1016/j.nucengdes.2024.113587_b0330
  doi: 10.13182/T126-38128
– volume: 376
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113587_b0430
  article-title: Design, Progress in rod bundle CHF in the past 40 years
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2021.111076
– volume: 27
  start-page: 1641
  year: 1984
  ident: 10.1016/j.nucengdes.2024.113587_b0150
  article-title: An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/0017-9310(84)90276-X
– volume: 58
  start-page: 742
  year: 2017
  ident: 10.1016/j.nucengdes.2024.113587_b0310
  article-title: Wind power prediction using deep neural network based meta regression and transfer learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.05.031
– volume: 6
  start-page: 89
  year: 1967
  ident: 10.1016/j.nucengdes.2024.113587_b0410
  article-title: A correlation for the minima in the pressure drop versus flow-rate curves for sub-cooled water flowing in narrow heated channels
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/0029-5493(67)90049-0
– ident: 10.1016/j.nucengdes.2024.113587_b0060
– volume: 53
  start-page: 1796
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113587_b0170
  article-title: Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning
  publication-title: Nuclear Engineering and Technology
  doi: 10.1016/j.net.2020.12.007
– ident: 10.1016/j.nucengdes.2024.113587_b0345
– volume: 15
  start-page: 236
  year: 2004
  ident: 10.1016/j.nucengdes.2024.113587_b0435
  article-title: Application of artificial neural networks in analysis of CHF experimental data in round tubes
  publication-title: Journal of Nuclear Technology
– ident: 10.1016/j.nucengdes.2024.113587_b0215
– ident: 10.1016/j.nucengdes.2024.113587_b0240
– volume: 24
  start-page: 919
  year: 1997
  ident: 10.1016/j.nucengdes.2024.113587_b0210
  article-title: Critical heat flux prediction using genetic programming for water flow in vertical round tubes
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/S0735-1933(97)00078-X
– volume: 6
  start-page: 301
  year: 1967
  ident: 10.1016/j.nucengdes.2024.113587_b0370
  article-title: Heat transfer in water-cooled nuclear reactors
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/0029-5493(67)90111-2
– ident: 10.1016/j.nucengdes.2024.113587_b0265
– volume: 229
  start-page: 223
  year: 2004
  ident: 10.1016/j.nucengdes.2024.113587_b0270
  article-title: Prediction of the critical heat flux in annular regime in various vertical channels
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2004.01.005
– volume: 237
  start-page: 377
  year: 2007
  ident: 10.1016/j.nucengdes.2024.113587_b0380
  article-title: Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2006.05.005
– ident: 10.1016/j.nucengdes.2024.113587_b0335
– volume: 51
  start-page: 2855
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113587_b0110
  article-title: Optimizing deep feedforward neural network architecture: A tabu search based approach
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-020-10234-7
– volume: 227
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113587_b0180
  article-title: Quantitative risk assessment of a high power density small modular reactor (SMR) core using uncertainty and sensitivity analyses
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120400
– volume: 62
  start-page: 481
  year: 2013
  ident: 10.1016/j.nucengdes.2024.113587_b0140
  article-title: Combination of support vector regression and artificial neural networks for prediction of critical heat flux
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.03.025
– volume: 39
  start-page: 564
  year: 2002
  ident: 10.1016/j.nucengdes.2024.113587_b0350
  article-title: Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux
  publication-title: Journal of Nuclear Science and Technology
  doi: 10.1080/18811248.2002.9715235
– volume: 193
  start-page: 73
  year: 1999
  ident: 10.1016/j.nucengdes.2024.113587_b0275
  article-title: Critical heat flux in a vertical tube at low and medium pressures: Part I. Experimental results
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/S0029-5493(99)00153-3
– volume: 149
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113587_b0145
  article-title: Prediction of critical heat flux using Gaussian process regression and ant colony optimization
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2020.107765
