Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs
This paper presents a systematic methodology to derive and classify fast algorithms for linear transforms. The approach is based on the algebraic signal processing theory. This means that the algorithms are not derived by manipulating the entries of transform matrices, but by a stepwise decompositio...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 56; číslo 4; s. 1502 - 1521 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.04.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a systematic methodology to derive and classify fast algorithms for linear transforms. The approach is based on the algebraic signal processing theory. This means that the algorithms are not derived by manipulating the entries of transform matrices, but by a stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey fast Fourier transform (FFT) and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast general radix algorithms, many of which have not been found before. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2007.907919 |