– volume: 199
  start-page: 1
  year: 2000
  ident: 10.1016/j.nucengdes.2024.113587_b0205
  article-title: A correction method for heated length effect in critical heat flux prediction
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/S0029-5493(00)00223-5
– year: 1957
  ident: 10.1016/j.nucengdes.2024.113587_b0325
– volume: 27
  start-page: 285
  year: 2000
  ident: 10.1016/j.nucengdes.2024.113587_b0165
  article-title: CHF detection using spationtemporal neural network and wavelet transform
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/S0735-1933(00)00109-3
– volume: 36
  start-page: 799
  year: 1997
  ident: 10.1016/j.nucengdes.2024.113587_b0245
  article-title: Integrating artificial neural networks and empirical correlations for the prediction of water-subcooled critical heat flux
  publication-title: Revue Générale De Thermique
  doi: 10.1016/S0035-3159(97)87750-1
– ident: 10.1016/j.nucengdes.2024.113587_b0295
  doi: 10.1016/B978-0-12-815739-8.00011-0
– volume: 57
  year: 1984
  ident: 10.1016/j.nucengdes.2024.113587_b0175
  article-title: Control experiment on critical heat transfer during water flow in pipes
  publication-title: Sov. At. Energy
  doi: 10.1007/BF01132862
– ident: 10.1016/j.nucengdes.2024.113587_b0025
– ident: 10.1016/j.nucengdes.2024.113587_b0195
  doi: 10.1115/ICONE12-49112
– volume: 241
  start-page: 3945
  year: 2011
  ident: 10.1016/j.nucengdes.2024.113587_b0055
  article-title: Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2011.07.029
– year: 2007
  ident: 10.1016/j.nucengdes.2024.113587_b0080
– volume: 331
  start-page: 211
  year: 2018
  ident: 10.1016/j.nucengdes.2024.113587_b0095
  article-title: An overview of measurements, data compilations and prediction methods for the critical heat flux in water-cooled tubes
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2018.02.031
– year: 1956
  ident: 10.1016/j.nucengdes.2024.113587_b0070
  article-title: Heat transfer and burnout to water at high subcritical pressures
  publication-title: Battelle Memorial Institute
– volume: 43
  start-page: 114
  year: 2012
  ident: 10.1016/j.nucengdes.2024.113587_b0035
  article-title: Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2011.12.029
– volume: 17
  start-page: 217
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113587_b0120
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– ident: 10.1016/j.nucengdes.2024.113587_b0130
  doi: 10.2172/4421630
– volume: 220
  start-page: 17
  year: 2003
  ident: 10.1016/j.nucengdes.2024.113587_b0105
  article-title: Analysis of the critical heat flux in round vertical tubes under low pressure and flow oscillation conditions
  publication-title: Applications of Artificial Neural Network, Nuclear Engineering and Design
– ident: 10.1016/j.nucengdes.2024.113587_b0385
  doi: 10.1145/1390156.1390294
– ident: 10.1016/j.nucengdes.2024.113587_b0420
  doi: 10.1115/IMECE2002-39067
– ident: 10.1016/j.nucengdes.2024.113587_b0415
  doi: 10.2172/5193945
– ident: 10.1016/j.nucengdes.2024.113587_b0315
– ident: 10.1016/j.nucengdes.2024.113587_b0190
– ident: 10.1016/j.nucengdes.2024.113587_b0010
– volume: 53
  start-page: 69
  year: 2013
  ident: 10.1016/j.nucengdes.2024.113587_b0135
  article-title: Particle swarm optimization-based least squares support vector regression for critical heat flux prediction
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2012.09.020
– ident: 10.1016/j.nucengdes.2024.113587_b0450
  doi: 10.1109/IBCAST54850.2022.9990190
– volume: 49
  start-page: 143
  year: 2010
  ident: 10.1016/j.nucengdes.2024.113587_b0395
  article-title: Applications of genetic neural network for prediction of critical heat flux
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2009.06.007
– ident: 10.1016/j.nucengdes.2024.113587_b0100
– volume: 48
  start-page: 2264
  year: 2009
  ident: 10.1016/j.nucengdes.2024.113587_b0260
  article-title: Neural network based correlation for critical heat flux in steam-water flows in pipes
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2009.04.010
– volume: 199
  start-page: 49
  year: 2000
  ident: 10.1016/j.nucengdes.2024.113587_b0160
  article-title: Design, critical heat flux of water in vertical round tubes at low pressure and low flow conditions
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/S0029-5493(99)00074-6
– volume: 163
  start-page: 29
  year: 1996
  ident: 10.1016/j.nucengdes.2024.113587_b0250
  article-title: Parametric trends analysis of the critical heat flux based on artificial neural networks
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/0029-5493(95)01178-1
– year: 1994
  ident: 10.1016/j.nucengdes.2024.113587_b0220
– ident: 10.1016/j.nucengdes.2024.113587_b0320
– ident: 10.1016/j.nucengdes.2024.113587_b0020
– volume: 237
  start-page: 1909
  year: 2007
  ident: 10.1016/j.nucengdes.2024.113587_b0090
  article-title: The 2006 CHF look-up table
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2007.02.014
– volume: 37
  start-page: 813
  year: 2010
  ident: 10.1016/j.nucengdes.2024.113587_b0440
  article-title: Prediction of critical heat flux using ANFIS
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2010.02.019
– ident: 10.1016/j.nucengdes.2024.113587_b0125
– ident: 10.1016/j.nucengdes.2024.113587_b0365
  doi: 10.1201/9781351030502
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.nucengdes.2024.113587_b0235
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.07.028
– ident: 10.1016/j.nucengdes.2024.113587_b0290
– volume: 115
  year: 2022
  ident: 10.1016/j.nucengdes.2024.113587_b0075
  article-title: Ensemble deep learning: A review
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105151
– volume: 13
  start-page: 968
  year: 1963
  ident: 10.1016/j.nucengdes.2024.113587_b0340
  article-title: On the heat transfer crisis in steam-generating pipes
  publication-title: Soviet Atomic Energy
  doi: 10.1007/BF01480853
– volume: 37
  start-page: 3311
  year: 1997
  ident: 10.1016/j.nucengdes.2024.113587_b0280
  article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1?
  publication-title: Vision Research
  doi: 10.1016/S0042-6989(97)00169-7
– start-page: 1
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113587_b0305
  article-title: Research on water temperature prediction based on improved support vector regression
  publication-title: Neural Computing and Applications
– volume: 52
  start-page: 535
  year: 2005
  ident: 10.1016/j.nucengdes.2024.113587_b0185
  article-title: Critical heat flux function approximation using genetic algorithms
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/TNS.2005.846834
– volume: 203
  year: 2024
  ident: 10.1016/j.nucengdes.2024.113587_b0225
  article-title: Comparative analysis of heat transfer prediction for falling film evaporation on the horizontal tube based on machine learning methods
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2024.109165
– ident: 10.1016/j.nucengdes.2024.113587_b0030
– volume: 43
  start-page: 2605
  year: 2000
  ident: 10.1016/j.nucengdes.2024.113587_b0115
  article-title: Critical heat flux (CHF) for water flow in tubes—II.: Subcooled CHF correlations
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(99)00192-1
– volume: 49
  start-page: 136
  year: 2017
  ident: 10.1016/j.nucengdes.2024.113587_b0405
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, Cybernetics: Systems
  doi: 10.1109/TSMC.2017.2754287
– volume: 164
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113587_b0445
  article-title: On the prediction of critical heat flux using a physics-informed machine learning-aided framework
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2019.114540
– volume: 2
  start-page: 500
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113587_b0040
  article-title: Ensemble deep learning in bioinformatics
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-020-0217-y
– volume: 149
  start-page: 850
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113587_b0285
  article-title: Writing ‘usable’nuclear power plant (NPP) safety cases using bowtie methodology
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2021.03.022
– volume: 197
  year: 2024
  ident: 10.1016/j.nucengdes.2024.113587_b0300
  article-title: Analysis of bubble departure and lift-off boiling model using computational intelligence techniques and hybrid algorithms
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2023.108810
– year: 2024
  ident: 10.1016/j.nucengdes.2024.113587_b0155
  article-title: Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models
  publication-title: Applied Thermal Engineering
SSID ssj0000092
Score 2.4546492
Snippet •A novel ensemble of Deep Sparse AEs and DNN based CHF prediction method was proposed;•The method used an ensemble of deep sparse AEs to extract robust...
Accurate prediction of Critical Heat Flux (CHF) is essential for ensuring safety and economic efficiency of water-cooled reactors and two-phase flow boiling...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 113587
SubjectTerms Critical Heat Flux
Deep Neural Network
Engineering Sciences
Ensemble Model
Nuclear Reactors
Process Safety
Sparse Autoencoders
Title Enhancing accuracy of prediction of critical heat flux in Circular channels by ensemble of deep sparse autoencoders and deep neural Networks
URI https://dx.doi.org/10.1016/j.nucengdes.2024.113587
https://hal.science/hal-04835886
Volume 429
WOSCitedRecordID wos001316425800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owELYo20N7qPpUty9ZVW8oKwhxsHtDLSvoIrRSdyu0l8hxnJIVBBQCov-h_69_pzNxHEIf2u2hlygkTF7zZTwz-TxDyDvGIniF_K4ThTp2ABQdh4uOcBS2dVCMR2GRGvgy7k0mfDoV543GDzsXZjvvpSnf7cTqv6oatoGycersP6i7OihsgHVQOixB7bC8leIH6QxraODcQ6U2GbZzR1Zzhl9krHuobIMDNMWteL7ZFbP_ksywUnE2cAqDJvqmEObqRWgoiJHWqxaYoGytW3KTL7EIJhKhiy8QxU4sjwmHnRhy-bru-k6wcjIcXO8rIJZydQ7J2QwCA0MC0nAVratNKJOKQNyfLUxydgRB_ixZ1KRMKYQ8l61LQHaV5L5KilzwIAV7v6ynOFzvF7qInXtTt-OucCCyNaZRG9PNexArsKIxb2XbPZNO-W2cMCmL65MU3p_0K9zoCZ4XG9ywcvw_qMw97H8Ozj-eBuPR5Oxwb43OOOyPYQlPycEy_Yxzfwth-ZEL18Sb5Kg_Gkw_1SIz4Vr2Ed7IAfXwj1f1N8fpzsx-AihcoouH5EEZy9C-weAj0tDpY3K_VuHyCfleoZFaNNJlTPdoxF8WjRTRSBGNNEmpRSO1aKThN2rRiGIIOGrQSOtopIAqs9OgkVo0PiWXp4OLD0OnbADiqK4ncsfVHQjPua9kJDwpQsl8zb3Yi7nksetyGK2FlFy0u4r7WkmQ8mQ75l1P8jBivPuMNNNlqp8TCl4YYyDD3F7b85gOfT-MseOeUKHSsTgmvn26gSqr42OTlnlgaZDXQaWWANUSGLUck3YluDIFYm4WeW_VF5R-rvFfA4DnzcJvQeHVqbA6PAAvwG172L24zZ9eknv7l-0VaebZRr8md9U2T9bZmxKwPwGy6tq8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+accuracy+of+prediction+of+critical+heat+flux+in+Circular+channels+by+ensemble+of+deep+sparse+autoencoders+and+deep+neural+Networks&rft.jtitle=Nuclear+engineering+and+design&rft.au=Khalid%2C+Rehan+Zubair&rft.au=Ahmed%2C+Ibrahim&rft.au=Khan%2C+Atta+Ullah&rft.au=Zio%2C+Enrico&rft.date=2024-12-01&rft.pub=Elsevier&rft.issn=0029-5493&rft.eissn=1872-759X&rft.volume=429&rft_id=info:doi/10.1016%2Fj.nucengdes.2024.113587&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04835886v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon